The irreducible representations of space groups:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York
Benjamin
1969
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X,271 S. |
ISBN: | 0805398953 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV001939607 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 890928s1969 |||| 00||| eng d | ||
020 | |a 0805398953 |9 0-8053-9895-3 | ||
035 | |a (OCoLC)439216167 | ||
035 | |a (DE-599)BVBBV001939607 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-703 |a DE-355 |a DE-29T |a DE-20 |a DE-19 |a DE-188 | ||
080 | |a 51 | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a UP 1200 |0 (DE-625)146345: |2 rvk | ||
245 | 1 | 0 | |a The irreducible representations of space groups |c Hrsg. von J. Zak ; A. Casher* |
264 | 1 | |a New York |b Benjamin |c 1969 | |
300 | |a X,271 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Raumgruppe |0 (DE-588)4177070-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |2 gnd |9 rswk-swf |
655 | 7 | |a Nichtverwandelbare Darstellung |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Raumgruppe |0 (DE-588)4177070-5 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Raumgruppe |0 (DE-588)4177070-5 |D s |
689 | 1 | 1 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Raumgruppe |0 (DE-588)4177070-5 |D s |
689 | 2 | 1 | |a Nichtverwandelbare Darstellung |A f |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 3 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Zak, Joshua |e Sonstige |4 oth | |
700 | 1 | |a Casher, A. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001264179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001264179 |
Datensatz im Suchindex
_version_ | 1804116379751677952 |
---|---|
adam_text | Contents
Preface ........... vii
PART I: INTRODUCTION
Section 1 Description of Methods for Obtaining the Character
Tables of Space Groups 3
Section 2 Contents of the Tables, Instructions and Notations . 8
2 1 Bravais Lattices, Symmetry of k Vectors and Brillouin
Zones 8
2 2 Notations of Space Groups and Their Elements . 9
2 3 Coordinate Systems and Symmetry Axes . . 10
2 4 Notation of Point Group Elements . . .10
2 5 Double Groups and Multiplication Rules . . 12
2 6 Character Tables for Symmorphic Space Groups and
for Nonsymmorphic Space Groups for Symmetry
Points Inside the Brillouin Zone . . . .13
2 7 Description of the Character Tables and Notations . 14
2 8 Different Origins for Space Groups . . .15
Section 3 Some Comments on Existing Notations . . .16
3 1 Symmetry Elements and Points of Symmetry . . 16
3 2 Some Comments on Notations of Representations . 16
3 3 Multiplication Rules for Double Point Groups . 18
Section 4 Time Reversal . . . . . . . .19
References 21
PART II: TABLES
Section 5 Character Tables for Point Groups .... 25
Section 6 Multiplication tables for Double Point Groups . . 35
6 1 Multiplication Table for the Double Point Group Dt 35
6 2 Multiplication Table for the Double Point Group O 36
ix
x CONTENTS
Section 7 List of Space Groups 39
7 1 The Monoclinic System ..... 44
I. Bravais Lattices ...... 44
II. Points of High Symmetry in the Brillouin Zone . 45
III. Brillouin Zones 47
IV. Character Tables for Nonsymmorphic Space
Groups of the Monoclinic System ... 50
7 2 The Orthorhombic System ..... 54
I. Bravais Lattices 54
II. Points of High Symmetry in the Brillouin Zone . 55
III. Brillouin Zones 59
IV. Character Tables for Nonsymmorphic Space
Groups of the Orthorhombic System . . 62
7 3 The Tetragonal System 115
I. Bravais Lattices . . . . . .115
II. Points of High Symmetry in the Brillouin Zone . 116
III. Brillouin Zones 119
IV. Character Tables for Nonsymmorphic Space
Groups of the Tetragonal System . . .121
7 4 The Trigonal System 196
I. Bravais Lattice . . . . . .196
II. Points of High Symmetry in the Brillouin Zone . 196
III. Brillouin Zones 198
IV. Character Tables for Nonsymmorphic Space
Groups of the Trigonal System . . . 200
7 5 The Hexagonal System. . . . . .213
I. Bravais Lattice ...... 213
II. Points of High Symmetry in the Brillouin Zone . 214
HI. Brillouin Zones 215
IV. Character Tables for Nonsymmorphic Space
Groups of the Hexagonal System . . .216
7 6 The Cubic System 242
I. Bravais Lattices 242
II. Points of High Symmetry in the Brillouin Zone . 242
HI. Brillouin Zones 245
IV. Character Tables for Nonsymmorphic Space
Groups of the Cubic System .... 247
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV001939607 |
classification_rvk | SK 260 UP 1200 |
