Some random series of functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
[1985]
|
Ausgabe: | Second edition |
Schriftenreihe: | Cambridge studies in advanced mathematics
5 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 290 - 300 |
Beschreibung: | xiii, 305 Seiten |
ISBN: | 052124966X 0521456029 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV001937104 | ||
003 | DE-604 | ||
005 | 20240903 | ||
007 | t | ||
008 | 890928s1985 |||| 00||| eng d | ||
020 | |a 052124966X |c hardback |9 0-521-24966-X | ||
020 | |a 0521456029 |c paperback |9 0-521-45602-9 | ||
035 | |a (OCoLC)11550081 | ||
035 | |a (DE-599)BVBBV001937104 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-384 |a DE-739 |a DE-824 |a DE-29T |a DE-20 |a DE-706 |a DE-83 |a DE-188 | ||
050 | 0 | |a QA331 | |
082 | 0 | |a 519.2 |2 19 | |
082 | 0 | |a 515 |2 19 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 42A61 |2 msc/1980 | ||
084 | |a MAT 606f |2 stub | ||
084 | |a 60B05 |2 msc/1980 | ||
084 | |a 60J65 |2 msc/1980 | ||
084 | |a 60Hxx |2 msc/1980 | ||
084 | |a MAT 430f |2 stub | ||
084 | |a 30B20 |2 msc/1980 | ||
100 | 1 | |a Kahane, Jean-Pierre |d 1926-2017 |0 (DE-588)131512579 |4 aut | |
245 | 1 | 0 | |a Some random series of functions |c Jean-Pierre Kahane |
250 | |a Second edition | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c [1985] | |
264 | 4 | |c © 1985 | |
300 | |a xiii, 305 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 5 | |
500 | |a Literaturverz. S. 290 - 300 | ||
650 | 4 | |a Fonctions (Mathématiques) | |
650 | 4 | |a Processus stochastiques | |
650 | 4 | |a Séries (Mathématiques) | |
650 | 4 | |a Variables aléatoires | |
650 | 4 | |a Functions | |
650 | 4 | |a Random variables | |
650 | 4 | |a Series | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Funktionenreihe |0 (DE-588)4155689-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufallsvariable |0 (DE-588)4129514-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionenreihe |0 (DE-588)4155689-6 |D s |
689 | 0 | 1 | |a Zufallsvariable |0 (DE-588)4129514-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
830 | 0 | |a Cambridge studies in advanced mathematics |v 5 |w (DE-604)BV000003678 |9 5 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001262551&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-001262551 |
Datensatz im Suchindex
_version_ | 1809221877823963136 |
---|---|
adam_text |
Contents
Preface xi
1 A few tools from probability tfaeory 1
1 Introduction 1
2 The basic notions 2
3 Distribution and similarity 3
4 Product probability space 4
5 The Standard model; independence; Steinhaus and
Rademacher sequences 4
6 Integration: the main tools 5
7 Symmetrie random vectors 8
8 Random funetions and analytic sets 9
2 Random series in a Banach space 11
1 Introduction 11
2 Summability methods 12
3 Sums of Symmetrie random vectors; two lemmas 14
4 Proof of theorem 1 15
5 Rademacher series £f + u„ 18
6 A principle of contraction 20
7 The strong integrability for Rademacher series 23
8 Exercises 25
3 Random series in a Hubert space 28
1 Introduction 28
2 The Kolmogorov inequality 29
3 The Paley Zygmund inequalities 30
4 Positive random series 32
v
vi Contents ,
5 Necessary and sufficient conditions for convergence
and boundedness 33
6 Exercises 35
4 Random Taylor series 37
1 Introduction 37 ,
2 Singular points 38
3 The symmetric case 39
4 The general case 40
5 Random Taylor series in two complex variables 41
6 Random Dirichlet series 43
7 Complements and exercises 44
5 Random Fourier series 46
1 Introduction 46
2 Auxiliary results on trigonometric series 47
3 Rademacher series: the case Yj? x^ = oo 49
4 Rademacher series: the case Y,o x* °° 51
5 The general Paley Zygmund theorem 53
6 Auxiliary results on series of translates 54
7 Convergence and boundedness in C or L* 56
8 Convergence everywhere; the Billard theorem 58
9 An application: Fourier coefficients of continuous
functions 60
10 Exercises 63
6 A bound for random trigonometric polynomials
and applications 67
1 Introduction 67
2 Distribution of M= || P ^ 68
3 Applications; a theorem of Littlewood and Salem;
Sidon and Helson sets 70
4 Another application: generalized almost periodic
sequences 72
5 Polynomials with unimodular coefficients 75
6 Sums of sinuses 78
7 Exercises 81
7 Conditions on coefficients for regularity S3
1 Introduction 83
2 A sufficient condition for (l)e C 84
3 Estimates for the modulus of continuity (subgaussian
case) 86
Contents vii
4 A sufficient condition for (1) e Aa 88
5 An application 90
6 Exercises 91
8 Conditions on coefficients for irregularity 93
1 Introduction 93
2 Unboundedness: the Paley Zygmund approach 94
3 Unboundedness: a particular case 96
4 Unboundedness: the general case 98
