Mathematical logic and formalized theories: a survey of basic concepts and results
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland Publ. Co.
1971
|
Schriftenreihe: | Studies in logic and the foundations of mathematics
|
Schlagworte: | |
Beschreibung: | XI, 235 S. |
ISBN: | 0720420512 0444100830 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV001976868 | ||
003 | DE-604 | ||
005 | 20120515 | ||
007 | t | ||
008 | 890928s1971 |||| 00||| eng d | ||
020 | |a 0720420512 |9 0-7204-2051-2 | ||
020 | |a 0444100830 |9 0-444-10083-0 | ||
035 | |a (OCoLC)210053 | ||
035 | |a (DE-599)BVBBV001976868 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-355 |a DE-20 |a DE-19 |a DE-83 |a DE-188 |a DE-11 | ||
050 | 0 | |a QA9 | |
082 | 0 | |a 511/.3 |2 18 | |
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a 03-01 |2 msc | ||
100 | 1 | |a Rogers, Robert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical logic and formalized theories |b a survey of basic concepts and results |c Robert Rogers |
264 | 1 | |a Amsterdam |b North-Holland Publ. Co. |c 1971 | |
300 | |a XI, 235 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Studies in logic and the foundations of mathematics | |
650 | 4 | |a Logique symbolique et mathématique | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 0 | 7 | |a Prädikatenlogik |0 (DE-588)4046974-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Axiomatik |0 (DE-588)4004038-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Aussagenlogik |0 (DE-588)4136098-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Formalisierung |0 (DE-588)4123217-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
655 | 7 | |a Formalisierte Theorie |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | 1 | |a Formalisierte Theorie |A f |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 1 | 1 | |a Formalisierung |0 (DE-588)4123217-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Aussagenlogik |0 (DE-588)4136098-9 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Axiomatik |0 (DE-588)4004038-0 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
689 | 4 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 4 | |8 4\p |5 DE-604 | |
689 | 5 | 0 | |a Prädikatenlogik |0 (DE-588)4046974-8 |D s |
689 | 5 | |8 5\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001289419 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
980 | 4 | |a (DE-12)AK18710688 |
Datensatz im Suchindex
_version_ | 1804116421681086464 |
---|---|
any_adam_object | |
author | Rogers, Robert |
author_facet | Rogers, Robert |
author_role | aut |
author_sort | Rogers, Robert |
author_variant | r r rr |
building | Verbundindex |
bvnumber | BV001976868 |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9 |
callnumber-search | QA9 |
callnumber-sort | QA 19 |
callnumber-subject | QA - Mathematics |
classification_rvk | CC 2600 SK 130 |
ctrlnum | (OCoLC)210053 (DE-599)BVBBV001976868 |
dewey-full | 511/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.3 |
dewey-search | 511/.3 |
dewey-sort | 3511 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02653nam a2200685 c 4500</leader><controlfield tag="001">BV001976868</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120515 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1971 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0720420512</subfield><subfield code="9">0-7204-2051-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444100830</subfield><subfield code="9">0-444-10083-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)210053</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001976868</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA9</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.3</subfield><subfield code="2">18</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rogers, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical logic and formalized theories</subfield><subfield code="b">a survey of basic concepts and results</subfield><subfield code="c">Robert Rogers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland Publ. Co.