Vibrations in mechanical systems: analytical methods and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
Berlin u.a.
Springer
1987
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | EST: Vibrations des systèmes mécaniques <engl.> |
Beschreibung: | XIV, 515 S. Graph. Darst. |
ISBN: | 354017950X 038717950X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV002000644 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 890928s1987 |||| |||| 00||| eng d | ||
020 | |a 354017950X |9 3-540-17950-X | ||
020 | |a 038717950X |9 0-387-17950-X | ||
035 | |a (OCoLC)16078897 | ||
035 | |a (DE-599)BVBBV002000644 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h fre | |
049 | |a DE-91G |a DE-384 |a DE-29T |a DE-706 |a DE-83 |a DE-188 | ||
050 | 0 | |a TA355 | |
082 | 0 | |a 620.3 |2 19 | |
084 | |a UF 5000 |0 (DE-625)145595: |2 rvk | ||
084 | |a MTA 550f |2 stub | ||
100 | 1 | |a Roseau, Maurice |e Verfasser |4 aut | |
240 | 1 | 0 | |a Vibrations des systèmes mécaniques |
245 | 1 | 0 | |a Vibrations in mechanical systems |b analytical methods and applications |
264 | 1 | |a Berlin u.a. |b Springer |c 1987 | |
300 | |a XIV, 515 S. |b Graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a EST: Vibrations des systèmes mécaniques <engl.> | ||
650 | 4 | |a Vibration | |
650 | 4 | |a Vibration | |
650 | 0 | 7 | |a Mechanisches System |0 (DE-588)4132811-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwingung |0 (DE-588)4053999-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanische Schwingung |0 (DE-588)4138305-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mechanische Schwingung |0 (DE-588)4138305-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Schwingung |0 (DE-588)4053999-4 |D s |
689 | 1 | 1 | |a Mechanisches System |0 (DE-588)4132811-5 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001305029&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001305029 |
Datensatz im Suchindex
_version_ | 1804116448303382528 |
---|---|
adam_text | MAURICE ROSEAU VIBRATIONS IN MECHANICAL SYSTEMS ANALYTICAL METHODS AND
APPLICATIONS WITH 112 FIGURES SPRINGER-VERLAG BERLIN HEIDELBERG NEW YORK
LONDON PARIS TOKYO CONTENTS CHAPTER I. FORCED VIBRATIONS IN SYSTEMS
HAVING ONE DEGREE OR TWO DEGREES OF FREEDOM ELASTIC SUSPENSION WITH A
SINGLE DEGREE OF FREEDOM 1 TORSIONAL OSCILLATIONS 2 NATURAL OSCILLATIONS
3 /FORCED VIBRATIONS 3 VIBRATION TRANSMISSION FACTOR 5 ELASTIC
SUSPENSION WITH TWO DEGREES OF FREEDOM. VIBRATION ABSORBER 6 RESPONSE
CURVE OF AN ELASTIC SYSTEM WITH TWO DEGREES OF FREEDOM . 7 VEHICLE
SUSPENSION 11 WHIRLING MOTION OF A ROTOR-STATOR SYSTEM WITH CLEARANCE
BEARINGS . 16 EFFECT OF FRICTION ON THE WHIRLING MOTION OF A SHAFT IN
ROTATION; SYNCHRONOUS PRECESSION, SELF-SUSTAINED PRECESSION 20
SYNCHRONOUS MOTION 24 SELF-MAINTAINED PRECESSION 24 CHAPTER II.