5 Irregularity almost everywhere 99
6 Irregularity everywhere 101
7 Simultaneous inequalities 103
8 Irregularity everywhere (continued) 104
9 Divergence everywhere 106
10 Exercises 108
9 Random point masses on the circle 109
1 Introduction 109
2 Two theorems on Fourier Stieltjes series 110
3 Proof of theorem 2 112
4 An almost everywhere divergent Fourier series 116
5 Poisson transform of £" £j/n, 59j. 118
6 A theorem on conjugate harmonic functions 121
7 More about the case £? m) = 1 124
8 Exercises 125
10 A few geometric notions 128
1 Introduction 128
2 Hausdorff measures and dimensions; Frostman's lemma 129
3 Energy and capacity; Frostman's theorem 132
4 e covering numbers 134
5 Helices 135
6 Quasi helices; von Koch and Assouad curves 137
7 More on dimensions 139
8 Exercises 141
11 Random translates and covering 143
1 Introduction 143
2 Covering the circle: a sufficient condition 144
3 Covering the circle: a necessary condition 149
4 Covering the circle: the necessary and sufficient
condition 150
viii Contents I
5 Covering a subset of T* by random sets: a necessary
153
6 Covering a subset of Jq: a sufficient condition; the case
of convex gn 156
7 The case of non flattening convex gn; covering a set
of given Hausdorff dimension 158
8 The case of non flattening convex gn (continued);
dimension of the non covered set 159
9 Concluding remarks 161
10 Exercises 162
12 Gaussian variables and gaussian series 165
1 Introduction 165
2 Formulas on Fourier transforms 166
3 Gaussian random variables 168
4 Some more formulas 171
5 Around the Borel Cantelli lemma 172
6 Transient and recurrent gaussian series 173
7 Gaussian series in a Banach space 175
8 Exercises 177
13 Gaussian Taylor series 178
1 Introduction 178
2 A review of previous results 179
3 The range of F(z)(|z| l) 180
4 The radial behavior: a recurrence condition 184
5 The radial behavior: transience conditions 186
6 Non radial behavior: recurrence conditions 189
7 Transience on circular sets 193
8 Exercises 195
14 Gaussian Fourier series 197
1 Introduction 197
2 Review of known results 199
3 Capacities and Hausdorff dimension reviewed 199
4 Range of F 200
5 The zeros of F 203
6 A definition of diq\F) 207
7 The Malliavin theorem on spectral synthesis 209 ,
8 Exercises 210
Contents ix
15 Boundedness and continuity for gaussian processes 211
1 Introduction 211
2 Slepian's lemma 213
3 Marcus and Shepp's theorem; the Pisier algebra 215
4 Dudley's theorem 218
5 Fernique's theorem 221
6 Non gaussian Fourier series 226
7 Exercises 231
16 The brownian motion 233
1 Introduction 233
2 The Wiener process 233
3 The Fourier Wiener series 235
4 More on local properties 237
5 Stopping times, polar sets and newtonian capacity 242
6 Self crossing 245
17 Brownian images in harmonic analysis 250
1 Introduction 250
2 Brownian images 251
3 Brownian image of a measure; proof of theorem 1 253
4 Arithmetical properties of brownian images; proof of
theorem 2 255
5 Image of a measure by a gaussian Fourier series 257
6 A construction of H. Cartan; proof of lemma 6 258
7 A generalization of theorems 1 and 2 260
8 Exercises 261
18 Fractional brownian images and level sets 263
1 Introduction 263
2 The gaussian processes (n, d, y) 264
3 Fractional brownian image of a measure; new Salem sets 265
4 Fractional brownian images (continued); occupation
density 267
5 Level sets 272
6 Uniqueness and continuity of 3(X — x) 275
7 Graphs 278
8 Exercises 279
Notes 281
Bibliography 290
Index 301 |
any_adam_object | 1 |
author | Kahane, Jean-Pierre 1926-2017 |
author_GND | (DE-588)131512579 |
author_facet | Kahane, Jean-Pierre 1926-2017 |
author_role | aut |
author_sort | Kahane, Jean-Pierre 1926-2017 |
author_variant | j p k jpk |
building | Verbundindex |
bvnumber | BV001937104 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 |
callnumber-search | QA331 |
callnumber-sort | QA 3331 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 |
classification_tum | MAT 606f MAT 430f |
ctrlnum | (OCoLC)11550081 (DE-599)BVBBV001937104 |
dewey-full | 519.2 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics 515 - Analysis |
dewey-raw | 519.2 515 |
