Smooth compactification of locally symmetric varieties:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Brookline, Mass.
Math Sci Press
1975
|
Schriftenreihe: | Lie groups
4 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | IV, 335 S. graph. Darst. |
ISBN: | 0915692120 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV001972381 | ||
003 | DE-604 | ||
005 | 20171006 | ||
007 | t | ||
008 | 890928s1975 d||| |||| 00||| eng d | ||
020 | |a 0915692120 |9 0-915692-12-0 | ||
035 | |a (OCoLC)2967992 | ||
035 | |a (DE-599)BVBBV001972381 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-384 |a DE-703 |a DE-355 |a DE-29T |a DE-19 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512/.33 | |
084 | |a SK 280 |0 (DE-625)143228: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
245 | 1 | 0 | |a Smooth compactification of locally symmetric varieties |c A. Ash ... |
264 | 1 | |a Brookline, Mass. |b Math Sci Press |c 1975 | |
300 | |a IV, 335 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lie groups |v 4 | |
650 | 4 | |a Espaces symétriques | |
650 | 4 | |a Lie, Groupes de | |
650 | 4 | |a Plongements (Mathématiques) | |
650 | 4 | |a Variétés algébriques | |
650 | 4 | |a Algebraic varieties | |
650 | 4 | |a Embeddings (Mathematics) | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Symmetric spaces | |
650 | 0 | 7 | |a Lokal symmetrische Mannigfaltigkeit |0 (DE-588)4168099-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glatte Kompaktifizierung |0 (DE-588)4157469-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lokal symmetrische Mannigfaltigkeit |0 (DE-588)4168099-6 |D s |
689 | 0 | 1 | |a Glatte Kompaktifizierung |0 (DE-588)4157469-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ash, Avner |d 1949- |e Sonstige |0 (DE-588)104322534X |4 oth | |
830 | 0 | |a Lie groups |v 4 |w (DE-604)BV000001596 |9 4 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001286407&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001286407 |
Datensatz im Suchindex
_version_ | 1804116416384729088 |
---|---|
adam_text | CONTENTS
page
INTRODUCTION
Chapter I: BASICS ON TORUS EMBEDDING; EXAMPLES OF THE
THEORY, by D. Mumford
il. Torus embeddings over the complex numbers 1
§2. The functor of a torus embedding 10
§3. Toroidal embeddings over the complex numbers 14
§4. Example: compactification of the universal
elliptic curve 23
§5. Example: Hirzebruch s theory of the Hilbert
modular groups 39
Chapter II: POLYHEDRAL REDUCTION THEORY IN SELF ADJOINT
CONES 54
il. Homogeneous self adjoint cones
(by M.R.) 57
§2. Jordan Algebras
(by A.A.) 64
§3. Boundary cbmponents and Peirce decompositions
(by A.A.) 79
§4. Siegel sets in self adjoint cones
(by A.A.) 107
§5. Cores and co cores
(by A.A.) 119
§6. Reduction theory of positive definite forms
in 2, 3, and 4 variables
(by D.M.) 145
Chapter III: CONSTRUCTION OF COMPACTIF ICATION OF LOCALLY
SYMMETRIC VARIETIES, by M. Rapoport and
D. Mumford 152
il. Tube domains and compactification of their
cusps 154
§2. The structure of bounded symmetric domains
in general 166
i3. Boundary components 195
§4. Siegel domains of third kind 224
15. Statement of the Main Theorem 249
16. Proof of the Main Theorem 258
17. An extension theorem and an intrinsic form
of the Main Theorem 277
page
Chapter IV: FURTHER DEVELOPMENTS, by Y. S. Tai
§1. Extension of differential forms to the cusps 292
§2. Projectivity of WJY 310
|
any_adam_object | 1 |
author_GND | (DE-588)104322534X |
building | Verbundindex |
bvnumber | BV001972381 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 280 SK 300 SK 340 SK 350 |
ctrlnum | (OCoLC)2967992 (DE-599)BVBBV001972381 |
dewey-full | 512/.33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.33 |
dewey-search | 512/.33 |
dewey-sort | 3512 233 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01969nam a2200517 cb4500</leader><controlfield tag="001">BV001972381</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171006 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1975 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0915692120</subfield><subfield code="9">0-915692-12-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)2967992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001972381</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.33</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 280</subfield><subfield code="0">(DE-625)143228:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smooth compactification of locally symmetric varieties</subfield><subfield code="c">A. Ash ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Brookline, Mass.