VIBRATIONS IN LATTICES A SIMPLE MECHANICAL MODEL 26 THE ALTERNATING
LATTICE MODEL 28 VIBRATIONS IN A ONE-DIMENSIONAL LATTICE WITH
INTERACTIVE FORCES DERIVED FROM A POTENTIAL 30 VIBRATIONS IN A SYSTEM OF
COUPLED PENDULUMS 34 VIBRATIONS IN THREE-DIMENSIONAL LATTICES 35
NON-LINEAR PROBLEMS 36 CHAPTER III. GYROSCOPIC COUPLING AND ITS
APPLICATIONS 1. THE GYROSCOPIC PENDULUM 42 DISCUSSION OF THE LINEARISED
SYSTEM 45 APPRAISAL OF THE LINEARISATION PROCESS IN THE CASE OF STRONG
COUPLING 46 GYROSCOPIC STABILISATION 46 2. LAGRANGE S EQUATIONS AND
THEIR APPLICATION TO GYROSCOPIC SYSTEMS 49 EXAMPLE: THE GYROSCOPIC
PENDULUM 53 3. APPLICATIONS 53 VIII CONTENTS THE GYROCOMPASS 53
INFLUENCE OF RELATIVE MOTION ON THE BEHAVIOUR OF THE GYROCOMPASS 55
GYROSCOPIC STABILISATION OF THE MONORAIL CAR 57 4. ROUTH S STABILITY
CRITERION 60 5. THE TUNED GYROSCOPE AS PART OF AN INERTIAL SYSTEM FOR
MEASURING THE RATE OF TURN 64 KINEMATICS OF THE MULTIGIMBAL SUSPENSION
66 A) ORIENTATION OF THE ROTOR 66 B) CO-ORDINATES OF AN INTERMEDIATE
GIMBAL 66 C) RELATIONS BETWEEN THE PARAMETERS 0 AND I// 67 THE EQUATIONS
OF MOTION 68 INCLUSION OF DAMPING TERMS IN THE EQUATIONS OF MOTION . . .
. 71 DYNAMIC STABILITY. UNDAMPED SYSTEM 72 FREQUENCIES OF VIBRATIONS OF
THE FREE ROTOR 73 MOTION OF THE FREE ROTOR 73 CASE OF A MULTIGIMBAL
SYSTEM WITHOUT DAMPING. THE TUNE CONDITION 74 EXAMINATION OF THE
TWO-GIMBAL SYSTEM 75 CHAPTER IV. STABILITY OF SYSTEMS GOVERNED BY THE
LINEAR APPROXIMATION DISCUSSION OF THE EQUATION AQ + ^FQ = 0 78
DISCUSSION OF THE EQUATION AQ + ,RQ + KQ = 0 78 SYSTEMS COMPRISING
BOTH GYROSCOPIC FORCES AND DISSIPATIVE FORCES . 81 1. CASE = 0 82 A
MODIFIED APPROACH IN THE CASE OF INSTABILITY 83 2. CASE E # 0 85
EIGENMODES 88 RAYLEIGH S METHOD 89 EFFECT ON THE EIGENVALUES OF CHANGES
IN STRUCTURE 92 AN EXAMPLE 94 CHAPTER V. THE STABILITY OF OPERATION OF
NON-CONSERVATIVE MECHANICAL SYSTEMS 1. ROLLING MOTION AND DRIFT EFFECT
96 2. YAWING OF ROAD TRAILERS 102 3. LIFTING BY AIR-CUSHION 105 THE
STATIONARY REGIME 106 CASE OF AN ISENTROPIC EXPANSION 107 DYNAMIC
STABILITY 108 CHAPTER VI. VIBRATIONS OF ELASTIC SOLIDS I. FLEXIBLE
VIBRATIONS OF BEAMS ILL 1. EQUATIONS OF BEAM THEORY ILL 2. A SIMPLE
EXAMPLE 114 CONTENTS IX 3. THE ENERGY EQUATION 116 4. THE MODIFIED
EQUATIONS OF BEAM THEORY; TIMOSHENKO S MODEL . 118 5. TIMOSHENKO S
DISCRETISED MODEL OF THE BEAM 120 6. RAYLEIGH S METHOD 122 6.1. SOME
ELEMENTARY PROPERTIES OF THE SPACES H 1 (0,0, H 2 (0,0 * 122 6.2.