</subfield><subfield code="c">1971</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 235 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in logic and the foundations of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logique symbolique et mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prädikatenlogik</subfield><subfield code="0">(DE-588)4046974-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aussagenlogik</subfield><subfield code="0">(DE-588)4136098-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Formalisierung</subfield><subfield code="0">(DE-588)4123217-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Formalisierte Theorie</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Formalisierte Theorie</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Formalisierung</subfield><subfield code="0">(DE-588)4123217-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Aussagenlogik</subfield><subfield code="0">(DE-588)4136098-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Axiomatik</subfield><subfield code="0">(DE-588)4004038-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Prädikatenlogik</subfield><subfield code="0">(DE-588)4046974-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001289419</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK18710688</subfield></datafield></record></collection> |
genre | Formalisierte Theorie gnd |
genre_facet | Formalisierte Theorie |
id | DE-604.BV001976868 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:38:15Z |
institution | BVB |
isbn | 0720420512 0444100830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001289419 |
oclc_num | 210053 |
open_access_boolean | |
owner | DE-12 DE-384 DE-355 DE-BY-UBR DE-20 DE-19 DE-BY-UBM DE-83 DE-188 DE-11 |
owner_facet | DE-12 DE-384 DE-355 DE-BY-UBR DE-20 DE-19 DE-BY-UBM DE-83 DE-188 DE-11 |
physical | XI, 235 S. |
publishDate | 1971 |
publishDateSearch | 1971 |
publishDateSort | 1971 |
publisher | North-Holland Publ. Co. |
record_format | marc |
series2 | Studies in logic and the foundations of mathematics |
spelling | Rogers, Robert Verfasser aut Mathematical logic and formalized theories a survey of basic concepts and results Robert Rogers Amsterdam North-Holland Publ. Co. 1971 XI, 235 S. txt rdacontent n rdamedia nc rdacarrier Studies in logic and the foundations of mathematics Logique symbolique et mathématique Logic, Symbolic and mathematical Prädikatenlogik (DE-588)4046974-8 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf Axiomatik (DE-588)4004038-0 gnd rswk-swf Aussagenlogik (DE-588)4136098-9 gnd rswk-swf Formalisierung (DE-588)4123217-3 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Formalisierte Theorie gnd rswk-swf Mathematische Logik (DE-588)4037951-6 s Formalisierte Theorie f DE-604 Formalisierung (DE-588)4123217-3 s 1\p DE-604 Aussagenlogik (DE-588)4136098-9 s 2\p DE-604 Axiomatik (DE-588)4004038-0 s 3\p DE-604 Mengenlehre (DE-588)4074715-3 s 4\p DE-604 Prädikatenlogik (DE-588)4046974-8 s 5\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rogers, Robert Mathematical logic and formalized theories a survey of basic concepts and results Logique symbolique et mathématique Logic, Symbolic and mathematical Prädikatenlogik (DE-588)4046974-8 gnd Mengenlehre (DE-588)4074715-3 gnd Axiomatik (DE-588)4004038-0 gnd Aussagenlogik (DE-588)4136098-9 gnd Formalisierung (DE-588)4123217-3 gnd Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)4046974-8 (DE-588)4074715-3 (DE-588)4004038-0 (DE-588)4136098-9 (DE-588)4123217-3 (DE-588)4037951-6 |
title | Mathematical logic and formalized theories a survey of basic concepts and results |
title_auth | Mathematical logic and formalized theories a survey of basic concepts and results |
title_exact_search | Mathematical logic and formalized theories a survey of basic concepts and results |
title_full | Mathematical logic and formalized theories a survey of basic concepts and results Robert Rogers |
title_fullStr | Mathematical logic and formalized theories a survey of basic concepts and results Robert Rogers |
title_full_unstemmed | Mathematical logic and formalized theories a survey of basic concepts and results Robert Rogers |
title_short | Mathematical logic and formalized theories |
title_sort | mathematical logic and formalized theories a survey of basic concepts and results |
title_sub | a survey of basic concepts and results |
topic | Logique symbolique et mathématique Logic, Symbolic and mathematical Prädikatenlogik (DE-588)4046974-8 gnd Mengenlehre (DE-588)4074715-3 gnd Axiomatik (DE-588)4004038-0 gnd Aussagenlogik (DE-588)4136098-9 gnd Formalisierung (DE-588)4123217-3 gnd Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Logique symbolique et mathématique Logic, Symbolic and mathematical Prädikatenlogik Mengenlehre Axiomatik Aussagenlogik Formalisierung Mathematische Logik Formalisierte Theorie |
work_keys_str_mv | AT rogersrobert mathematicallogicandformalizedtheoriesasurveyofbasicconceptsandresults |