Fracture at high temperatures:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1987
|
Schriftenreihe: | Materials research and engineering.
|
Schlagworte: | |
Online-Zugang: | Volltext // Exemplar mit der Signatur: Erlangen, Universitätsbibliothek -- T00/wer 3.1-421 Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 401 - 416 |
Beschreibung: | XVII, 418 S. Ill., graph. Darst. |
ISBN: | 3540172718 0387172718 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV002057958 | ||
003 | DE-604 | ||
005 | 20160222 | ||
007 | t | ||
008 | 890928s1987 ad|| |||| 00||| eng d | ||
020 | |a 3540172718 |9 3-540-17271-8 | ||
020 | |a 0387172718 |9 0-387-17271-8 | ||
035 | |a (OCoLC)15016783 | ||
035 | |a (DE-599)BVBBV002057958 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-703 |a DE-29T |a DE-862 |a DE-706 |a DE-634 |a DE-188 |a DE-12 | ||
050 | 0 | |a TA409 | |
082 | 0 | |a 620.1/126 |2 19 | |
084 | |a UF 1800 |0 (DE-625)145565: |2 rvk | ||
084 | |a UQ 8400 |0 (DE-625)146596: |2 rvk | ||
084 | |a MTA 035f |2 stub | ||
100 | 1 | |a Riedel, Hermann |e Verfasser |0 (DE-588)102755606X |4 aut | |
245 | 1 | 0 | |a Fracture at high temperatures |c Hermann Riedel |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1987 | |
300 | |a XVII, 418 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Materials research and engineering. | |
500 | |a Literaturverz. S. 401 - 416 | ||
650 | 4 | |a Fracture mechanics | |
650 | 4 | |a Materials at high temperatures | |
650 | 4 | |a Materials |x Creep | |
650 | 0 | 7 | |a Hochtemperaturwerkstoff |0 (DE-588)4025280-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hochtemperatur |0 (DE-588)4282597-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoff |0 (DE-588)4065579-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bruchmechanik |0 (DE-588)4112837-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hochtemperaturverhalten |0 (DE-588)4160294-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bruchmechanik |0 (DE-588)4112837-0 |D s |
689 | 0 | 1 | |a Hochtemperatur |0 (DE-588)4282597-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Werkstoff |0 (DE-588)4065579-9 |D s |
689 | 1 | 1 | |a Hochtemperaturverhalten |0 (DE-588)4160294-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Bruchmechanik |0 (DE-588)4112837-0 |D s |
689 | 2 | 1 | |a Hochtemperaturwerkstoff |0 (DE-588)4025280-2 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Elektronische Reproduktion |d München : Bayerische Staatsbibliothek, 2013 |o urn:nbn:de:bvb:12-bsb00080018-2 |
856 | 4 | 1 | |u http://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-bsb00080018-2 |x Resolving-System |z kostenfrei |3 Volltext // Exemplar mit der Signatur: Erlangen, Universitätsbibliothek -- T00/wer 3.1-421 |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001345705&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a digit | ||
940 | 1 | |q BSBLeibnizPublik | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001345705 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/UF 1800 R551 |
DE-BY-FWS_katkey | 48389 |
DE-BY-FWS_media_number | 083000092350 |
_version_ | 1806195654830063616 |
adam_text | HERMANN RIEDEL FRACTURE AT HIGH TEMPERATURES WITH 109 FIGURES
SPRINGER-VERLAG BERLIN HEIDELBERG NEWYORK LONDON PARIS TOKYO CONTENTS
PART I. INTRODUCTORY CHAPTERS ON DEFORMATION AND FAILURE UNDER CREEP
CONDITIONS 1 SUMMARY OF THE DEFORMATION BEHAVIOR UNDER CREEP CONDITIONS
3 1.1 THE CREEP CURVE 3 1.2 A FEW FACTS ON THE MICROMECHANISMS
UNDERLYING THE CREEP CURVE 4 1.3 DIFFUSION CREEP 6 1.4 INHIBITION OF