EXISTENCE OF THE LOWEST EIGENFREQUENCY 126 6.3. CASE OF A BEAM
SUPPORTING ADDITIONAL CONCENTRATED LOADS 130 6.4. INTERMEDIATE
CONDITIONS IMPOSED ON THE BEAM 130 6.5. INVESTIGATION OF HIGHER
FREQUENCIES 133 7. EXAMPLES OF APPLICATIONS 134 7.1. BEAM FIXED AT X =
0, FREE AT X = / 134 7.2. BEAM FIXED AT BOTH ENDS 134 7.3. BEAM FREE AT
BOTH ENDS 135 7.4. BEAM HINGED AT X = 0, FREE AT X = / 136 7.5. BEAM
FIXED AT X = 0 AND BEARING A POINT LOAD AT THE OTHER END 136 7.6. BEAM
SUPPORTED AT THREE POINTS 137 7.7. VIBRATION OF A WEDGE CLAMPED AT X =
0. RITZ S METHOD . . 137 7.8. VIBRATIONS OF A SUPPORTED PIPELINE 139
7.9. EFFECT OF LONGITUDINAL STRESS ON THE FLEXURAL VIBRATIONS OF A BEAM
AND APPLICATION TO BLADE VIBRATIONS IN TURBOMACHINERY 141 7.10.
VIBRATIONS OF INTERACTIVE SYSTEMS 143 8. FORCED VIBRATIONS OF BEAMS
UNDER FLEXURE 145 9. THE COMPARISON METHOD 147 9.1. THE FUNCTIONAL
OPERATOR ASSOCIATED WITH THE MODEL OF A BEAM UNDER FLEXURE 147 9.2. THE
MIN-MAX PRINCIPLE 150 9.3. APPLICATION TO COMPARISON THEOREMS * . . 151
10. FORCED EXCITATION OF A BEAM 154 10.1. FOURIER S METHOD 154 10.2.
BOUNDARY CONDITIONS WITH ELASTICITY TERMS 157 10.3. FORCED VIBRATIONS OF
A BEAM CLAMPED AT ONE END, BEARING A POINT LOAD AT THE OTHER END, AND
EXCITED AT THE CLAMPED END BY AN IMPOSED TRANSVERSE MOTION OF FREQUENCY
CO . . . 158 II. LONGITUDINAL VIBRATIONS OF BARS. TORSIONAL VIBRATIONS
162 1. EQUATIONS OF THE PROBLEM AND THE CALCULATION OF EIGENVALUES. .
162 2. THE ASSOCIATED FUNCTIONAL OPERATOR 164 3. THE METHOD OF MOMENTS
165 3.1. INTRODUCTION 165 3.2. LANCZOS S ORTHOGONALISATION METHOD 166
3.3. EIGENVALUES OF A N 167 3.4. PADE S METHOD 169 3.5. APPROXIMATION OF
THE A OPERATOR 170 III. VIBRATIONS OF ELASTIC SOLIDS 174 1. STATEMENT OF
PROBLEM AND GENERAL ASSUMPTIONS 174 X CONTENTS 2. THE ENERGY THEOREM 176
3. FREE VIBRATIONS OF ELASTIC SOLIDS 177 3.1. EXISTENCE OF THE LOWEST
EIGENFREQUENCY 177 3.2. HIGHER EIGENFREQUENCIES 181 3.3. CASE WHERE
THERE ARE NO KINEMATIC CONDITIONS . . . . 182 3.4. PROPERTIES OF
EIGENMODES AND EIGENFREQUENCIES 182 4. FORCED VIBRATIONS OF ELASTIC
SOLIDS 186 4.1. EXCITATION BY PERIODIC FORCES ACTING ON PART OF THE
BOUNDARY 186 4.2. EXCITATION BY PERIODIC DISPLACEMENTS IMPOSED ON SOME
PART OF THE BOUNDARY 191 4.3. EXCITATION BY PERIODIC VOLUME FORCES 193
5. VIBRATIONS OF NON-LINEAR ELASTIC MEDIA 196 IV. VIBRATIONS OF PLANE
ELASTIC PLATES 197 1. DESCRIPTION OF STRESSES; EQUATIONS OF MOTION 197
2. POTENTIAL ENERGY OF A PLATE . 200 3. DETERMINATION OF THE LAW OF
BEHAVIOUR 201 4. EIGENFREQUENCIES AND EIGENMODES 203 5. FORCED
VIBRATIONS 209 6. EIGENFREQUENCIES AND EIGENMODES OF VIBRATION OF
COMPLEX SYSTEMS 211 6.1. FREE VIBRATIONS OF A PLATE SUPPORTED
ELASTICALLY OVER A PART U OF ITS AREA, U OPEN AND 0 C Q 211 6.2.