</subfield><subfield code="b">Math Sci Press</subfield><subfield code="c">1975</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IV, 335 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lie groups</subfield><subfield code="v">4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces symétriques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plongements (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés algébriques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embeddings (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal symmetrische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4168099-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glatte Kompaktifizierung</subfield><subfield code="0">(DE-588)4157469-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal symmetrische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4168099-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Glatte Kompaktifizierung</subfield><subfield code="0">(DE-588)4157469-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ash, Avner</subfield><subfield code="d">1949-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)104322534X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lie groups</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV000001596</subfield><subfield code="9">4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001286407&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001286407</subfield></datafield></record></collection> |
id | DE-604.BV001972381 |
illustrated | Illustrated |
indexdate | 2024-07-09T15:38:10Z |
institution | BVB |
isbn | 0915692120 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001286407 |
oclc_num | 2967992 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-703 DE-355 DE-BY-UBR DE-29T DE-19 DE-BY-UBM DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-703 DE-355 DE-BY-UBR DE-29T DE-19 DE-BY-UBM DE-11 DE-188 |
physical | IV, 335 S. graph. Darst. |
publishDate | 1975 |
publishDateSearch | 1975 |
publishDateSort | 1975 |
publisher | Math Sci Press |
record_format | marc |
series | Lie groups |
series2 | Lie groups |
spelling | Smooth compactification of locally symmetric varieties A. Ash ... Brookline, Mass. Math Sci Press 1975 IV, 335 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lie groups 4 Espaces symétriques Lie, Groupes de Plongements (Mathématiques) Variétés algébriques Algebraic varieties Embeddings (Mathematics) Lie groups Symmetric spaces Lokal symmetrische Mannigfaltigkeit (DE-588)4168099-6 gnd rswk-swf Glatte Kompaktifizierung (DE-588)4157469-2 gnd rswk-swf Lokal symmetrische Mannigfaltigkeit (DE-588)4168099-6 s Glatte Kompaktifizierung (DE-588)4157469-2 s DE-604 Ash, Avner 1949- Sonstige (DE-588)104322534X oth Lie groups 4 (DE-604)BV000001596 4 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001286407&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Smooth compactification of locally symmetric varieties Lie groups Espaces symétriques Lie, Groupes de Plongements (Mathématiques) Variétés algébriques Algebraic varieties Embeddings (Mathematics) Lie groups Symmetric spaces Lokal symmetrische Mannigfaltigkeit (DE-588)4168099-6 gnd Glatte Kompaktifizierung (DE-588)4157469-2 gnd |
subject_GND | (DE-588)4168099-6 (DE-588)4157469-2 |
title | Smooth compactification of locally symmetric varieties |
title_auth | Smooth compactification of locally symmetric varieties |
title_exact_search | Smooth compactification of locally symmetric varieties |
title_full | Smooth compactification of locally symmetric varieties A. Ash ... |
title_fullStr | Smooth compactification of locally symmetric varieties A. Ash ... |
title_full_unstemmed | Smooth compactification of locally symmetric varieties A. Ash ... |
title_short | Smooth compactification of locally symmetric varieties |
title_sort | smooth compactification of locally symmetric varieties |
topic | Espaces symétriques Lie, Groupes de Plongements (Mathématiques) Variétés algébriques Algebraic varieties Embeddings (Mathematics) Lie groups Symmetric spaces Lokal symmetrische Mannigfaltigkeit (DE-588)4168099-6 gnd Glatte Kompaktifizierung (DE-588)4157469-2 gnd |
topic_facet | Espaces symétriques Lie, Groupes de Plongements (Mathématiques) Variétés algébriques Algebraic varieties Embeddings (Mathematics) Lie groups Symmetric spaces Lokal symmetrische Mannigfaltigkeit Glatte Kompaktifizierung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001286407&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000001596 |
work_keys_str_mv | AT ashavner smoothcompactificationoflocallysymmetricvarieties |