DIFFUSION CREEP 7 1.5 GRAIN BOUNDARY SLIDING 8 1.5.1 THE INFINITE GRAIN
BOUNDARY (AN INTRINSIC SLIDING MODEL) 8 1.5.2 GRAIN BOUNDARY SLIDING IN
POLYCRYSTALS (EXTRINSIC MODELS) 10 1.6 DEFORMATION-MECHANISM MAPS 11 2
INTRODUCTION TO CREEP FRACTURE AND OTHER FRACTURE MODES 14 2.1 THE
NATURE OF CREEP DAMAGE 14 2.2 FRACTURE-MECHANISM MAPS 15 2.2.1 CLEAVAGE
AND BRITTLE INTERGRANULAR FRACTURE 16 2.2.2 DUCTILE TRANSGRANULAR
FRACTURE BY PLASTIC HOLE GROWTH 18 2.2.3 NECKING AND SUPERPLASTICITY 18
2.2.4 INTERGRANULAR CREEP FRACTURE 21 2.2.5 RUPTURE BY DYNAMIC
RECRYSTALLIZATION 21 2.2.6 FRACTURE AT VERY HIGH TEMPERATURE 22 2.3
EMPIRICAL FORMULAS FOR THE RUPTURE TIME IN THE CREEP REGIME 23 2.3.1 THE
MONKMAN-GRANT RULE 23 2.3.2 THE SHERBY-DORN PARAMETER 23 2.3.3 THE
LARSON-MILLER PARAMETER 24 2.3.4 THE KACHANOV EQUATIONS 24 2.3.5 THE
E-PROJECTION CONCEPT 26 3 THE CONTINUUM-MECHANICAL EQUATIONS 27 3.1 THE
EQUATIONS FOR EQUILIBRIUM AND COMPATIBILITY 27 3.2 THE MATERIAL LAW 28
3.3 THE EQUATIONS FOR ANTIPLANE SHEAR, PLANE STRESS AND PLANE STRAIN 29
3.4 GENERAL FEATURES OF THE CONTINUUM-MECHANICAL FIELDS 33 3.4.1 THE
ELASTIC-VISCOUS ANALOGY (HOFF, 1954) 33 3.4.2 SCALING PROPERTIES FOR
POWER-LAW MATERIALS (ILYUSHIN, 1946) 33 3.4.3 PATH-INDEPENDENT
INTEGRALS: J AND C* 34 3.4.4 THE HRR CRACK-TIP FIELDS IN POWER-LAW
MATERIALS 36 3.5 NUMERICAL TECHNIQUES IN SOLID MECHANICS 39 4
STRESS-DIRECTED DIFFUSION AND SURFACE DIFFUSION 40 4.1 THE ROLE OF
VACANCY SOURCES IN STRESS-DIRECTED DIFFUSION 40 4.2 STRESS-DIRECTED
DIFFUSION ALONG GRAIN BOUNDARIES 41 4.3 STRESS-DIRECTED DIFFUSION
THROUGH THE GRAINS 43 4.4 SURFACE DIFFUSION 45 4.5 GRAIN-BOUNDARY
DIFFUSION COMBINED WITH POWER-LAW CREEP 46 PART II. CREEP CAVITIES 5
INTRODUCTION TO PART II 51 5.1 EXPERIMENTAL TECHNIQUES 52 5.2 MATERIALS
WHICH EXHIBIT INTERGRANULAR CAVITATION 53 5.3 DIFFUSION AS THE GENERAL
CAUSE FOR INTERGRANULAR CAVITATION 55 5.4 THE ROLE OF GRAIN BOUNDARY
SLIDING 56 5.4.1 EXPERIMENTS ON BICRYSTALS 56 5.4.2 THE ORIENTATION OF
CAVITATING BOUNDARIES IN POLYCRYSTALS 56 5.5 CAVITY NUCLEATION SITES 57
5.5.1 SLIP BANDS 57 5.5.2 GRAIN-BOUNDARY LEDGES 57 5.5.3 TRIPLE GRAIN
JUNCTIONS 59 5.5.4 GRAIN BOUNDARY PARTICLES 59 5.6 WEDGE CRACKS 61 5.7
SOME OBSERVATIONS ON THE KINETICS OF CAVITY NUCLEATION 62 5.7.1 THE
OBSERVED NUCLEATION KINETICS 62 5.7.2 IS THERE A CRITICAL STRESS FOR
CAVITY NUCLEATION? 65 5.8 PRE-EXISTING CAVITIES 66 6 NUCLEATION OF CREEP
CAVITIES / BASIC THEORIES 67 6.1 CAVITY NUCLEATION BY THE RUPTURING OF
ATOMIC BONDS . 67 6.2 CAVITY NUCLEATION BY VACANCY CONDENSATION 69 6.2.1
HISTORICAL REMARKS AND RELATED SUBJECT AREAS 69 6.2.2 CAVITY SHAPES 70
6.2.3 THE FREE ENERGY OF A CAVITY 72 6.2.4 THE NUCLEATION RATE ACCORDING
TO RAJ AND ASHBY 75 6.2.5 THE FOKKER-PLANCK EQUATION 77 6.2.6 THE
STEADY-STATE NUCLEATION RATE AND THE NUCLEATION STRESS 78 6.2.7
TRANSIENT SOLUTIONS OF THE FOKKER-PLANCK EQUATION 80 AND INCUBATION
TIMES 6.3 DISCUSSION OF CAVITY NUCLEATION THEORIES 82 6.3.1 A
THEORETICAL REMARK 83 6.3.2 ON POSSIBLE CAUSES FOR THE DISCREPANCY
BETWEEN THEORETICAL 83 AND EXPERIMENTAL NUCLEATION STRESSES 6.3.3 THE
PROBLEM OF CONTINUOUS CAVITY NUCLEATION 84 7 CAVITY NUCLEATION BY STRESS
CONCENTRATIONS DURING CREEP 85 7.1 AN ISOLATED SLIDING GRAIN BOUNDARY
FACET (SHEAR-CRACK MODEL) 86 7.1.1 ELASTIC ANALYSIS OF A SLIDING FACET
86 7.1.2 A SLIDING BOUNDARY FACET (SHEAR CRACK) IN CREEPING MATERIAL 89
7.1.3 RELAXATION OF ELASTIC STRESS CONCENTRATIONS AT A SHEAR 90 CRACK BY
POWER-LAW CREEP 7.1.4 THE TIME TO BUILD UP ELASTIC STRESS CONCENTRATIONS
