Linear algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York u.a.
Springer
1989
|
Ausgabe: | 3. ed., 2. corr. printing |
Schriftenreihe: | Undergraduate texts in mathematics
Springer books on elementary mathematics. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | IX, 285 S. graph. Darst. |
ISBN: | 0387964126 3540964126 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV001884072 | ||
003 | DE-604 | ||
005 | 19930315 | ||
007 | t | ||
008 | 890822s1989 d||| |||| 00||| eng d | ||
020 | |a 0387964126 |9 0-387-96412-6 | ||
020 | |a 3540964126 |9 3-540-96412-6 | ||
035 | |a (OCoLC)20179779 | ||
035 | |a (DE-599)BVBBV001884072 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-739 |a DE-188 | ||
050 | 0 | |a QA251 | |
082 | 0 | |a 512/.5 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a MAT 150f |2 stub | ||
100 | 1 | |a Lang, Serge |d 1927-2005 |e Verfasser |0 (DE-588)119305119 |4 aut | |
245 | 1 | 0 | |a Linear algebra |c Serge Lang |
250 | |a 3. ed., 2. corr. printing | ||
264 | 1 | |a New York u.a. |b Springer |c 1989 | |
300 | |a IX, 285 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Undergraduate texts in mathematics | |
490 | 0 | |a Springer books on elementary mathematics. | |
650 | 7 | |a Algèbres linéaires |2 ram | |
650 | 4 | |a Algebras, Linear | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a ALGOL |0 (DE-588)4001182-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwertproblem |0 (DE-588)4013802-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizengleichung |0 (DE-588)4169125-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
655 | 7 | |8 3\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | 1 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | 2 | |a ALGOL |0 (DE-588)4001182-3 |D s |
689 | 0 | |8 4\p |5 DE-604 | |
689 | 1 | 0 | |a Matrizengleichung |0 (DE-588)4169125-8 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 5\p |5 DE-604 | |
689 | 2 | 0 | |a Eigenwertproblem |0 (DE-588)4013802-1 |D s |
689 | 2 | 1 | |a ALGOL |0 (DE-588)4001182-3 |D s |
689 | 2 | |8 6\p |5 DE-604 | |
689 | 3 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 3 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 3 | |8 7\p |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001242375&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001242375 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804116343593631744 |
---|---|
adam_text | IMAGE 1
SERGE LANG
LINEAR ALGEBRA THIRD EDITION
WITH 21 ILLUSTRATIONS
SPRINGER
2008 AGI-INFORMATION MANAGEMENT CONSULTANTS MAY BE USED FOR PERSONAL
PURPORSES ONLY OR BY LIBRARIES ASSOCIATED TO DANDELON.COM NETWORK.
IMAGE 2
CONTENTS
CHAPTER I VECTOR SPACES 1 §1. DEFINITIONS , 2§2. BASES 10§3. DIMENSION
OF A VECTOR SPACE 15§4. SUMS AND DIRECT SUMS 19 CHAPTER II MATRICES 23
§1. THE SPACE OF MATRICES 23§2. LINEAR EQUATIONS 29§3. MULTIPLICATION OF
MATRICES 31 CHAPTER III LINEAR MAPPINGS 43 §1. MAPPINGS 43§2. LINEAR
MAPPINGS 51§3. THE KERNEL AND IMAGE OF A LINEAR MAP 59§4. COMPOSITION
AND INVERSE OF LINEAR MAPPINGS 66§5. GEOMETRIC APPLICATIONS 72 CHAPTER
IV LINEAR MAPS AND MATRICES 81 §1. THE LINEAR MAP ASSOCIATED WITH A
MATRIX 81§2. THE MATRIX ASSOCIATED WITH A LINEAR MAP 82§3. BASES,
MATRICES, AND LINEAR MAPS 87
IMAGE 3
VIII CONTENTS
CHAPTER V SCALAR PRODUCTS AND ORTHOGONALITY 95
§1. SCALAR PRODUCTS 95
§2. ORTHOGONAL BASES, POSITIVE DEFINITE CASE 103
§3. APPLICATION TO LINEAR EQUATIONS; THE RANK 113
§4. BILINEAR MAPS AND MATRICES 118
§5. GENERAL ORTHOGONAL BASES 123
§6. THE DUAL SPACE AND SCALAR PRODUCTS 125
§7. QUADRATIC FORMS 132
§8. SYLVESTER S THEOREM 135
CHAPTER VI DETERMINANTS 140
§1. DETERMINANTS OF ORDER 2 140
§2. EXISTENCE OF DETERMINANTS 143
§3. ADDITIONAL PROPERTIES OF DETERMINANTS 150
§4. CRAMER S RULE . 157
§5. TRIANGULATION OF A MATRIX BY COLUMN OPERATIONS 161
§6. PERMUTATIONS 163
§7. EXPANSION FORMULA AND UNIQUENESS OF DETERMINANTS 168
§8. INVERSE OF A MATRIX 174
§9. THE RANK OF A MATRIX AND SUBDETERMINANTS 177
CHAPTER VII SYMMETRIC, HERMITIAN, AND UNITARY OPERATORS 180
§1. SYMMETRIC OPERATORS 180
§2. HERMITIAN OPERATORS 184
§3. UNITARY OPERATORS 188
CHAPTER VIII EIGENVECTORS AND EIGENVALUES 194
§1. EIGENVECTORS AND EIGENVALUES 194
§2. THE CHARACTERISTIC POLYNOMIAL 200
§3. EIGENVALUES AND EIGENVECTORS OF SYMMETRIC MATRICES 213
§4. DIAGONALIZATION OF A SYMMETRIC LINEAR MAP 218
§5. THE HERMITIAN CASE 225
§6. UNITARY OPERATORS 227
CHAPTER IX POLYNOMIALS AND MATRICES 231
§1. POLYNOMIALS 231
§2. POLYNOMIALS OF MATRICES AND LINEAR MAPS 233
IMAGE 4
CONTENTS IX
CHAPTER X
TRIANGULATION OF MATRICES AND LINEAR MAPS 237
§1. EXISTENCE OF TRIANGULATION 237
§2. THEOREM OF HAMILTON-CAYLEY 240
§3. DIAGONALIZATION OF UNITARY MAPS 242
CHAPTER XI POLYNOMIALS AND PRIMARY DECOMPOSITION 245
§1. THE EUCLIDEAN ALGORITHM 245
§2. GREATEST COMMON DIVISOR 248
§3. UNIQUE FACTORIZATION 251
§4. APPLICATION TO THE DECOMPOSITION OF A VECTOR SPACE 255
§5. SCHUR S LEMMA 260
§6. THE JORDAN NORMAL FORM 262
CHAPTER XII CONVEX SETS 268
§1. DEFINITIONS 268
§2. SEPARATING HYPERPLANES 270
§3. EXTREME POINTS AND SUPPORTING HYPERPLANES 272
§4. THE KREIN-MILMAN THEOREM 274
APPENDIX I COMPLEX NUMBERS 277
APPENDIX II IWASAWA DECOMPOSITION AND OTHERS 283
INDEX 293
|
any_adam_object | 1 |
author | Lang, Serge 1927-2005 |
author_GND | (DE-588)119305119 |
author_facet | Lang, Serge 1927-2005 |
author_role | aut |
