Studies in spline functions and approximation theory:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Acad. Press
1976
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 500 S. |
ISBN: | 012398565X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV001968734 | ||
003 | DE-604 | ||
005 | 20130114 | ||
007 | t | ||
008 | 890928s1976 |||| 00||| eng d | ||
020 | |a 012398565X |9 0-12-398565-X | ||
035 | |a (OCoLC)2181121 | ||
035 | |a (DE-599)BVBBV001968734 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91 |a DE-91G |a DE-384 |a DE-473 |a DE-703 |a DE-739 |a DE-355 |a DE-824 |a DE-29T |a DE-20 |a DE-19 |a DE-706 |a DE-83 |a DE-188 |a DE-N2 |a DE-11 | ||
050 | 0 | |a QA224 | |
082 | 0 | |a 511/.4 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |a 41A15 |2 msc | ||
084 | |a 41-01 |2 msc | ||
245 | 1 | 0 | |a Studies in spline functions and approximation theory |c Samuel Karlin ... |
264 | 1 | |a New York [u.a.] |b Acad. Press |c 1976 | |
300 | |a XII, 500 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Approximation, Théorie de l' | |
650 | 4 | |a Splines, Théorie des | |
650 | 4 | |a Approximation theory | |
650 | 4 | |a Spline theory | |
650 | 0 | 7 | |a Spline-Funktion |0 (DE-588)4056332-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spline-Funktion |0 (DE-588)4056332-7 |D s |
689 | 0 | 1 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Spline-Funktion |0 (DE-588)4056332-7 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Karlin, Samuel |d 1924-2007 |e Sonstige |0 (DE-588)118918672 |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001283980&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001283980 | ||
980 | 4 | |a (DE-12)AK21510212 | |
980 | 4 | |a (DE-12)AK11290115 |
Datensatz im Suchindex
_version_ | 1804116412446277632 |
---|---|
adam_text | CONTENTS
PREFACE XI
ABSTRACTS 1
PART I. BEST APPROXIMATIONS, OPTIMAL QUADRATURE
AND MONOSPLINES
On a Class of Best Non-linear Approximation Problems and
Extended Monosplines 19
Samuel Karlin
§1 Formulation and description of main results. 19
2 Bounds on the number of zeros of extended monosplines. 27
3 The fundamental theorem of algebra for extended monosplines. 36
4 The improvement theorem. 37
5 Existence of minimizing extended splines. 44
6 Proof of the characterization of the extremum, as described 47
in Theorem 1.3 for 1 p °°.
7 Characterization and uniqueness in the case of p = °° 51
in Theorem 1.3.
8 The total positivity nature of the Bergman and Szego reproducing 55
kernels.
9 An equivalent formulation of the best non-linear approximation 59
problem (1.4) in L2.
A Global Improvement Theorem for Polynomial Monosplines 67
Samuel Karlin
§1 Statement of theorem and ramifications. 67
2 Some preliminaries. 72
3 Proof of Theorem 3. 74
Applications of Representation Theorems to Problems of
Chebyshev Approximation with Constraints 83
Allan Pinkus
§1 Introduction. 83
2 Proof of Theorem 2 and extensions of Theorem 1. 87
v
CONTENTS
3 Applications of Theorem 2. 89
4 Representation theorems with interpolation, and
interpolatory approximation. 94
5 Representation theorems with boundary constraints. 98
6 Applications of representation theorems with boundary conditions. 103
Gaussian Quadrature Formulae with Multiple Nodes 113
Samuel Karlin and A llan Pin kus
§1 Formulation and statement of main results. 113
2 Proof of Theorem 1 and ramifications. 121
3 Extensions and remarks. 137
An Extremal Property of Multiple Gaussian Nodes 143
Samuel Karlin and Allan Pinkus
§1 Formulation and statement of results. 143
2 Preliminaries and some determinantal identities. 149
3 Proof of extremal property (Theorem D). 154