91 7.2 THE TRIPLE GRAIN JUNCTION IN POLYCRYSTALS 92 7.2.1 THE TRIPLE
JUNCTION IN ELASTIC MATERIAL 93 7.2.2 THE TRIPLE JUNCTION IN POWER-LAW
CREEPING MATERIAL 94 7.2.3 STRESSES DURING COBLE CREEP (RIGID GRAINS) 96
7.2.4 A COMBINATION OF POWER-LAW CREEP AND GRAIN-BOUNDARY DIFFUSION 98
7.2.5 RELAXATION OF ELASTIC STRESS CONCENTRATIONS AT TRIPLE 99 JUNCTIONS
BY CREEP 7.2.6 RELAXATION OF ELASTIC STRESS CONCENTRATIONS AT TRIPLE 99
POINTS BY DIFFUSION XI 7.3 STRESS CONCENTRATIONS AT PARTICLES ON SLIDING
GRAIN BOUNDARIES 102 7.3.1 ELASTIC STRESS CONCENTRATIONS AT
TWO-DIMENSIONAL PARTICLES 102 7.3-2 ELASTIC STRESS CONCENTRATIONS AT
THREE-DIMENSIONAL PARTICLES 103 7.3-3 STRESSES AT TWO-DIMENSIONAL
PARTICLES DURING POWER-LAW CREEP 105 7.3-4 STRESSES AT THREE-DIMENSIONAL
PARTICLES DURING POWER-LAW 107 CREEP 7.3.5 DIFFUSION AND CREEP AROUND
PARTICLES DURING POWER-LAW 108 CREEP OF THE GRAINS 7.3.6 STRESSES AT
PARTICLES DURING (FREE AND INHIBITED) COBLE 110 CREEP 7.3.7 RELAXATION
OF ELASTIC STRESS CONCENTRATIONS AT PARTICLES 112 BY CREEP 7.3.8
RELAXATION OF ELASTIC STRESS CONCENTRATIONS AT PARTICLES 113 BY
DIFFUSION 7.4 STRESSES AT GRAIN-BOUNDARY LEDGES 114 7.5 SUMMARY OF
STRESS CONCENTRATIONS 115 8 THE ROLE OF IMPURITY SEGREGATION IN CAVITY
NUCLEATION 116 8.1 QUALITATIVE OBSERVATIONS 116 8.1.1 GRAIN-BOUNDARY
BRITTLENESS AT ROOM TEMPERATURE 116 (TEMPER EMBRITTLEMENT) 8.1.2
EMBRITTLEMENT BY IMPURITY SEGREGATION UNDER CREEP CONDITIONS 117 8.1.3
STRESS RELIEF CRACKING OR REHEAT CRACKING 8.2 THEORIES RELATED TO
SEGREGATION AND COHESION 8.2.1 SEGREGATION EQUILIBRIA 8.2.2 SEGREGATION
KINETICS 8.2.3 CALCULATION OF INTERFACE ENERGIES FROM ADSORPTION DATA
8.2.4 THE RELEVANCE OF SEGREGATION FOR DECOHESION 8.2.5 THE EFFECT OF
SEGREGATION ON CAVITY NUCLEATION BY VACANCY CONDENSATION 9 CAVITY
NUCLEATION ASSISTED BY INTERNAL GAS PRESSURE 9.1 OXYGEN ATTACK AND
RELATED PHENOMENA 9.1.1 THE EQUILIBRIUM CARBON-DIOXIDE PRESSURE IN
NICKEL 9.1.2 CARBON-OXIDES IN NICKEL-CHROMIUM ALLOYS 9.2 HYDROGEN ATTACK
9.3 HELIUM EMBRITTLEMENT 9.4 KINETIC ASPECTS 10 INTERNAL STRESSES DUE TO
THE PRECIPITATION OF SOLID PHASES AND THERMAL EXPANSION 10.1 THE FLUX OF
CARBON TO THE CARBIDE 10.2 ELASTIC ACCOMMODATION 10.3 ACCOMMODATION BY
POWER-LAW CREEP 10.4 ACCOMMODATION BY GRAIN BOUNDARY DIFFUSION 10.5
DECOHESION OF PARTICLES BY THERMAL EXPANSION 10.6 GRAIN-BOUNDARY
DECOHESION BY THERMAL-EXPANSION ANISOTROPY 11 DIFFUSIVE CAVITY GROWTH
11.1 DIFFUSIONAL GROWTH OF LENS-SHAPED (EQUILIBRIUM) CAVITIES 11.1.1 THE
STRESS DISTRIBUTION BETWEEN THE CAVITIES THE CAVITY GROWTH RATE 119 121
121 123 124 127 129 131 131 132 135 136 138 139 140 140 142 144 145 146
147 148 149 150 XII 11.1.2 RUPTURE TIMES BY DIFFUSIVE CAVITY GROWTH
NEGLECTING 154 NUCLEATION 11.1.3 THE EFFECT OF THE SINTERING STRESS ON
THE RUPTURE TIME 155 11.1.4 REMOVAL OF CAVITIES BY COMPRESSIVE LOADS OR
BY SURFACE 156 TENSION FORCES 11.1.5 THE EFFECT OF IMPURITY SEGREGATION
ON DIFFUSIVE 158 CAVITY GROWTH 11.1.6 THE EFFECT OF GAS PRESSURE ON THE
DIFFUSIVE CAVITY 159 GROWTH RATE 11.2 DIFFUSIONAL GROWTH OF
NON-EQUILIBRIUM CAVITIES 160 11.2.1 THE PROCEDURE TO SOLVE THE COUPLED
PROBLEM OF SURFACE 161 DIFFUSION AND GRAIN BOUNDARY DIFFUSION 11.2.2
RE-FORMULATION OF THE SURFACE DIFFUSION PROBLEM 161 11.2.3 A
STEADY-STATE SOLUTION OF THE SURFACE DIFFUSION PROBLEM 163 IN THE
CRACK-LIKE LIMIT 11.2.4 SIMILARITY SOLUTIONS FOR THE SURFACE DIFFUSION
PROBLEM 164 11.2.5 THE RELATION BETWEEN GROWTH RATE AND STRESS IN THE
165 CRACK-LIKE LIMIT 11.2.6 RUPTURE TIMES FOR NON-EQUILIBRIUM GROWTH 167