dewey-search | 519.2 515 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV001937104</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240903</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1985 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052124966X</subfield><subfield code="c">hardback</subfield><subfield code="9">0-521-24966-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521456029</subfield><subfield code="c">paperback</subfield><subfield code="9">0-521-45602-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)11550081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001937104</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42A61</subfield><subfield code="2">msc/1980</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60B05</subfield><subfield code="2">msc/1980</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J65</subfield><subfield code="2">msc/1980</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60Hxx</subfield><subfield code="2">msc/1980</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 430f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30B20</subfield><subfield code="2">msc/1980</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kahane, Jean-Pierre</subfield><subfield code="d">1926-2017</subfield><subfield code="0">(DE-588)131512579</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some random series of functions</subfield><subfield code="c">Jean-Pierre Kahane</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[1985]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 305 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">5</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 290 - 300</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus stochastiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Séries (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variables aléatoires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenreihe</subfield><subfield code="0">(DE-588)4155689-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionenreihe</subfield><subfield code="0">(DE-588)4155689-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV000003678</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001262551&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001262551</subfield></datafield></record></collection> |
id | DE-604.BV001937104 |
illustrated | Not Illustrated |
indexdate | 2024-09-04T00:07:17Z |
institution | BVB |
isbn | 052124966X 0521456029 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001262551 |
oclc_num | 11550081 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-739 DE-824 DE-29T DE-20 DE-706 DE-83 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-739 DE-824 DE-29T DE-20 DE-706 DE-83 DE-188 |
physical | xiii, 305 Seiten |
psigel | TUB-www |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Kahane, Jean-Pierre 1926-2017 (DE-588)131512579 aut Some random series of functions Jean-Pierre Kahane Second edition Cambridge Cambridge University Press [1985] © 1985 xiii, 305 Seiten txt rdacontent n rdamedia nc rdacarrier Cambridge studies in advanced mathematics 5 Literaturverz. S. 290 - 300 Fonctions (Mathématiques) Processus stochastiques Séries (Mathématiques) Variables aléatoires Functions Random variables Series Stochastic processes Funktionenreihe (DE-588)4155689-6 gnd rswk-swf Zufallsvariable (DE-588)4129514-6 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Funktionenreihe (DE-588)4155689-6 s Zufallsvariable (DE-588)4129514-6 s DE-604 Stochastischer Prozess (DE-588)4057630-9 s 1\p DE-604 Cambridge studies in advanced mathematics 5 (DE-604)BV000003678 5 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001262551&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kahane, Jean-Pierre 1926-2017 Some random series of functions Cambridge studies in advanced mathematics Fonctions (Mathématiques) Processus stochastiques Séries (Mathématiques) Variables aléatoires Functions Random variables Series Stochastic processes Funktionenreihe (DE-588)4155689-6 gnd Zufallsvariable (DE-588)4129514-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4155689-6 (DE-588)4129514-6 (DE-588)4057630-9 |
title | Some random series of functions |
title_auth | Some random series of functions |
title_exact_search | Some random series of functions |
title_full | Some random series of functions Jean-Pierre Kahane |
title_fullStr | Some random series of functions Jean-Pierre Kahane |
title_full_unstemmed | Some random series of functions Jean-Pierre Kahane |
title_short | Some random series of functions |
title_sort | some random series of functions |
topic | Fonctions (Mathématiques) Processus stochastiques Séries (Mathématiques) Variables aléatoires Functions Random variables Series Stochastic processes Funktionenreihe (DE-588)4155689-6 gnd Zufallsvariable (DE-588)4129514-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Fonctions (Mathématiques) Processus stochastiques Séries (Mathématiques) Variables aléatoires Functions Random variables Series Stochastic processes Funktionenreihe Zufallsvariable Stochastischer Prozess |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001262551&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003678 |
work_keys_str_mv | AT kahanejeanpierre somerandomseriesoffunctions |