EIGENFREQUENCIES AND EIGENMODES OF A RECTANGULAR PLATE REINFORCED BY
REGULARLY SPACED STIFFENERS 211 V. VIBRATIONS IN PERIODIC MEDIA 212 1.
FORMULATION OF THE PROBLEM AND SOME CONSEQUENCES OF KORN S INEQUALITY
212 2. BLOCH WAVES 214 CHAPTER VII. MODAL ANALYSIS AND VIBRATIONS OF
STRUCTURES I. VIBRATIONS OF STRUCTURES 217 FREE VIBRATIONS 217 FORCED
VIBRATIONS 218 RANDOM EXCITATION OF STRUCTURES 220 II. VIBRATIONS IN
SUSPENSION BRIDGES 224 THE EQUILIBRIUM CONFIGURATION 224 THE FLEXURE
EQUATION ASSUMING SMALL DISTURBANCES 225 FREE FLEXURAL VIBRATIONS IN THE
ABSENCE OF STIFFNESS 227 A) SYMMETRIC MODES: R {X) = RJ( * X) 228 B)
SKEW-SYMMETRIC MODES: T (X) = * JJ( * X) 228 TORSIONAL VIBRATIONS OF A
SUSPENSION BRIDGE 230 SYMMETRIC MODES 232 A) FLEXURE 232 B) TORSION 233
VIBRATIONS INDUCED BY WIND 234 AERODYNAMIC FORCES EXERTED ON THE DECK OF
THE BRIDGE 236 CONTENTS XI DISCUSSION BASED ON A SIMPLIFIED MODEL 239 A
MORE REALISTIC APPROACH 241 CHAPTER VIII. SYNCHRONISATION THEORY 1.
NON-LINEAR INTERACTIONS IN VIBRATING SYSTEMS 245 2. NON-LINEAR
OSCILLATIONS OF A SYSTEM WITH ONE DEGREE OF FREEDOM 250 2.1. REDUCTION
TO STANDARD FORM 250 2.2. THE ASSOCIATED FUNCTIONS 251 2.3. CHOICE OF
THE NUMBERS M AND N 252 2.4. CASE OF AN AUTONOMOUS SYSTEM 252 3.
SYNCHRONISATION OF A NON-LINEAR OSCILLATOR SUSTAINED BY A PERIODIC
COUPLE. RESPONSE CURVE. STABILITY 253 4. OSCILLATIONS SUSTAINED BY
FRICTION 256 5. PARAMETRIC EXCITATION OF A NON-LINEAR SYSTEM 258 6.
SUBHARMONIC SYNCHRONISATION 261 7. NON-LINEAR EXCITATION OF VIBRATING
SYSTEMS. SOME MODEL EQUATIONS 265 8 ON A CLASS OF STRONGLY NON-LINEAR
SYSTEMS 266 8.1. PERIODIC REGIMES AND STABILITY 266 8.2. VAN DER POL S
EQUATION WITH AMPLITUDE DELAY EFFECT . . . . 269 9. NON-LINEAR COUPLING
BETWEEN THE EXCITATION FORCES AND THE ELASTIC REACTIONS OF THE STRUCTURE
ON WHICH THEY ARE EXERTED 272 APPLICATION TO BOUASSE AND SARDA S
REGULATOR 276 10. STABILITY OF ROTATION OF A MACHINE MOUNTED ON AN
ELASTIC BASE AND DRIVEN BY A MOTOR WITH A STEEP CHARACTERISTIC CURVE 278
11. PERIODIC DIFFERENTIAL EQUATIONS WITH SINGULAR PERTURBATION . . . 281
11.1. STUDY OF A LINEAR SYSTEM WITH SINGULAR PERTURBATION N(DX/DT) =
A(T)X + H(T) 281 11.2. THE NON-LINEAR SYSTEM 283 11.3. STABILITY OF THE
PERIODIC SOLUTION 285 12. APPLICATION TO THE STUDY OF THE STABILITY OF A
ROTATING MACHINE MOUNTED ON AN ELASTIC SUSPENSION AND DRIVEN BY A MOTOR
WITH A STEEP CHARACTERISTIC CURVE 287 13. ANALYSIS OF STABILITY . 290
14. ROTATION OF AN UNBALANCED SHAFT SUSTAINED BY ALTERNATING VERTICAL
DISPLACEMENTS 297 15. STABILITY OF ROTATION OF THE SHAFT 301 16.