11.2.7 EXPERIMENTS ON COPPER AND SILVER CONTAINING WATER 169 VAPOR
BUBBLES 11.2.8 VOID-SHAPE INSTABILITY/FINGER-LIKE CAVITY GROWTH 170 12
CONSTRAINED DIFFUSIVE CAVITATION OF GRAIN BOUNDARIES 172 12.1 CAVITY
GROWTH RATES FOR CONSTRAINED CAVITATION OF AN 173 ISOLATED FACET 12.1.1
A TENSILE-CRACK MODEL FOR THE CALCULATION OF 173 CONSTRAINED GROWTH
RATES 12.1.2 COMPARISON WITH MEASURED CAVITY GROWTH RATES 175 12.1.3
ADDITIONAL REMARKS ON CONSTRAINED CAVITY GROWTH RATES 179 12.2 THE TIME
TO CAVITY COALESCENCE ON AN ISOLATED BOUNDARY FACET 181 12.3 ON THE
IRRELEVANCE OF CONSTRAINED CAVITY GROWTH FOR RUPTURE 181 LIFETIMES 12.4
COMPARISON OF CALCULATED TIMES TO CAVITY COALESCENCE ON ISOLATED 182
FACETS WITH MEASURED RUPTURE LIFETIMES OF PRE-CAVITATED MATERIALS 12.4.1
RUPTURE LIFETIME OF PRESTRAINED NIMONIC 80A 182 12.4.2 RUPTURE LIFETIME
OF PRESTRAINED INCONEL ALLOY X-750 183 12.4.3 RUPTURE TIME OF OT-BRASS
WITH IMPLANTED WATER VAPOR 184 BUBBLES 12.5 CONSTITUTIVE BEHAVIOR OF
CREEPING MATERIALS CONTAINING WIDELY 185 SPACED CAVITATING GRAIN
BOUNDARY FACETS 12.5.1 THE CONSTRAINED LIMIT (HUTCHINSON S MODEL) 185
12.5.2 THE UNCONSTRAINED LIMIT 186 12.5.3 THE EFFECT OF CAVITATION ON
DIFFUSION CREEP 187 12.6 INTERACTION BETWEEN CLOSELY SPACED CAVITATING
BOUNDARY FACETS 188 12.6.1 SELF-CONSISTENT MODELS FOR CONSTRAINED
CAVITATION 188 12.6.2 THE PENNY-SHAPED CRACK IN A FINITE CYLINDER 190
12.6.3 INTERACTIONS BETWEEN CLOSELY SPACED FACETS IN THE 191 PRESENCE OF
GRAIN BOUNDARY SLIDING 12.7 TIME TO RUPTURE FOR INTERACTING FACETS 193
12.7.1 FAILURE BY LARGE STRAINS 193 12.7.2 RUPTURE LIFETIMES FOR
CONTINUOUS NUELEATION OF 194 CAVITATING FACETS 12.7.3 THE COMBINED
EFFECT OF NECKING AND CONTINUOUS NUCLEATION 196 12.8 CONCLUSIONS ON
CONSTRAINED CAVITATION 197 XIII 13 INHIBITED CAVITY GROWTH 13.1
INHIBITED CAVITY GROWTH RATES 13.2 TIME TO CAVITY COALESCENCE AND TIME
TO RUPTURE FOR INHIBITED GROWTH 198 198 200 11 CAVITY GROWTH BY CREEP
FLOW OF THE GRAINS OR BY GRAIN BOUNDARY SLIDING 201 14.1 HOLE GROWTH BY
CREEP FLOW OF THE GRAINS 14.1.1 THE GROWTH OF ISOLATED HOLES IN LINEARLY
VISCOUS MATERIALS 14.1.2 AN ISOLATED CIRCULAR-CYLINDRICAL VOID IN
NONLINEAR VISCOUS MATERIAL 14.1.3 SPHERICAL VOIDS IN NONLINEAR MATERIAL
UNDER AXI- SYMMETRIC LOADING. COMPARISON WITH PENNY-SHAPED CRACKS 14.1.4
STRAIN TO FAILURE NEGLECTING VOID INTERACTION EFFECTS 14.1.5 VOID
INTERACTION EFFECTS 14.2 CAVITY GROWTH BY GRAIN BOUNDARY SLIDING 15
CREEP-ENHANCED DIFFUSIVE CAVITY GROWTH AND ELASTIC ACCOMMODATION 15.1
CAVITY GROWTH BY A COUPLING OF DIFFUSION AND POWER-LAW CREEP 15.1.1
MODELS FOR THE INTERACTIVE GROWTH MECHANISM 15.1.2 COMPARISON WITH
EXPERIMENTS 15.2 DIFFUSIVE CAVITY GROWTH WITH ELASTIC ACCOMMODATION
15.2.1 ELASTICITY EFFECTS IN THE GROWTH 6F EQUILIBRIUM-SHAPED CAVITIES
15.2.2 CRACK-LIKE CAVITY GROWTH WITH ELASTIC ACCOMMODATION 16 THE CAVITY
SIZE DISTRIBUTION FUNCTION FOR CONTINUOUS CAVITY NUCLEATION. RUPTURE
LIFETIMES AND DENSITY CHANGES 16.1 THE CAVITY SIZE DISTRIBUTION FUNCTION
16.2 THE CAVITATED AREA FRACTION AND THE RUPTURE LIFETIME 16.2.1
LIFETIMES FOR DIFFUSIVE CAVITY GROWTH AND CONTINUOUS NUCLEATION
CRACK-LIKE DIFFUSIVE GROWTH AND CONTINUOUS NUCLEATION CONSTRAINED
DIFFUSIVE GROWTH AND CONTINUOUS NUCLEATION INHIBITED CAVITY GROWTH AND
CONTINUOUS NUCLEATION PLASTIC HOLE GROWTH AND CONTINUOUS NUCLEATION 16.3
COMPARISON OF CALCULATED RUPTURE TIMES WITH EXPERIMENTS INVOLVING
CONTINUOUS NUCLEATION 16.3.1 RUPTURE LIFETIMES OF FERRITIC STEELS 16.3.2
LIFETIMES OF AUSTENITIC STEELS 16.3.3 RUPTURE LIFETIMES OF ASTROLOY 16.4
DENSITY CHANGES DURING CAVITATION 17 SUMMARY OF RESULTS ON CAVITY