ctrlnum | (OCoLC)439216167 (DE-599)BVBBV001939607 |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02005nam a2200517 c 4500</leader><controlfield tag="001">BV001939607</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1969 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0805398953</subfield><subfield code="9">0-8053-9895-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)439216167</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001939607</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">51</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1200</subfield><subfield code="0">(DE-625)146345:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The irreducible representations of space groups</subfield><subfield code="c">Hrsg. von J. Zak ; A. Casher*</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Benjamin</subfield><subfield code="c">1969</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X,271 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raumgruppe</subfield><subfield code="0">(DE-588)4177070-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Nichtverwandelbare Darstellung</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Raumgruppe</subfield><subfield code="0">(DE-588)4177070-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Raumgruppe</subfield><subfield code="0">(DE-588)4177070-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Raumgruppe</subfield><subfield code="0">(DE-588)4177070-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Nichtverwandelbare Darstellung</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zak, Joshua</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casher, A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001264179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001264179</subfield></datafield></record></collection> |
genre | Nichtverwandelbare Darstellung gnd |
genre_facet | Nichtverwandelbare Darstellung |
id | DE-604.BV001939607 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:37:35Z |
institution | BVB |
isbn | 0805398953 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001264179 |
oclc_num | 439216167 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR DE-29T DE-20 DE-19 DE-BY-UBM DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-355 DE-BY-UBR DE-29T DE-20 DE-19 DE-BY-UBM DE-188 |
physical | X,271 S. |
publishDate | 1969 |
publishDateSearch | 1969 |
publishDateSort | 1969 |
publisher | Benjamin |
record_format | marc |
spelling | The irreducible representations of space groups Hrsg. von J. Zak ; A. Casher* New York Benjamin 1969 X,271 S. txt rdacontent n rdamedia nc rdacarrier Raumgruppe (DE-588)4177070-5 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Irreduzible Darstellung (DE-588)4162430-0 gnd rswk-swf Nichtverwandelbare Darstellung gnd rswk-swf Raumgruppe (DE-588)4177070-5 s Darstellungstheorie (DE-588)4148816-7 s DE-604 Irreduzible Darstellung (DE-588)4162430-0 s Nichtverwandelbare Darstellung f Gruppentheorie (DE-588)4072157-7 s Zak, Joshua Sonstige oth Casher, A. Sonstige oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001264179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The irreducible representations of space groups Raumgruppe (DE-588)4177070-5 gnd Gruppentheorie (DE-588)4072157-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd Irreduzible Darstellung (DE-588)4162430-0 gnd |
subject_GND | (DE-588)4177070-5 (DE-588)4072157-7 (DE-588)4148816-7 (DE-588)4162430-0 |
title | The irreducible representations of space groups |
title_auth | The irreducible representations of space groups |
title_exact_search | The irreducible representations of space groups |
title_full | The irreducible representations of space groups Hrsg. von J. Zak ; A. Casher* |
title_fullStr | The irreducible representations of space groups Hrsg. von J. Zak ; A. Casher* |
title_full_unstemmed | The irreducible representations of space groups Hrsg. von J. Zak ; A. Casher* |
title_short | The irreducible representations of space groups |
title_sort | the irreducible representations of space groups |
topic | Raumgruppe (DE-588)4177070-5 gnd Gruppentheorie (DE-588)4072157-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd Irreduzible Darstellung (DE-588)4162430-0 gnd |
topic_facet | Raumgruppe Gruppentheorie Darstellungstheorie Irreduzible Darstellung Nichtverwandelbare Darstellung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001264179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zakjoshua theirreduciblerepresentationsofspacegroups AT cashera theirreduciblerepresentationsofspacegroups |