SYNCHRONISATION OF THE ROTATION OF AN UNBALANCED SHAFT SUSTAINED BY
ALTERNATING VERTICAL FORCES 304 16.1. THE NON-RESONANT CASE 304 16.2.
ANALYSIS OF STABILITY 307 17. SYNCHRONISATION OF THE ROTATION OF AN
UNBALANCED SHAFT SUSTAINED BY ALTERNATING FORCES IN THE CASE OF
RESONANCE 311 17.1. THE MODIFIED STANDARD SYSTEM 312 17.2.
SYNCHRONISATION OF NON-LINEAR SYSTEM 314 XII CONTENTS 17.3. STABILITY
CRITERION FOR PERIODIC SOLUTION 318 17.4. APPLICATION 323 CHAPTER IX.
STABILITY OF A COLUMN UNDER COMPRESSION - MATHIEU S EQUATION BUCKLING OF
A COLUMN 325 ANALYSIS OF STABILITY 327 A DISCRETISED MODEL OF THE LOADED
COLUMN 329 THE DISCRETISED MODEL WITH SLAVE LOAD 331 DESCRIPTION OF THE
ASYMPTOTIC NATURE OF THE ZONES OF INSTABILITY FOR THE MATHIEU EQUATION
333 NORMAL FORM OF INFINITE DETERMINANT. ANALYSIS OF CONVERGENCE . . .
337 HILL S EQUATION 340 CHAPTER X. THE METHOD OF AMPLITUDE VARIATION AND
ITS APPLICATION TO COUPLED OSCILLATORS POSING THE PROBLEM 345 CASES
WHERE CERTAIN OSCILLATIONS HAVE THE SAME FREQUENCY . . . . 353 COUPLED
OSCILLATORS; NON-AUTONOMOUS SYSTEM AND RESONANCE. A MODIFIED APPROACH
354 CASE OF RESONANCE 358 CASE WHERE CERTAIN EIGENMODES DECAY
(DEGENERACY) 358 CASE OF OSCILLATORS COUPLED THROUGH LINEAR TERMS 360
NON-AUTONOMOUS NON-LINEAR SYSTEM IN THE GENERAL CASE; EXAMINATION OF THE
CASE WHEN CERTAIN EIGENMODES ARE EVANESCENT 362 GYROSCOPIC STABILISER
WITH NON-LINEAR SERVOMECHANISM 368 CHAPTER XL ROTATING MACHINERY I. THE
SIMPLIFIED MODEL WITH FRICTIONLESS BEARINGS 373 PRELIMINARY STUDY OF THE
STATIC BENDING OF A SHAFT WITH CIRCULAR CROSS- SECTION 373 STEADY MOTION
OF A DISC ROTATING ON A FLEXIBLE SHAFT 375 FLEXURAL VIBRATIONS WHEN
SHAFT IS IN ROTATION 377 FORCED VIBRATIONS 379 II. EFFECTS OF
FLEXIBILITY OF THE BEARINGS 380 HYDRODYNAMICS OF THIN FILMS AND
REYNOLD S EQUATION 380 APPLICATION TO CIRCULAR BEARINGS 382 UNSTEADY
REGIME 386 GAS LUBRICATED BEARINGS 387 EFFECTS OF BEARING FLEXIBILITY ON
THE STABILITY OF ROTATION OF A DISC . 388 1. CASE OF AN ISOTROPIC SHAFT:
B 2 = E 2 ,C 2 = C 2 390 2. CASE WHERE SHAFT AND BEARINGS ARE BOTH
ANISOTROPIC . . . . 393 CONTENTS XIII PERIODIC LINEAR DIFFERENTIAL
EQUATION WITH RECIPROCITY PROPERTY . . 394 STABILITY OF ROTATION OF DISC
WHERE THE SYSTEM HAS ANISOTROPIC FLEXIBILITIES 397 AN ALTERNATIVE
APPROACH TO THE STABILITY PROBLEM . 403 APPLICATION TO THE PROBLEM OF
THE STABILITY OF A ROTATING SHAFT . . 405 III. STABILITY OF MOTION OF A
RIGID ROTOR ON FLEXIBLE BEARINGS. GYROSCOPIC EFFECTS AND STABILITY 411
NOTATION AND EQUATIONS OF MOTION 411 ANALYSIS OF STABILITY IN THE
ISOTROPIC CASE 414 CALCULATING THE CRITICAL SPEEDS OF THE ROTOR 414
RESONANT INSTABILITY NEAR A) = (CUJ + W 2 )/2 417 INSTABILITY NEAR THE
RESONANCE W = (A V 423 GROUND RESONANCE OF THE HELICOPTER BLADE ROTOR
SYSTEM . . . . 425 IV. WHIRLING MOTION OF A SHAFT IN ROTATION WITH
NON-LINEAR LAW OF PHYSICAL BEHAVIOUR 428 CALCULATION OF T Y , T Z 431
THE EQUATIONS OF MOTION 432 EFFECT OF HYSTERESIS ON WHIRLING 434
STABILITY OF THE REGIME CO 0 434 ANALYSIS OF THE ROTATORY REGIME WHEN
CO CO 0 436 V. SUSPENSION OF ROTATING MACHINERY IN MAGNETIC BEARINGS