PART II. CARDINAL SPLINES AND RELATED MATTERS
Oscillation Matrices and Cardinal Spline Interpolation 163
Charles A. Micchelli
§1 Introduction. 163
2 Quasi-Hermite cardinal interpolation. 168
3 Cardinal X-splines. 184
4 An eigenvalue problem. 189
Cardinal jC-Splines 203
Charles A. Micchelli
§1 Introduction. 203
2 An eigenvalue problem. 205
3 Some special £ -splines. 220
4 Convergence of jC-splines. 224
5 Some applications of the Euler and Bernoulli jC-spline. 228
6 Polynomial spline interpolation on a geometric mesh. 241 *
On Micchelli s Theory of Cardinal jC-Splines 251
/./. Schoenberg
§1 Introduction. 251
2 The class S (jC,t?) of cardinal JC-splines. 253
3 The B-splines. 255
vi
V*
CONTENTS
4 The behavior of the roots of the equation (3.4). 257
5 A proof of Theorem 2. 261
6 Micchelli s cardinal interpolation problem by elements of S(£,n). 266
7 Proof of sufficiency in Theorem 4. 269
8 A few examples. 273
On The Remainders and the Convergence of Cardinal Spline
Interpolation for Almost Periodic Functions 277
/./. Schoenberg
§1 Introduction. 277
2 The kernel of the remainder and some of its properties. 278
3 Further properties of the kernel K2m j (x,t). 283
4 The cardinal spline interpolation formula with remainder. 286
5 A few special choices of f(x). 288
6 Applications. 291
7 Definitions and known results. 295
8 Katznelson s definition and lemma. 297
9 Two applications of Katznelson s lemma. 298
10 A conjecture. 302
PART III. INTERPOLATION WITH SPLINES
Interpolation by Splines with Mixed Boundary Conditions 305
Samuel Karlin and Allan Pinkus
§1 Introduction. 305
2 Proof of Theorem 1. 309
3 Examples of boundary conditions satisfying Postulate J. 314
4 Total positivity properties of Green s function for mixed 318
boundary conditions.
Divided Differences and Other Non-linear Existence Problems
at Extremal Points 327
Samuel Karlin and Allan Pinkus
§1 Preliminaries and statement of main results. 327
2 Polynomials with prescribed k* order divided differences:
Proof of Theorem 1. 330
3 Extensions of Theorem 1 to various classes of spline
functions and Chebyshev systems. 339
4 A general formulation and applications. 345
5 Open problems. 349
vii
CONTENTS
PART IV. GENERALIZED LANDAU AND MARKOV TYPE
INEQUALITIES AND GENERALIZED PERFECT
SPLINES.
Notes on Spline Function VI. Extremum Problems of the
Landau-Type for the Differential Operators D2 ± 1 353
/./. Schoenberg
§0 Introduction. 353
1 The differential operator D2 + 1. 354
2 The differential operator D2 - 1. 359
3 Weak extremum functions in Theorem 3. 364
Oscillatory Perfect Splines and Related Extremal Problems 371
Samuel Karlin j
§ 1 Introduction and statement of main results. 371
2 The construction of certain generalized perfect splines
with special oscillatory properties. 385
3 Some special oscillatory perfect splines. 394
4 Uniqueness criteria, proof of Theorem 4.1 and related matters. 396
5 A special one parameter family of equi-oscillation perfect splines. 403
6 Results on equi-oscillating perfect splines with variable interval
length. 412
7 Some symmetry considerations. 417 ,
8 Some extremal properties of the equi-oscillating perfect splines. 418
9 Perfect L-splines. 423 .
10 Equi-oscillating perfect L-splines on [0,°°) and on (-°°, °°)
with an infinite number of knots. 426
11 Perfect L-splines for n-th order differential operators with
constant coefficients on the half line and sharp Landau
Kolmogorov type inequalities. 432
12 Equi-oscillating perfect L-splines for the full line where L is
a differential operator with constant coefficients. 443
13 Landau Kolmogorov type inequalities for certain convolution 453
operators.
