Algebraic and topological properties of finite partially ordered sets:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Leipzig
Teubner
1988
|
Ausgabe: | 1. Aufl. |
Schriftenreihe: | Teubner-Texte zur Mathematik
109 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 159 - 162 Zsfassung in dt., franz. und russ. Sprache |
Beschreibung: | 164 S. |
ISBN: | 3322004945 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV001805072 | ||
003 | DE-604 | ||
005 | 20240903 | ||
007 | t | ||
008 | 890206s1988 |||| 00||| eng d | ||
020 | |a 3322004945 |9 3-322-00494-5 | ||
035 | |a (OCoLC)19657310 | ||
035 | |a (DE-599)BVBBV001805072 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-824 |a DE-29 |a DE-29T |a DE-706 |a DE-634 |a DE-188 |a DE-91G |a DE-11 | ||
050 | 0 | |a QA171.485 | |
082 | 0 | |a 511.3/2 |2 20 | |
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
245 | 1 | 0 | |a Algebraic and topological properties of finite partially ordered sets |c Lothar Budach ... |
250 | |a 1. Aufl. | ||
264 | 1 | |a Leipzig |b Teubner |c 1988 | |
300 | |a 164 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Teubner-Texte zur Mathematik |v 109 | |
500 | |a Literaturverz. S. 159 - 162 | ||
500 | |a Zsfassung in dt., franz. und russ. Sprache | ||
650 | 4 | |a Algèbre incidence | |
650 | 4 | |a Anneau Stanley-Reisner | |
650 | 4 | |a Ensemble partiellement ordonné | |
650 | 4 | |a Théorème Reisner | |
650 | 7 | |a Topologie algébrique |2 ram | |
650 | 4 | |a Algebra, Homological | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Combinatorial set theory | |
650 | 4 | |a Partially ordered sets | |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geordnete Menge |0 (DE-588)4156748-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geordnete Menge |0 (DE-588)4156748-1 |D s |
689 | 0 | 1 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Geordnete Menge |0 (DE-588)4156748-1 |D s |
689 | 1 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Budach, Lothar |d 1935-2007 |e Sonstige |0 (DE-588)1013465326 |4 oth | |
830 | 0 | |a Teubner-Texte zur Mathematik |v 109 |w (DE-604)BV000012607 |9 109 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001211811&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-001211811 |
Datensatz im Suchindex
_version_ | 1809222442206363648 |
---|---|
adam_text |
Con tents
Preliminaries 9
Chapter 1
The Mobius Function ,„. 11
1. Incidence Algebra 12
2. The Principle of Inclusion Exclusion 14
3. Mobius Inversion 16
4. Mobius Numbers 18
5. Ideal Relations 22
6. Galois Connections 26
7. Euler Poincar* Formula 30
Chapter 2
Diagram Cohomology of Posets 33
1. A Short Review of Homological Algebra 33
2. Cohomology of Diagrams 43
3. The Grothendieck Spectral Sequence 55
4. The Leray Spectral Sequence 64
Chapter 3
Quillen's Theorem 68
1. Geometric Realization 69
2. Topological Preliminaries 72
3. First Applications of the Topological Concepts . 76
4. Order Homotopy Maps 78
5. Crapo's Complementation Theorem 80
6. Quillen's Theorem 81
7. Dismantlable Posets 84
8. Rota's Cross Cut Theorem 86
Chapter 4
Mobius Algebras and a Riemann Roch Type Theorem . 88
1. Mobius Algebras 88
2. A Riemann Roch Type Theorem 98
7
Chapter 6
Cohen Macaulay and Shellable Posets 105
1. Cohen Macaulay K Algebras 105
2. Stanley Reisner Rings 108
3. The Theorem of Reisner 113
4. The Opper Bound Conjecture for Spheres 118
5. Shellability 122
6. Lexicographic Shellability 127
7. Examples and Concluding Remarks 135
Appendix
Bomological Properties of Classification Problems 139
1. Basic Properties of Classification Problems 139
2. Colored Posets 142
3. Topology of Cond(S), Pure(K) and Mix(K) 146
4. Decision Graphs and Connections to the
Topology of Mlx(K) and Cond(S) 147
5. The Euler Poincar* Characteristic 149
6. Examples 151
Literature 159
Index 163
8 |
any_adam_object | 1 |
author_GND | (DE-588)1013465326 |
building | Verbundindex |
bvnumber | BV001805072 |
callnumber-first | Q - Science |
callnumber-label | QA171 |
callnumber-raw | QA171.485 |
callnumber-search | QA171.485 |
callnumber-sort | QA 3171.485 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 150 SK 170 |
ctrlnum | (OCoLC)19657310 (DE-599)BVBBV001805072 |
dewey-full | 511.3/2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/2 |
dewey-search | 511.3/2 |
dewey-sort | 3511.3 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. Aufl. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV001805072</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240903</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890206s1988 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3322004945</subfield><subfield code="9">3-322-00494-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)19657310</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001805072</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA171.485</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic and topological properties of finite partially ordered sets</subfield><subfield code="c">Lothar Budach ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. Aufl.