439 PRINCIPLE OF MAGNETIC SUSPENSION 439 QUADRATIC FUNCTIONALS AND
OPTIMAL CONTROL 442 APPLICATION TO THE MODEL WITH ONE DEGREE OF FREEDOM
445 CHARACTERISTICS AND APPLICATIONS OF MAGNETIC BEARINGS 446 CHAPTER
XII. NON-LINEAR WAVES AND SOLITONS 1. WAVES IN DISPERSIVE OR DISSIPATIVE
MEDIA 449 THE NON-LINEAR PERTURBATION EQUATIONS 451 AN EXAMPLE: GRAVITY
WAVES IN SHALLOW WATER 453 2. THE INVERSE SCATTERING METHOD 454 THE
METHOD OF SOLUTION 456 3. THE DIRECT PROBLEM 456 3.1. THE EIGENVALUE
PROBLEM 459 ON SOME ESTIMATES 460 THE FINITENESS OF THE SET OF
EIGENVALUES 463 3.2. TRANSMISSION AND REFLECTION COEFFICIENTS 465
EIGENVALUES (CONTINUED) 467 4. THE INVERSE PROBLEM 469 THE KERNEL K(X,
Y) (CONTINUED) 473 THE GELFAND-LEVITAN INTEGRAL EQUATION 474 AN
ALTERNATIVE DEFINITION OF THE KERNEL K(X,Y) 476 SOLVING
GELFAND-LEVITAN S EQUATION 478 5. THE INVERSE SCATTERING METHOD 480 THE
EVOLUTION EQUATION 486 XIV CONTENTS INTEGRAL INVARIANTS 489 ANOTHER
APPROACH TO THE EVOLUTION EQUATION 493 6. SOLUTION OF THE INVERSE
PROBLEM IN THE CASE WHERE THE REFLECTION COEFFICIENT IS ZERO 498 7. THE
KORTEWEG-DE VRIES EQUATION. INTERACTION OF SOLITARY WAVES . . 503
INVESTIGATION OF ASYMPTOTIC BEHAVIOUR FOR T -* + OO 505 ASYMPTOTIC
BEHAVIOUR FOR T -* * OO 506 REFERENCES 508 SUBJECT INDEX 511
|
any_adam_object | 1 |
author | Roseau, Maurice |
author_facet | Roseau, Maurice |
author_role | aut |
author_sort | Roseau, Maurice |
author_variant | m r mr |
building | Verbundindex |
bvnumber | BV002000644 |
callnumber-first | T - Technology |
callnumber-label | TA355 |
callnumber-raw | TA355 |
callnumber-search | TA355 |
callnumber-sort | TA 3355 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 5000 |
classification_tum | MTA 550f |
ctrlnum | (OCoLC)16078897 (DE-599)BVBBV002000644 |
dewey-full | 620.3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.3 |
dewey-search | 620.3 |
dewey-sort | 3620.3 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01779nam a2200469 c 4500</leader><controlfield tag="001">BV002000644</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1987 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354017950X</subfield><subfield code="9">3-540-17950-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038717950X</subfield><subfield code="9">0-387-17950-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)16078897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002000644</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.3</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5000</subfield><subfield code="0">(DE-625)145595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roseau, Maurice</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Vibrations des systèmes mécaniques</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vibrations in mechanical systems</subfield><subfield code="b">analytical methods and applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 515 S.</subfield><subfield code="b">Graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">EST: Vibrations des systèmes mécaniques <engl.></subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanische Schwingung</subfield><subfield code="0">(DE-588)4138305-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanische Schwingung</subfield><subfield code="0">(DE-588)4138305-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001305029&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001305029</subfield></datafield></record></collection> |
