Lectures on Siegel modular forms and representation by quadratic forms:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1986
|
Schriftenreihe: | Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics
77 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 227 S. |
ISBN: | 3540164723 0387164723 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002000328 | ||
003 | DE-604 | ||
005 | 20090427 | ||
007 | t | ||
008 | 890928s1986 |||| 00||| eng d | ||
020 | |a 3540164723 |9 3-540-16472-3 | ||
020 | |a 0387164723 |9 0-387-16472-3 | ||
035 | |a (OCoLC)15263665 | ||
035 | |a (DE-599)BVBBV002000328 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-384 |a DE-739 |a DE-20 |a DE-824 |a DE-19 |a DE-29T |a DE-706 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA243 | |
082 | 0 | |a 510.4 |b T216l, v.77 | |
084 | |a SI 890 |0 (DE-625)143210: |2 rvk | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a MAT 103f |2 stub | ||
100 | 1 | |a Kitaoka, Yoshiyuki |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Siegel modular forms and representation by quadratic forms |c by Y. Kitaoka |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1986 | |
300 | |a 227 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics |v 77 | |
650 | 4 | |a Formes modulaires | |
650 | 7 | |a Formes modulaires |2 ram | |
650 | 7 | |a Formes quadratiques |2 ram | |
650 | 4 | |a Formes quaternaires | |
650 | 4 | |a Forms, Modular | |
650 | 4 | |a Forms, Quadratic | |
650 | 0 | 7 | |a Siegel-Modulform |0 (DE-588)4129460-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quadratische Form |0 (DE-588)4128297-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Siegel-Modulform |0 (DE-588)4129460-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quadratische Form |0 (DE-588)4128297-8 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | 2 | |a Siegel-Modulform |0 (DE-588)4129460-9 |D s |
689 | 1 | |5 DE-604 | |
810 | 2 | |a Mathematics |t Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics |v 77 |w (DE-604)BV000015654 |9 77 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001304833&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001304833 |
Datensatz im Suchindex
_version_ | 1804116447959449600 |
---|---|
adam_text | CONTENTS
CHAPTER 1. FOURIER COEFFICIENTS OF SIEGEL MODULAR FORMS
Introduction .. 1
S 1.1. Estimates for Fourier coefficients of cusp forms
of degree 1 . .10
§ 1.2. Reduction theory .. 25
S 1.3. Minkowski reduced domain .. 35
§ 1.4. • Estimation of Fourier coefficients of modular forms
of degree n .. 45
§ 1.5. Generalization of Kloosterman s method to the case
of degree 2 ..83
§ 1.6. Estimation of Fourier coefficients of modular forms .. 117
§ 1.7. Primitive representations .. 161
CHAPTER 2. ARITHMETIC OF QUADRATIC FORMS
§ 2.0 Notation and terminology .. 167
§ 2.1 Quadratic nodules over C .. 169
§ 2.1.2. Modular and maximal lattices .. 170
§ 2.1.3. Jordan splittings .. 175
§ 2.1.4. Extension theorems .. 178
§ 2.2. The spinor norm .. 185
§ 2.3. Hasse Minkowski theorem .. 191
§ 2.4. Integral theory of quadratic forms .. 192
REFERENCES .. 225
|
any_adam_object | 1 |
author | Kitaoka, Yoshiyuki |
author_facet | Kitaoka, Yoshiyuki |
author_role | aut |
author_sort | Kitaoka, Yoshiyuki |
author_variant | y k yk |
building | Verbundindex |
bvnumber | BV002000328 |
callnumber-first | Q - Science |
callnumber-label | QA243 |
callnumber-raw | QA243 |
callnumber-search | QA243 |
callnumber-sort | QA 3243 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 890 SK 180 |
classification_tum | MAT 103f |
ctrlnum | (OCoLC)15263665 (DE-599)BVBBV002000328 |
dewey-full | 510.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.4 |
dewey-search | 510.4 |
dewey-sort | 3510.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02293nam a2200541 cb4500</leader><controlfield tag="001">BV002000328</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090427 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1986 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540164723</subfield><subfield code="9">3-540-16472-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387164723</subfield><subfield code="9">0-387-16472-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)15263665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002000328</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA243</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.4</subfield><subfield code="b">T216l, v.77</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 890</subfield><subfield code="0">(DE-625)143210:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 103f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kitaoka, Yoshiyuki</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Siegel modular forms