An objective theory of probability:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Methuen
1973
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 250 S. |
ISBN: | 0416773508 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV001950718 | ||
003 | DE-604 | ||
005 | 20080211 | ||
007 | t | ||
008 | 890928s1973 |||| 00||| eng d | ||
020 | |a 0416773508 |9 0-416-77350-8 | ||
035 | |a (OCoLC)489881514 | ||
035 | |a (DE-599)BVBBV001950718 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-355 |a DE-20 |a DE-29T |a DE-29 |a DE-M468 |a DE-83 |a DE-188 | ||
050 | 0 | |a QA273.4 | |
082 | 0 | |a 519.2 | |
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
084 | |a 5,1 |2 ssgn | ||
100 | 1 | |a Gillies, Dee A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An objective theory of probability |c D. A. Gillies |
250 | |a 1. publ. | ||
264 | 1 | |a London |b Methuen |c 1973 | |
300 | |a X, 250 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Probabilities | |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001271673&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q TUB-nveb | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001271673 |
Datensatz im Suchindex
_version_ | 1804116392076640256 |
---|---|
adam_text | Contents
Preface page ix
Introduction 1
Von Mises theory of probability, p. 1; Keynes theory of
probability, p. 7; Comparison between von Mises and
Keynes, p. 14; Development of the logical tradition after
Keynes, p. 15; Characterization of the scientific approach,
p. 25; The two concept view, p. 27; General outline of the
book, p. 31.
PART i: THE SPECIAL SCIENCES
IN GENERAL
1 Von Mises Philosophy of Science: Its Machian Origins 37
Mach s development of mechanics, p. 38; Operationalism,
p. 42; Some objections to operationalism, p. 44.
2 Force and Mass 48
The concepts of force and mass before Newton, p. 48; How
Newton introduced the concepts of force and mass, p. 50;
The moon test of the law of gravity, p. 54; How force and
mass came to be measurable, p. 57.
3 Conceptual Innovation in the Exact Sciences 59
Another illustration of conceptual innovation: the concept
of temperature, p. 59; General theory of conceptual innova¬
tion, p. 63; How our theory of conceptual innovation avoids
the difficulties in operationalism, p. 63; A digression on
testing and accepting scientific theories, p. 65; The
problem of depth, p. 69; The generalized principle of
correspondence and related questions, p. 71; How the
ideas of Part I will be applied to the theory of probability,
p. 73.
vi Contents
PART n: THE AXIOMATIC SUPERSTRUCTURE
4 Probability and Frequency 77
Three views on the relations between probability and
frequency, p. 77; Randomness in von Mises theory, p. 82;
Comparison between von Mises and Kolmogorov, p. 87;
Two criticisms of Kolmogorov by von Mises, p. 89.
5 Repeatability and Independence 94
Analysis of repeatability, p. 94; Repeatable conditions with
dependent outcomes, p. 97; Arguments against the axiom
of independent repetitions, p. 99; Main argument for the
axiom of independent repetitions, p. 101; Derivation of the
law of stability of statistical frequencies, p. 103; Comparison
with Newtonian mechanics, p. 107; Criticism of the views of
von Mises and Kolmogorov on the relations between proba¬
bility and frequency, p. 108; An answer to some arguments
of Doob s, p. 110; Criticism of the laws of large numbers
view, p. 112; The significance of the laws of large numbers,
p. 116.
6 Deduction of the Law of Excluded Gambling Systems:
The Role of Randomness in Probability Theory 119
Deduction of the law of excluded gambling systems, p. 119;
Independence and gambling systems, p. 120; A practical
example, p. 124; Definition of random sequences and their
generation in practice, p. 127; Relation to randomness as
denned in the frequency theory, p. 130; Answer to an objec¬
tion of Braithwaite s, p. 132; Probability theory and de¬
terminism, p. 133; Discussion of some arguments of
Khintchine s, p. 134; Possible modifications of the axioms
of probability in the light of experience, p. 137.