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Leipzig</subfield><subfield code="b">Teubner</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">164 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Teubner-Texte zur Mathematik</subfield><subfield code="v">109</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 159 - 162</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Zsfassung in dt., franz. und russ. Sprache</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre incidence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anneau Stanley-Reisner</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble partiellement ordonné</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorème Reisner</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologie algébrique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Homological</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partially ordered sets</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geordnete Menge</subfield><subfield code="0">(DE-588)4156748-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geordnete Menge</subfield><subfield code="0">(DE-588)4156748-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geordnete Menge</subfield><subfield code="0">(DE-588)4156748-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Budach, Lothar</subfield><subfield code="d">1935-2007</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1013465326</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Teubner-Texte zur Mathematik</subfield><subfield code="v">109</subfield><subfield code="w">(DE-604)BV000012607</subfield><subfield code="9">109</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001211811&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001211811</subfield></datafield></record></collection> |
id | DE-604.BV001805072 |
illustrated | Not Illustrated |
indexdate | 2024-09-04T00:16:15Z |
institution | BVB |
isbn | 3322004945 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001211811 |
oclc_num | 19657310 |
open_access_boolean | |
owner | DE-384 DE-703 DE-824 DE-29 DE-29T DE-706 DE-634 DE-188 DE-91G DE-BY-TUM DE-11 |
owner_facet | DE-384 DE-703 DE-824 DE-29 DE-29T DE-706 DE-634 DE-188 DE-91G DE-BY-TUM DE-11 |
physical | 164 S. |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Teubner |
record_format | marc |
series | Teubner-Texte zur Mathematik |
series2 | Teubner-Texte zur Mathematik |
spelling | Algebraic and topological properties of finite partially ordered sets Lothar Budach ... 1. Aufl. Leipzig Teubner 1988 164 S. txt rdacontent n rdamedia nc rdacarrier Teubner-Texte zur Mathematik 109 Literaturverz. S. 159 - 162 Zsfassung in dt., franz. und russ. Sprache Algèbre incidence Anneau Stanley-Reisner Ensemble partiellement ordonné Théorème Reisner Topologie algébrique ram Algebra, Homological Algebraic topology Combinatorial set theory Partially ordered sets Algebra (DE-588)4001156-2 gnd rswk-swf Geordnete Menge (DE-588)4156748-1 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Geordnete Menge (DE-588)4156748-1 s Algebra (DE-588)4001156-2 s DE-604 Topologie (DE-588)4060425-1 s Budach, Lothar 1935-2007 Sonstige (DE-588)1013465326 oth Teubner-Texte zur Mathematik 109 (DE-604)BV000012607 109 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001211811&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Algebraic and topological properties of finite partially ordered sets Teubner-Texte zur Mathematik Algèbre incidence Anneau Stanley-Reisner Ensemble partiellement ordonné Théorème Reisner Topologie algébrique ram Algebra, Homological Algebraic topology Combinatorial set theory Partially ordered sets Algebra (DE-588)4001156-2 gnd Geordnete Menge (DE-588)4156748-1 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4001156-2 (DE-588)4156748-1 (DE-588)4060425-1 |
title | Algebraic and topological properties of finite partially ordered sets |
title_auth | Algebraic and topological properties of finite partially ordered sets |
title_exact_search | Algebraic and topological properties of finite partially ordered sets |
title_full | Algebraic and topological properties of finite partially ordered sets Lothar Budach ... |
title_fullStr | Algebraic and topological properties of finite partially ordered sets Lothar Budach ... |
title_full_unstemmed | Algebraic and topological properties of finite partially ordered sets Lothar Budach ... |
title_short | Algebraic and topological properties of finite partially ordered sets |
title_sort | algebraic and topological properties of finite partially ordered sets |
topic | Algèbre incidence Anneau Stanley-Reisner Ensemble partiellement ordonné Théorème Reisner Topologie algébrique ram Algebra, Homological Algebraic topology Combinatorial set theory Partially ordered sets Algebra (DE-588)4001156-2 gnd Geordnete Menge (DE-588)4156748-1 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | Algèbre incidence Anneau Stanley-Reisner Ensemble partiellement ordonné Théorème Reisner Topologie algébrique Algebra, Homological Algebraic topology Combinatorial set theory Partially ordered sets Algebra Geordnete Menge Topologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001211811&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000012607 |
work_keys_str_mv | AT budachlothar algebraicandtopologicalpropertiesoffinitepartiallyorderedsets |