author_sort | Lang, Serge 1927-2005 |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV001884072 |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251 |
callnumber-search | QA251 |
callnumber-sort | QA 3251 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 220 |
classification_tum | MAT 150f |
ctrlnum | (OCoLC)20179779 (DE-599)BVBBV001884072 |
dewey-full | 512/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.5 |
dewey-search | 512/.5 |
dewey-sort | 3512 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 3. ed., 2. corr. printing |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03156nam a2200733 c 4500</leader><controlfield tag="001">BV001884072</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19930315 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890822s1989 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387964126</subfield><subfield code="9">0-387-96412-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540964126</subfield><subfield code="9">3-540-96412-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)20179779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001884072</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="d">1927-2005</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119305119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear algebra</subfield><subfield code="c">Serge Lang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed., 2. corr. printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 285 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer books on elementary mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbres linéaires</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">ALGOL</subfield><subfield code="0">(DE-588)4001182-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizengleichung</subfield><subfield code="0">(DE-588)4169125-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">3\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">ALGOL</subfield><subfield code="0">(DE-588)4001182-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matrizengleichung</subfield><subfield code="0">(DE-588)4169125-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">ALGOL</subfield><subfield code="0">(DE-588)4001182-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001242375&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001242375</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143413-4 Aufsatzsammlung gnd-content 3\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Aufsatzsammlung Lehrbuch |
id | DE-604.BV001884072 |
illustrated | Illustrated |
indexdate | 2024-07-09T15:37:00Z |
institution | BVB |
isbn | 0387964126 3540964126 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001242375 |
oclc_num | 20179779 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-739 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-739 DE-188 |
physical | IX, 285 S. graph. Darst. |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate texts in mathematics Springer books on elementary mathematics. |
spelling | Lang, Serge 1927-2005 Verfasser (DE-588)119305119 aut Linear algebra Serge Lang 3. ed., 2. corr. printing New York u.a. Springer 1989 IX, 285 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Undergraduate texts in mathematics Springer books on elementary mathematics. Algèbres linéaires ram Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf ALGOL (DE-588)4001182-3 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Eigenwertproblem (DE-588)4013802-1 gnd rswk-swf Matrizengleichung (DE-588)4169125-8 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143413-4 Aufsatzsammlung gnd-content 3\p (DE-588)4123623-3 Lehrbuch gnd-content Numerische Mathematik (DE-588)4042805-9 s Lineare Algebra (DE-588)4035811-2 s ALGOL (DE-588)4001182-3 s 4\p DE-604 Matrizengleichung (DE-588)4169125-8 s Numerisches Verfahren (DE-588)4128130-5 s 5\p DE-604 Eigenwertproblem (DE-588)4013802-1 s 6\p DE-604 7\p DE-604 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001242375&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lang, Serge 1927-2005 Linear algebra Algèbres linéaires ram Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd ALGOL (DE-588)4001182-3 gnd Numerische Mathematik (DE-588)4042805-9 gnd Eigenwertproblem (DE-588)4013802-1 gnd Matrizengleichung (DE-588)4169125-8 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4128130-5 (DE-588)4001182-3 (DE-588)4042805-9 (DE-588)4013802-1 (DE-588)4169125-8 (DE-588)4151278-9 (DE-588)4143413-4 (DE-588)4123623-3 |
title | Linear algebra |
title_auth | Linear algebra |
title_exact_search | Linear algebra |
title_full | Linear algebra Serge Lang |
title_fullStr | Linear algebra Serge Lang |
title_full_unstemmed | Linear algebra Serge Lang |
title_short | Linear algebra |
title_sort | linear algebra |
topic | Algèbres linéaires ram Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd ALGOL (DE-588)4001182-3 gnd Numerische Mathematik (DE-588)4042805-9 gnd Eigenwertproblem (DE-588)4013802-1 gnd Matrizengleichung (DE-588)4169125-8 gnd |
topic_facet | Algèbres linéaires Algebras, Linear Lineare Algebra Numerisches Verfahren ALGOL Numerische Mathematik Eigenwertproblem Matrizengleichung Einführung Aufsatzsammlung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001242375&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT langserge linearalgebra |