NUCLEATION AND GROWTH 17.1 NUCLEATION 17.2 CAVITY GROWTH RATES AND
RUPTURE LIFETIMES FOR INSTANTANEOUS NUCLEATION 17.3 RUPTURE LIFETIMES
FOR CONTINUOUS NUCLEATION 16.2.2 16.2.3 16.2.4 16 .2. .2.5 201 202 204
206 209 210 212 215 215 215 218 220 220 221 225 225 227 228 231 231 233
233 234 234 237 239 240 242 242 243 246 XIV 18 GRAIN BOUNDARY CAVITATION
UNDER CREEP-FATIGUE CONDITIONS 24 7 18.1 MICROMECHANISMS OF
CREEP-FATIGUE FAILURE 247 18.2 THEORIES OF CAVITATIONAL FAILURE FOR
SLOW-FAST FATIGUE LOADING 248 18.2.1 CYCLES TO FAILURE FOR UNCONSTRAINED
DIFFUSIVE CAVITY 249 GROWTH 18.2.2 CYCLES TO FAILURE FOR PLASTIC HOLE
GROWTH 251 18.2.3 CYCLES TO FAILURE FOR UNCONSTRAINED GROWTH 252 18.2.4
SUMMARY OF FATIGUE LIFETIMES FOR DIFFERENT CAVITY GROWTH 253 MECHANISMS
18.3 COMPARISON WITH RESULTS OF SLOW-FAST TESTS 254 18.3.1 LOW-CYCLE
FATIGUE TESTS ON AL-5$MG 254 18.3.2 LOW-CYCLE FATIGUE TESTS ON NICKEL
255 18.3.3 LOW-CYCLE FATIGUE TESTS ON COPPER 256 18.3.4 LOW-CYCLE
FATIGUE TESTS ON AUSTENITIC STEEL 257 18.4 WHY DO CAVITIES GROW UNDER
BALANCED CYCLIC LOADING? 258 18.5 DISCUSSION 259 PART III. CREEP CRACK
GROWTH AND CREEP-FATIGUE CRACK GROWTH 19 INTRODUCTION TO PART III 263
19.1 THE RELEVANCE OF CRACKS 263 19.2 THE FIRST ASPECT: DEFORMATION
FIELDS IN CRACKED BODIES 264 19.3 THE SECOND ASPECT: MICROMECHANISMS 265
19.3.1 GRAIN BOUNDARY CAVITATION AHEAD OF THE CRACK TIP 265 19.3.2
CORROSIVE PROCESSES AT THE CRACK TIP 266 20 NONLINEAR VISCOUS MATERIALS
AND THE USE OF C* 267 20.1 DEFINITION OF THE C*-INTEGRAL 267 20.2 STRESS
FIELDS AND THE C*-INTEGRAL IN POWER-LAW VISCOUS MATERIALS 268 20.2.1 THE
C*-INTEGRAL IN POWER-LAW VISCOUS MATERIALS 269 20.2.2 CRACK-TIP FIELDS
IN POWER-LAW VISCOUS MATERIALS 271 21 C-CONTROLLED CREEP CRACK GROWTH
BY GRAIN-BOUNDARY CAVITATION 27 2 21.1 CREEP CRACK GROWTH BASED ON A
LOCAL CRITICAL-STRAIN CRITERION 273 21.2 STRAIN-CONTROLLED CAVITY GROWTH
AND STRESS-CONTROLLED NUCLEATION 277 21.3 DIFFUSIVE GROWTH OF A CONSTANT
NUMBER OF CAVITIES 279 21.4 DIFFUSIVE CAVITY GROWTH AND
STRESS-CONTROLLED NUCLEATION 280 21.5 COMPARISON WITH EXPERIMENTS 281
21.5.1 TESTS ON A 1CR-1/2MO STEEL 281 21.5.2 COMPARISON OF THE DATA WITH
MODELS 283 21.5.3 CONCLUSIONS 285 22 SPECIMEN SIZE REQUIREMENTS FOR
C*-TESTING CAUSED BY CRACK-TIP BLUNTING 286 AND BY 3-D EFFECTS 22.1
LIMITATIONS TO C* SET BY BLUNTING 286 22.2 THE THIRD DIMENSION IN
FRACTURE MECHANICS AND ITS PRACTICAL 288 CONSEQUENCES 22.2.1 THE
C*-INTEGRAL IN THREE DIMENSIONS 289 XV 22.2.2 CRACK-TIP FIELDS IN
SPECIMENS OF FINITE THICKNESS 290 22.2.3 THE SINGULARITY AT THE
INTERSECTION OF THE CRACK FRONT 290 WITH THE SURFACE 22.2.4 RANGES OF
VALIDITY OF SINGULAR FIELDS IN PARALLEL-SIDED 292 SPECIMENS WITH
STRAIGHT CRACK FRONTS 22.2.5 CONDITIONS FOR PLANE STRAIN NEAR THE CRACK
TIP 293 22.2.6 THUMBNAIL-SHAPED CRACK FRONTS 295 22.2.7 SHEAR LIPS 296
22.2.8 CRACK-TIP FIELDS IN SIDE-GROOVED SPECIMENS 297 22.2.9 THE
COMPLIANCE AND C* IN PARALLEL-SIDED AND SIDE-GROOVED 298 SPECIMENS 23
ELASTIC/NONLINEAR VISCOUS MATERIALS. APPLICABILITY OF KJ AND OF C* 301
23.1 STATIONARY CRACK UNDER STEP LOADING 301 23.1.1 SIMILARITY SOLUTIONS
IN THE SMALL-SCALE CREEP, OR 302 SHORT-TIME, LIMIT 23.1.2 THE CRACK-TIP
FIELD IN THE SHORT-TIME LIMIT 304 23.1.3 THE COMPLETE STRESS FIELD IN
THE SHORT-TIME LIMIT 305 23.1.4 THE CREEP ZONE 306 23.1.5 A
CHARACTERISITC TRANSITION TIME 308 23.1.6 INTERPOLATION FORMULAS FOR THE
TRANSIENT REGIME 309 23.1.7 POSSIBLE GENERALIZATIONS AND RELATED WORK
311 23.2 STRESS FIELDS AT GROWING CRACKS IN ELASTIC/NONLINEAR VISCOUS