7 Probabilities of Single Events .Popper s Propensity Theory 140
Singular probabilities, p. 140; Popper s propensity theory,
p. 143; Similarities between Popper s propensity theory and
von Mises frequency theory, p. 147; A criticism of the
propensity theory, p. 149; Another argument for the axiom
of independent repetitions, p. 150; Discussion of a possible
simplification, p. 153; An answer to some objections of
Ayer s, p. 156.
Contents vii
PAET III: A FALSIFYING KTTLE FOE PKOBABILITY
STATEMENTS
8 The Falsification Problem for Probability Statements 161
Statement of the problem, p. 161; Popper s proposed solu¬
tion, p. 162; The problem of producing an F.R.P.S., p. 163;
Some notes on the history of the problem, p. 164.
9 Formulation of a Falsifying Rule 167
First version of the rule, p. 167; Second version of the rule,
p. 168; Third version of the rule, p. 169; Final version of the
rule, p. 171; Application of the rule to an important special
case, p. 173; Relation of the present approach to the
Neyman Pearson theory, p. 176.
10 Evaluation of the Falsifying Rule 180
Braithwaite s theory of probability: statement, p. 180;
Braithwaite s theory of probability: criticism, p. 182;
Possible ways of justifying the F.R.P.S., p. 186; The
practical success but inconsistency of the F.R.P.S., p. 187;
The F.R.P.S. in relation to the theory of errors, p. 191;
Resolution of a problem connected with the F.R.P.S., p. 193.
11 The Neyman Pearson Theory 195
Outline of the Neyman Pearson theory, p. 195; The
Neyman Pearson theory without an F.R.P.S., p. 199; The
Neyman Pearson theory with a falsifying rule, p. 202; Two
counter examples from statistical practice, p. 206; Quanti¬
tative versus qualitative considerations, p. 216; A reply to
some objections of Neyman s, p. 219.
Appendix: Explanation of Technical Terminology 227
References 239
Index to Appendix 245
General Index 247
|
any_adam_object | 1 |
author | Gillies, Dee A. |
author_facet | Gillies, Dee A. |
author_role | aut |
author_sort | Gillies, Dee A. |
author_variant | d a g da dag |
building | Verbundindex |
bvnumber | BV001950718 |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273.4 |
callnumber-search | QA273.4 |
callnumber-sort | QA 3273.4 |
callnumber-subject | QA - Mathematics |
classification_rvk | CC 2600 SK 800 SK 810 |
ctrlnum | (OCoLC)489881514 (DE-599)BVBBV001950718 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01434nam a2200409 c 4500</leader><controlfield tag="001">BV001950718</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080211 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1973 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0416773508</subfield><subfield code="9">0-416-77350-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)489881514</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001950718</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M468</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gillies, Dee A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An objective theory of probability</subfield><subfield code="c">D. A. Gillies</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Methuen</subfield><subfield code="c">1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 250 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001271673&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nveb</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001271673</subfield></datafield></record></collection> |
id | DE-604.BV001950718 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:37:46Z |
institution | BVB |
isbn | 0416773508 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001271673 |
oclc_num | 489881514 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-20 DE-29T DE-29 DE-M468 DE-83 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-20 DE-29T DE-29 DE-M468 DE-83 DE-188 |
physical | X, 250 S. |
psigel | TUB-nveb |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Methuen |
record_format | marc |
spelling | Gillies, Dee A. Verfasser aut An objective theory of probability D. A. Gillies 1. publ. London Methuen 1973 X, 250 S. txt rdacontent n rdamedia nc rdacarrier Probabilities Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001271673&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gillies, Dee A. An objective theory of probability Probabilities Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4079013-7 |
title | An objective theory of probability |
title_auth | An objective theory of probability |
title_exact_search | An objective theory of probability |
title_full | An objective theory of probability D. A. Gillies |
title_fullStr | An objective theory of probability D. A. Gillies |
title_full_unstemmed | An objective theory of probability D. A. Gillies |
title_short | An objective theory of probability |
title_sort | an objective theory of probability |
topic | Probabilities Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Probabilities Wahrscheinlichkeitstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001271673&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gilliesdeea anobjectivetheoryofprobability |