and representation by quadratic forms</subfield><subfield code="c">by Y. Kitaoka</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">227 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics</subfield><subfield code="v">77</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formes modulaires</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formes modulaires</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formes quadratiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formes quaternaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forms, Modular</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forms, Quadratic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Siegel-Modulform</subfield><subfield code="0">(DE-588)4129460-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Siegel-Modulform</subfield><subfield code="0">(DE-588)4129460-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Siegel-Modulform</subfield><subfield code="0">(DE-588)4129460-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Mathematics</subfield><subfield code="t">Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics</subfield><subfield code="v">77</subfield><subfield code="w">(DE-604)BV000015654</subfield><subfield code="9">77</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001304833&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001304833</subfield></datafield></record></collection> |
id | DE-604.BV002000328 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:38:40Z |
institution | BVB |
isbn | 3540164723 0387164723 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001304833 |
oclc_num | 15263665 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-739 DE-20 DE-824 DE-19 DE-BY-UBM DE-29T DE-706 DE-83 DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-739 DE-20 DE-824 DE-19 DE-BY-UBM DE-29T DE-706 DE-83 DE-11 DE-188 |
physical | 227 S. |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer |
record_format | marc |
series2 | Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics |
spelling | Kitaoka, Yoshiyuki Verfasser aut Lectures on Siegel modular forms and representation by quadratic forms by Y. Kitaoka Berlin [u.a.] Springer 1986 227 S. txt rdacontent n rdamedia nc rdacarrier Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics / Mathematics 77 Formes modulaires Formes modulaires ram Formes quadratiques ram Formes quaternaires Forms, Modular Forms, Quadratic Siegel-Modulform (DE-588)4129460-9 gnd rswk-swf Quadratische Form (DE-588)4128297-8 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Siegel-Modulform (DE-588)4129460-9 s DE-604 Quadratische Form (DE-588)4128297-8 s Darstellungstheorie (DE-588)4148816-7 s Mathematics Tata Institute of Fundamental Research <Bombay>: Tata Institute of Fundamental Research lectures on mathematics and physics 77 (DE-604)BV000015654 77 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001304833&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kitaoka, Yoshiyuki Lectures on Siegel modular forms and representation by quadratic forms Formes modulaires Formes modulaires ram Formes quadratiques ram Formes quaternaires Forms, Modular Forms, Quadratic Siegel-Modulform (DE-588)4129460-9 gnd Quadratische Form (DE-588)4128297-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
subject_GND | (DE-588)4129460-9 (DE-588)4128297-8 (DE-588)4148816-7 |
title | Lectures on Siegel modular forms and representation by quadratic forms |
title_auth | Lectures on Siegel modular forms and representation by quadratic forms |
title_exact_search | Lectures on Siegel modular forms and representation by quadratic forms |
title_full | Lectures on Siegel modular forms and representation by quadratic forms by Y. Kitaoka |
title_fullStr | Lectures on Siegel modular forms and representation by quadratic forms by Y. Kitaoka |
title_full_unstemmed | Lectures on Siegel modular forms and representation by quadratic forms by Y. Kitaoka |
title_short | Lectures on Siegel modular forms and representation by quadratic forms |
title_sort | lectures on siegel modular forms and representation by quadratic forms |
topic | Formes modulaires Formes modulaires ram Formes quadratiques ram Formes quaternaires Forms, Modular Forms, Quadratic Siegel-Modulform (DE-588)4129460-9 gnd Quadratische Form (DE-588)4128297-8 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
topic_facet | Formes modulaires Formes quadratiques Formes quaternaires Forms, Modular Forms, Quadratic Siegel-Modulform Quadratische Form Darstellungstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001304833&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000015654 |
work_keys_str_mv | AT kitaokayoshiyuki lecturesonsiegelmodularformsandrepresentationbyquadraticforms |