Generalized Markov Bernstein Type Inequalities for Spline
Functions 461
Samuel Karlin
§ 1 Introduction and statement of main results. 461
2 Markov inequalities for perfect splines: Proof of Theorem 1. 469
3 Markov inequalities for one-sided and two-sided Cardinal splines . 476
viii
CONTENTS
Some One-sided Numerical Differentiation Formulae and
Applications 485
Samuel Karlin
§0 Introduction. 485
1 The finite interval case. 486
2 The one-sided infinite interval case. 494
3 Remarks. 499
ix
|
any_adam_object | 1 |
author_GND | (DE-588)118918672 |
building | Verbundindex |
bvnumber | BV001968734 |
callnumber-first | Q - Science |
callnumber-label | QA224 |
callnumber-raw | QA224 |
callnumber-search | QA224 |
callnumber-sort | QA 3224 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 470 SK 910 |
ctrlnum | (OCoLC)2181121 (DE-599)BVBBV001968734 |
dewey-full | 511/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.4 |
dewey-search | 511/.4 |
dewey-sort | 3511 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01952nam a2200517 c 4500</leader><controlfield tag="001">BV001968734</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130114 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1976 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">012398565X</subfield><subfield code="9">0-12-398565-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)2181121</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001968734</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA224</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">41A15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">41-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Studies in spline functions and approximation theory</subfield><subfield code="c">Samuel Karlin ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Acad. Press</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 500 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation, Théorie de l'</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Splines, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spline theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Funktion</subfield><subfield code="0">(DE-588)4056332-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spline-Funktion</subfield><subfield code="0">(DE-588)4056332-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Spline-Funktion</subfield><subfield code="0">(DE-588)4056332-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karlin, Samuel</subfield><subfield code="d">1924-2007</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)118918672</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001283980&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001283980</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK21510212</subfield></datafield><datafield tag="980" ind1="4" ind2=" "><subfield code="a">(DE-12)AK11290115</subfield></datafield></record></collection> |
id | DE-604.BV001968734 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:38:06Z |
institution | BVB |
isbn | 012398565X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001283980 |
oclc_num | 2181121 |
open_access_boolean | |
owner | DE-12 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-20 DE-19 DE-BY-UBM DE-706 DE-83 DE-188 DE-N2 DE-11 |
owner_facet | DE-12 DE-91 DE-BY-TUM DE-91G DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-20 DE-19 DE-BY-UBM DE-706 DE-83 DE-188 DE-N2 DE-11 |
physical | XII, 500 S. |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Acad. Press |
record_format | marc |
spelling | Studies in spline functions and approximation theory Samuel Karlin ... New York [u.a.] Acad. Press 1976 XII, 500 S. txt rdacontent n rdamedia nc rdacarrier Approximation, Théorie de l' Splines, Théorie des Approximation theory Spline theory Spline-Funktion (DE-588)4056332-7 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Spline-Funktion (DE-588)4056332-7 s Approximationstheorie (DE-588)4120913-8 s DE-604 Karlin, Samuel 1924-2007 Sonstige (DE-588)118918672 oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001283980&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Studies in spline functions and approximation theory Approximation, Théorie de l' Splines, Théorie des Approximation theory Spline theory Spline-Funktion (DE-588)4056332-7 gnd Approximationstheorie (DE-588)4120913-8 gnd |
subject_GND | (DE-588)4056332-7 (DE-588)4120913-8 |
title | Studies in spline functions and approximation theory |
title_auth | Studies in spline functions and approximation theory |
title_exact_search | Studies in spline functions and approximation theory |
title_full | Studies in spline functions and approximation theory Samuel Karlin ... |
title_fullStr | Studies in spline functions and approximation theory Samuel Karlin ... |
title_full_unstemmed | Studies in spline functions and approximation theory Samuel Karlin ... |
title_short | Studies in spline functions and approximation theory |
title_sort | studies in spline functions and approximation theory |
topic | Approximation, Théorie de l' Splines, Théorie des Approximation theory Spline theory Spline-Funktion (DE-588)4056332-7 gnd Approximationstheorie (DE-588)4120913-8 gnd |
topic_facet | Approximation, Théorie de l' Splines, Théorie des Approximation theory Spline theory Spline-Funktion Approximationstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001283980&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT karlinsamuel studiesinsplinefunctionsandapproximationtheory |