id | DE-604.BV002000644 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:38:40Z |
institution | BVB |
isbn | 354017950X 038717950X |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001305029 |
oclc_num | 16078897 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-29T DE-706 DE-83 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-29T DE-706 DE-83 DE-188 |
physical | XIV, 515 S. Graph. Darst. |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer |
record_format | marc |
spelling | Roseau, Maurice Verfasser aut Vibrations des systèmes mécaniques Vibrations in mechanical systems analytical methods and applications Berlin u.a. Springer 1987 XIV, 515 S. Graph. Darst. txt rdacontent n rdamedia nc rdacarrier EST: Vibrations des systèmes mécaniques <engl.> Vibration Mechanisches System (DE-588)4132811-5 gnd rswk-swf Schwingung (DE-588)4053999-4 gnd rswk-swf Mechanische Schwingung (DE-588)4138305-9 gnd rswk-swf Mechanische Schwingung (DE-588)4138305-9 s DE-604 Schwingung (DE-588)4053999-4 s Mechanisches System (DE-588)4132811-5 s HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001305029&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Roseau, Maurice Vibrations in mechanical systems analytical methods and applications Vibration Mechanisches System (DE-588)4132811-5 gnd Schwingung (DE-588)4053999-4 gnd Mechanische Schwingung (DE-588)4138305-9 gnd |
subject_GND | (DE-588)4132811-5 (DE-588)4053999-4 (DE-588)4138305-9 |
title | Vibrations in mechanical systems analytical methods and applications |
title_alt | Vibrations des systèmes mécaniques |
title_auth | Vibrations in mechanical systems analytical methods and applications |
title_exact_search | Vibrations in mechanical systems analytical methods and applications |
title_full | Vibrations in mechanical systems analytical methods and applications |
title_fullStr | Vibrations in mechanical systems analytical methods and applications |
title_full_unstemmed | Vibrations in mechanical systems analytical methods and applications |
title_short | Vibrations in mechanical systems |
title_sort | vibrations in mechanical systems analytical methods and applications |
title_sub | analytical methods and applications |
topic | Vibration Mechanisches System (DE-588)4132811-5 gnd Schwingung (DE-588)4053999-4 gnd Mechanische Schwingung (DE-588)4138305-9 gnd |
topic_facet | Vibration Mechanisches System Schwingung Mechanische Schwingung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001305029&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT roseaumaurice vibrationsdessystemesmecaniques AT roseaumaurice vibrationsinmechanicalsystemsanalyticalmethodsandapplications |