312 MATERIAL 23.2.1 DERIVATION OF THE SINGULARITY AT GROWING CRACKS FOR
312 MODE III 23.2.2 THE GROWING CRACK SINGULARITY: RESULTS FOR MODE I
314 23.2.3 FIELDS FOR STEADY-STATE CRACK GROWTH UNDER SMALL-SCALE 315
CREEP CONDITIONS 23.2.4 STEADY-STATE CRACK GROWTH DURING EXTENSIVE CREEP
OF THE 316 WHOLE SPECIMEN 23.2.5 THE EVOLUTION OF THE ASYMPTOTIC FIELD
UNDER NON-STEADY- 317 STATE CONDITIONS 23.3 CRACK GROWTH IN
ELASTIC/NONLINEAR VISCOUS MATERIAL SUBJECT TO 319 A CRITICAL-STRAIN
CRITERION 23.3.1 ANALYSIS OF THE CASE R HR X C AND A-A 0 R OR 319
23.3.2 CRACK GROWTH SUBJECT TO A CRITICAL-STRAIN CRITERION FOR 321
SMALL-SCALE CREEP 23.4 APPLICATION TO EXPERIMENTS 324 23.4.1 THE
APPROPRIATE LOAD PARAMETER . 324 23.4.2 A 1CR-1/2MO STEEL 324 23.4.3
NLMONIC 80A 325 24 INSTANTANEOUS PLASTICITY 32 7 24.1 DEFORMATION FIELDS
IN ELASTIC/PLASTIC MATERIAL 328 24.2 GROWTH OF A CREEP ZONE IN AN
INITIALLY FULLY-PLASTIC BODY 329 24.3 THE SPECIAL CASE N = 1/N 330 24.4
AN EXPERIMENTAL EXAMPLE FOR J-CONTROLLED CREEP CRACK GROWTH 331 25
PRIMARY-CREEP EFFECTS 332 25.1 STRAIN-HARDENING MODEL FOR PRIMARY CREEP
332 25.1.1 PRIMARY CREEP OF THE WHOLE SPECIMEN 333 25.1.2 GROWTH OF A
PRIMARY-CREEP ZONE IN AN ELASTIC FIELD 334 XVI 25.1.3 GROWTH OF A
SECONDARY-CREEP ZONE IN A PRIMARY-CREEP 335 FIELD 25.1.4 SUMMARY AND
INTRODUCTION OF A LOAD PARAMETER MAP 336 25.2 HARDENING/RECOVERY MODEL
FOR PRIMARY CREEP 338 25.2.1 THE CONSTITUTIVE EQUATIONS 338 25.2.2
SOLUTIONS FOR CRACK GEOMETRIES 340 25.2.3 ELASTICITY EFFECTS AND LOAD
PARAMETER MAP 341 25.3 ANALYSIS OF AN EXPERIMENT IN THE TRANSITION RANGE
BETWEEN 342 J, EG AND C* 26 DIFFUSION CREEP 346 26.1 CONSTITUTIVE LAW
346 26.2 THE EFFECT OF DIFFUSION CREEP ON THE DEFORMATION 346 FIELDS IN
CRACKED BODIES 26.3 CRACK GROWTH RATES ASSUMING A CRITICAL-STRAIN
CRITERION 348 27 A DAMAGE MECHANICS APPROACH TO CREEP CRACK GROWTH 349
27.1 INTRODUCTION 349 27.1.1 THE CONSTITUTIVE MODEL 349 27.1.2 THE
RELATION BETWEEN FRACTURE MECHANICS AND DAMAGE 350 MECHANICS 27.2
SMALL-SCALE DAMAGE IN EXTENSIVELY CREEPING SPECIMENS 352 27.2.1
SIMILARITY SOLUTIONS 352 27.2.2 CRACK GROWTH RATES 352 27.2.3
APPROXIMATE AND NUMERICAL METHODS IN SMALL-SCALE DAMAGE 353 27.2.4 THE
PROCESS ZONE 354 27.3 THE RANGE OF VALIDITY OF THE SMALL-SCALE DAMAGE
APPROXIMATION 355 IN EXTENSIVELY CREEPING SPECIMENS 27.4 THE EVOLUTION
OF DAMAGE AND CRACK GROWTH FOR SMALL-SCALE CREEP 356 27.4.1 CRACK GROWS
FASTER THAN CREEP ZONE 357 27.4.2 CREEP ZONE GROWS FASTER THAN PROCESS
ZONE 358 27.5 PRIMARY-CREEP EFFECTS 359 27.5.1 SMALL-SCALE DAMAGE IN A
SPECIMEN WHICH CREEPS IN THE 359 PRIMARY STAGE 27.5.2 THE TRANSIENT FROM
ELASTICITY OVER PRIMARY TO SECONDARY 359 CREEP 27.6 THE EVOLUTION OF THE
CRACK LENGTH AND THE LIFETIME * 359 27.7 DISCUSSION 362 28 CREEP-FATIGUE
CRACK GROWTH 364 28.1 MICROMECHANISMS OF FATIGUE CRACK GROWTH 365 28.1.1
THE ALTERNATING SLIP MODEL (ALSO CALLED THE CRACK-TIP 365 BLUNTING MODEL
28.1.2 FATIGUE CRACK GROWTH BY GRAIN BOUNDARY CAVITATION 367 28.1.3
CORROSIVE EFFECTS IN CREEP-FATIGUE CRACK GROWTH 368 28.2 FATIGUE CRACKS
IN VISCOUS MATERIALS 370 28.2.1 GROWTH RATES BY THE ALTERNATING SLIP
MECHANISM 370 28.2.2 GROWTH BY CAVITATION IN VISCOUS MATERIALS 370 28.3
FATIGUE CRACKS IN ELASTIC-PLASTIC MATERIALS 371 28.3.1 ELASTIC-PLASTIC
DEFORMATION FIELDS 372 28.3.2 THE CYCLIC J-INTEGRAL, Z 372 28.3.3
Z-CONTROLLED CRACK GROWTH RATES BY ALTERNATING SLIP 372 28.4 FATIGUE
CRACKS IN ELASTIC/NONLINEAR VISCOUS MATERIALS 373 28.4.1 STRESS FIELDS
IN ELASTIC/NONLINEAR VISCOUS MATERIAL 373 AFTER A LOAD STEP XVII 28.4.2
GRADUAL LOAD VARIATIONS IN ELASTIC/NONLINEAR 374 VISCOUS MATERIAL 28.4.3
STRESS FIELDS FOR RAPID CYCLIC LOADING 376 28.4.4 CRACK GROWTH RATES BY
THE ALTERNATING SLIP MECHANISM 377 28.4.5 FATIGUE CRACK GROWTH BY
CAVITATION AHEAD OF THE CRACK 378 28.5 THE COMBINED EFFECTS OF ELASTIC,
PLASTIC AND CREEP DEFORMATION 379 ON FATIGUE CRACK GROWTH RATES 28.5.1
AN APPROXIMATE GENERAL EXPRESSION FOR THE CRACK GROWTH 379 RATE BY
ALTERNATING SLIP 28.5.2 CREEP-FATIGUE CRACK GROWTH RATES IN FRACTURE
MECHANICS 380 SPECIMENS 28.5.3 FATIGUE LIFETIMES OF INITIALLY SMOOTH
SPECIMENS BY 381 MICROCRACK GROWTH 28.6 DISCUSSION 384 28.7 SUMMARY 385
APPENDICES APPENDIX A: MATERIAL PARAMETERS 389 APPENDIX B: ELASTIC
STRESS FIELDS AT NOTCHES, CRACKS AND GRAIN 391 BOUNDARY TRIPLE POINTS
B.1 STRESS FIELDS AT SHARP NOTCHES AND CRACKS 392 B.1.1 THE EIGENVALUE
EQUATION FOR SHARP NOTCHES 392 B.1.2 CRACK-TIP FIELDS 393 B.2 THE STRESS
SINGULARITY AT A TRIPLE JUNCTION OF SLIDING 395 GRAIN BOUNDARIES
APPENDIX C: CALCULATION OF C* FOR TEST SPECIMEN CONFIGURATIONS 396
REFERENCES 401 INDEX . 417
|
any_adam_object | 1 |
author | Riedel, Hermann |
author_GND | (DE-588)102755606X |
author_facet | Riedel, Hermann |
author_role | aut |
author_sort | Riedel, Hermann |
author_variant | h r hr |
building | Verbundindex |
bvnumber | BV002057958 |
callnumber-first | T - Technology |
callnumber-label | TA409 |
callnumber-raw | TA409 |
callnumber-search | TA409 |
callnumber-sort | TA 3409 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 1800 UQ 8400 |
classification_tum | MTA 035f |
collection | digit |
ctrlnum | (OCoLC)15016783 (DE-599)BVBBV002057958 |
dewey-full | 620.1/126 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/126 |
dewey-search | 620.1/126 |
dewey-sort | 3620.1 3126 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02578nam a2200613 c 4500</leader><controlfield tag="001">BV002057958</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160222 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1987 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540172718</subfield><subfield code="9">3-540-17271-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387172718</subfield><subfield code="9">0-387-17271-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)15016783</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002057958</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA409</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/126</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1800</subfield><subfield code="0">(DE-625)145565:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8400</subfield><subfield code="0">(DE-625)146596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 035f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Riedel, Hermann</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)102755606X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fracture at high temperatures</subfield><subfield code="c">Hermann Riedel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 418 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Materials research and engineering.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 401 - 416</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials at high temperatures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield><subfield code="x">Creep</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochtemperaturwerkstoff</subfield><subfield code="0">(DE-588)4025280-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochtemperatur</subfield><subfield code="0">(DE-588)4282597-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochtemperaturverhalten</subfield><subfield code="0">(DE-588)4160294-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hochtemperatur</subfield><subfield code="0">(DE-588)4282597-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Hochtemperaturverhalten</subfield><subfield code="0">(DE-588)4160294-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Hochtemperaturwerkstoff</subfield><subfield code="0">(DE-588)4025280-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Elektronische Reproduktion</subfield><subfield code="d">München : Bayerische Staatsbibliothek, 2013</subfield><subfield code="o">urn:nbn:de:bvb:12-bsb00080018-2</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-bsb00080018-2</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext // Exemplar mit der Signatur: Erlangen, Universitätsbibliothek -- T00/wer 3.1-421</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001345705&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">digit</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">BSBLeibnizPublik</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001345705</subfield></datafield></record></collection> |
id | DE-604.BV002057958 |
illustrated | Illustrated |
indexdate | 2024-08-01T16:26:42Z |
institution | BVB |
isbn | 3540172718 0387172718 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001345705 |
oclc_num | 15016783 |
open_access_boolean | 1 |
owner | DE-91G DE-BY-TUM DE-703 DE-29T DE-862 DE-BY-FWS DE-706 DE-634 DE-188 DE-12 |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-29T DE-862 DE-BY-FWS DE-706 DE-634 DE-188 DE-12 |
physical | XVII, 418 S. Ill., graph. Darst. |
psigel | digit BSBLeibnizPublik |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer |
record_format | marc |
series2 | Materials research and engineering. |
spellingShingle | Riedel, Hermann Fracture at high temperatures Fracture mechanics Materials at high temperatures Materials Creep Hochtemperaturwerkstoff (DE-588)4025280-2 gnd Hochtemperatur (DE-588)4282597-0 gnd Werkstoff (DE-588)4065579-9 gnd Bruchmechanik (DE-588)4112837-0 gnd Hochtemperaturverhalten (DE-588)4160294-8 gnd |
subject_GND | (DE-588)4025280-2 (DE-588)4282597-0 (DE-588)4065579-9 (DE-588)4112837-0 (DE-588)4160294-8 |
title | Fracture at high temperatures |
title_auth | Fracture at high temperatures |
title_exact_search | Fracture at high temperatures |
title_full | Fracture at high temperatures Hermann Riedel |
title_fullStr | Fracture at high temperatures Hermann Riedel |
title_full_unstemmed | Fracture at high temperatures Hermann Riedel |
title_short | Fracture at high temperatures |
title_sort | fracture at high temperatures |
topic | Fracture mechanics Materials at high temperatures Materials Creep Hochtemperaturwerkstoff (DE-588)4025280-2 gnd Hochtemperatur (DE-588)4282597-0 gnd Werkstoff (DE-588)4065579-9 gnd Bruchmechanik (DE-588)4112837-0 gnd Hochtemperaturverhalten (DE-588)4160294-8 gnd |
topic_facet | Fracture mechanics Materials at high temperatures Materials Creep Hochtemperaturwerkstoff Hochtemperatur Werkstoff Bruchmechanik Hochtemperaturverhalten |
url | http://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-bsb00080018-2 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001345705&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT riedelhermann fractureathightemperatures |
Inhaltsverzeichnis
Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 UF 1800 R551 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |