Holomorphic functions of several variables: an introduction to the fundamental theory
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
Berlin [u.a.]
Walter de Gruyter
1983
|
Schriftenreihe: | De Gruyter Studies in Mathematics
3 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 349 Seiten graph. Darst. |
ISBN: | 3110041502 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV001791387 | ||
003 | DE-604 | ||
005 | 20210514 | ||
007 | t | ||
008 | 890824s1983 d||| |||| 00||| eng d | ||
020 | |a 3110041502 |9 3-11-004150-2 | ||
035 | |a (OCoLC)9576702 | ||
035 | |a (DE-599)BVBBV001791387 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h ger | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-703 |a DE-739 |a DE-355 |a DE-824 |a DE-29T |a DE-19 |a DE-706 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA331 | |
082 | 0 | |a 515.9 |2 19 | |
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
084 | |a 32E10 |2 msc | ||
084 | |a 32Cxx |2 msc | ||
084 | |a 32-01 |2 msc | ||
084 | |a MAT 326f |2 stub | ||
100 | 1 | |a Kaup, Ludger |d 1939- |e Verfasser |0 (DE-588)106035959 |4 aut | |
245 | 1 | 0 | |a Holomorphic functions of several variables |b an introduction to the fundamental theory |c Ludger Kaup, Burchard Kaup. With the assistance of Gottfried Barthel. Translated by Michael Bridgland |
264 | 1 | |a Berlin [u.a.] |b Walter de Gruyter |c 1983 | |
300 | |a XIII, 349 Seiten |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics |v 3 | |
650 | 4 | |a Fonctions holomorphes | |
650 | 4 | |a Holomorphic functions | |
650 | 0 | 7 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 1 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Kaup, Burchard |d 1940- |e Verfasser |0 (DE-588)172181429 |4 aut | |
830 | 0 | |a De Gruyter Studies in Mathematics |v 3 |w (DE-604)BV000005407 |9 3 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001207162&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001207162 |
Datensatz im Suchindex
_version_ | 1804116284980330496 |
---|---|
adam_text | Contents
Interdependence of chapters XIV
Courses and Seminars: Guide to the Essentials of Specific Topics XV
Part One: Function Theory on Domains in C
Chapter 0 Elementary Properties of Holomorphic Functions 1
§ 1 Definition of Holomorphic Functions 2
§ 2 0 (X) as a Topological Algebra 4
§ 3 Holomorphic Mappings 7
§ 4 Cauchy s Integral Formula 10
Cauchy s Estimate, Abel s Lemma, Taylor Series, Liouville s Theorem
§4A Supplement: Cartan s Uniqueness Theorem and Automorphisms of
Bounded Domains 16
§ 5 Montel s Theorem 17
§ 6 The Identity Theorem, the Maximum Principle, and Runge s
Theorem 19
§ 7 The Riemann Removable Singularity Theorems 21
Analytic Sets, Codimension, Kugelsatz
§ 8 The Implicite Mapping Theorem 26
Complex Functional Determinant, Inverse Mapping Theorem, Rank
Theorem, Submanifolds
Chapter 1 Regions of Holomorphy 31
§ 11 Domains of Convergence of Power Series and Reinhardt Domains .. 32
Hartogs s Figure, Hartogs s Kontinuitatssatz
§ 12 Regions of Holomorphy and Holomorphic Convexity 36
Holomorphically Extendible at a Point, Thullen s Lemma
§ 12A Supplement: Further Extension Theorems for Holomorphic
Functions 43
§ 12B Supplement: The Edge of the Wedge Theorem 46
X Contents
§ 13 Plurisubharmonic Functions 49
Levi Form
§ 14 Pseudoconvex Domains 56
Part Two: Function Theory on Analytic Sets
Chapter 2 The Weierstrass Preparation Theorem and its Applications 64
§ 21 Power Series Algebras : 65
the Norm || ||r, Homomorphisms of Power Series Algebras
§ 22 The Weierstrass Theorems 71
Distinguished Power Series, Weierstrass Preparation Theorem, Weierstrass
Division Formula, Shearing
§ 23 Algebraic Properties of n(90 and „ 80
Noetherian Rings, Factorial Rings, Normal Rings, Hensel s Lemma,
Representation of nCr0[T]/(P)
§ 23 A Supplement: Finite Ring extensions, Normality 86
Dedekind s Lemma, Nakayama s Lemma, Krull s Intersection Theorem,
Equation of Integral Dependence
§ 24 Analytic Algebras 89
Finite Ring homomorphism, Noether s Normalization Theorem, Finite
Extensions of Analytic Algebras
Chapter 3 Complex Manifolds and the Elementary Theory of Complex Spaces . 92
§ 30 Bringing in the Sheaves 93
§ 31 Ringed Spaces and Local Models of Complex Spaces 97
Reduction, Subspaces and Ideal Sheaves, Comorphisms, Restriction Lemma,
Nilpotent Elements
§ 32 Complex Manifolds and Reduced Complex Spaces 106
Projective Algebraic Varieties, Set of Singular Points, Tangent Space
§ 32A Supplement: Submersions and Immersions 114
§ 32B Supplement: Examples of Complex Manifolds 117
Lie Groups, Manifolds as Quotient Spaces, Torus, Grassmann Manifold,
Transformation Groups, Quadratic Transformation
§ 33 Zeros of Polynomials 126
Branched Coverings, Finite Holomorphic Mappings
§ 33A Supplement: Resultants and Discriminants 131
§ 33B Supplement: Proper Mappings and Equivalence Relations 133
Contents XI
Chapter 4 Complex Spaces 135
§ 41 Coherent Sheaves 136
Finite Type, Sheaf of Relations
§ 42 The Coherence of nC 145
§ 43 Complex Spaces 148
§ 44 Germs of Complex Spaces and Analytic Algebras 154
Decomposition of Germs into Irreducible Components
§ 45 Discrete and Finite Holomorphic Mappings 161
Finite Coherence Theorem, Local Characterization of Finite Morphisms,
Embedding, Open Lemma, Complex Spaces over X
§ 45 A Supplement: Image Sheaves 170
§ 45 B Supplement: The Analytic Spectrum 172
§ 46 The Representation Theorem for Prime Germs 173
§46A Supplement: Injective Holomorphic Mappings between Manifolds of
the Same Dimension 177
§ 46B Supplement: Universal Denominators for Prime Germs 178
Thin Subsets, Weakly Holomorphic Functions
§ 47 Hilbert s Nullstellensatz and Cartan s Coherence Theorem 180
§ 48 Dimension Theory 183
Active Lemma
§ 49 Set of Singular Points and Decomposition into Irreducible
Components 191
Identity Theorem, Semicontinuity of Dimension and of Fiber Dimension
§ 49A Supplement: Fiber Products and Quotients 198
Kernel and Cokernel of a Pair of Morphisms, Analytic Equivalence Relations,
Group Actions, Orbit Spaces, Weighted Projective Spaces, Stein s Factorization
Theorem
Part Three: Function Theory on Stein Spaces
Chapter 5 Applications of Theorem B 213
§ 50 Introductory Remarks on Cohomology 214
Resolutions, Abstract de Rham Theorem, Cech Cohomology, Leray s
Theorem
§50A Supplement: Automorphic Functions 220
§ 51 Stein Spaces 223
§ 51A Supplement: Countable Topology in Complex Spaces 227
XII Contents
§ 52 Theorem B and B Spaces 230
Existence Theorem for Global Holomorphic Functions, Exactness of the
Analytic Section Functor, Local Coordinates by Global Holomorphic Functions,
Theorem A, Hartogs s Kugelsatz
§ 53 The Additive Cousin Problem 238
Meromorphic Functions
§ 53 A Supplement: Meromorphic Functions on Reduced Complex Spaces .. 241
Normal Analytic Algebras, Indeterminate Points, Remarks on the
Meromorphic Function Field of a Compact Complex Space
§ 54 The Multiplicative Cousin Problem 244
Divisors, Exponential Sequence, Chern Class, Locally Free Sheaves of
Rank 1, Logarithm
§ 54A Supplement: The Poincare Problem 249
§ 54B Supplement: Holomorphic Line Bundles 251
Locally Free Sheaves, Oka s Principle, Line Bundles on Pt
§ 55 Coherent Analytic Sheaves as Frechet Sheaves 255
Canonical Topology, Privileged Neighborhoods
§ 56 The Exhaustion Theorem 263
Runge Pairs, Globally Generated Analytic Submodules
§ 57 The Character Theorem and Holomorphic Hulls 267
Spectrum, Maximal Ideals in Global Function Spaces, Holomorphic Hull,
a Stein Quotient Space for a Holomorphically Convex Space
§ 58 The Holomorphic Version of de Rham s Theorem 272
Holomorphic Version of Poincare s Lemma
§58A Supplement: The Grassmann Algebra and Differential Forms 275
Vector Fields, Tangent Spaces
Chapter 6 Proof of Theorem B 277
§ 61 Dolbeault s Lemma 278
Poincare Lemma (5 Version), de Rham s Theorem (^ Version), Polynomial
Polyhedra, the Structure Sheaf of a Polydisk is Acyclic
§ 62 Theorem B for Strictly Pseudoconvex Domains 285
Finiteness Theorem of Cartan Serre, Grauert s Solution of Levi s Problem
§ 63 Characterization of Stein Spaces 293
Weakly Holomorphically Convex Spaces, Runge Pairs, Characterization
of Domains of Holomorphy in C
§ 63A Supplement: Levi s Problem for Pseudoconvex Domains 298
§ 63 B Supplement: Weakly Holomorphically Convex Spaces are
Holomorphically Convex 301
Contents XIII
Supplement: Chapter 7 Normal Complex Spaces 302
§ 71 Normalization 302
Normal Complex Spaces, Riemann Removable Singularity Theorem,
Universal Denominators
§ 72 Maximal Complex Structure 310
Characterization of Biholomorphic Mappings, Maximalization, Normality
of Quotient Spaces
§ 73 Finite Mappings on Stein Spaces 313
§ 74 A Criterium for Normality 314
R Sequence, Riemann Continuation Theorem for Cohomology Classes,
Koszul Complex, Local Cohomology
List of Examples 323
Bibliography 325
Glossary of Notations 329
Index 337
|
any_adam_object | 1 |
author | Kaup, Ludger 1939- Kaup, Burchard 1940- |
author_GND | (DE-588)106035959 (DE-588)172181429 |
author_facet | Kaup, Ludger 1939- Kaup, Burchard 1940- |
author_role | aut aut |
author_sort | Kaup, Ludger 1939- |
author_variant | l k lk b k bk |
building | Verbundindex |
bvnumber | BV001791387 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 |
callnumber-search | QA331 |
callnumber-sort | QA 3331 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 780 |
classification_tum | MAT 326f |
ctrlnum | (OCoLC)9576702 (DE-599)BVBBV001791387 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02188nam a2200517 cb4500</leader><controlfield tag="001">BV001791387</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210514 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890824s1983 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110041502</subfield><subfield code="9">3-11-004150-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)9576702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001791387</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32E10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32Cxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 326f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaup, Ludger</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106035959</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holomorphic functions of several variables</subfield><subfield code="b">an introduction to the fundamental theory</subfield><subfield code="c">Ludger Kaup, Burchard Kaup. With the assistance of Gottfried Barthel. Translated by Michael Bridgland</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Walter de Gruyter</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 349 Seiten</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions holomorphes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holomorphic functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaup, Burchard</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172181429</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">3</subfield><subfield code="w">(DE-604)BV000005407</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001207162&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001207162</subfield></datafield></record></collection> |
id | DE-604.BV001791387 |
illustrated | Illustrated |
indexdate | 2024-07-09T15:36:04Z |
institution | BVB |
isbn | 3110041502 |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001207162 |
oclc_num | 9576702 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-11 DE-188 |
physical | XIII, 349 Seiten graph. Darst. |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Walter de Gruyter |
record_format | marc |
series | De Gruyter Studies in Mathematics |
series2 | De Gruyter Studies in Mathematics |
spelling | Kaup, Ludger 1939- Verfasser (DE-588)106035959 aut Holomorphic functions of several variables an introduction to the fundamental theory Ludger Kaup, Burchard Kaup. With the assistance of Gottfried Barthel. Translated by Michael Bridgland Berlin [u.a.] Walter de Gruyter 1983 XIII, 349 Seiten graph. Darst. txt rdacontent n rdamedia nc rdacarrier De Gruyter Studies in Mathematics 3 Fonctions holomorphes Holomorphic functions Holomorphe Funktion (DE-588)4025645-5 gnd rswk-swf Mehrere Variable (DE-588)4277015-4 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Holomorphe Funktion (DE-588)4025645-5 s Mehrere Variable (DE-588)4277015-4 s DE-604 Funktionentheorie (DE-588)4018935-1 s Kaup, Burchard 1940- Verfasser (DE-588)172181429 aut De Gruyter Studies in Mathematics 3 (DE-604)BV000005407 3 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001207162&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kaup, Ludger 1939- Kaup, Burchard 1940- Holomorphic functions of several variables an introduction to the fundamental theory De Gruyter Studies in Mathematics Fonctions holomorphes Holomorphic functions Holomorphe Funktion (DE-588)4025645-5 gnd Mehrere Variable (DE-588)4277015-4 gnd Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4025645-5 (DE-588)4277015-4 (DE-588)4018935-1 |
title | Holomorphic functions of several variables an introduction to the fundamental theory |
title_auth | Holomorphic functions of several variables an introduction to the fundamental theory |
title_exact_search | Holomorphic functions of several variables an introduction to the fundamental theory |
title_full | Holomorphic functions of several variables an introduction to the fundamental theory Ludger Kaup, Burchard Kaup. With the assistance of Gottfried Barthel. Translated by Michael Bridgland |
title_fullStr | Holomorphic functions of several variables an introduction to the fundamental theory Ludger Kaup, Burchard Kaup. With the assistance of Gottfried Barthel. Translated by Michael Bridgland |
title_full_unstemmed | Holomorphic functions of several variables an introduction to the fundamental theory Ludger Kaup, Burchard Kaup. With the assistance of Gottfried Barthel. Translated by Michael Bridgland |
title_short | Holomorphic functions of several variables |
title_sort | holomorphic functions of several variables an introduction to the fundamental theory |
title_sub | an introduction to the fundamental theory |
topic | Fonctions holomorphes Holomorphic functions Holomorphe Funktion (DE-588)4025645-5 gnd Mehrere Variable (DE-588)4277015-4 gnd Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Fonctions holomorphes Holomorphic functions Holomorphe Funktion Mehrere Variable Funktionentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001207162&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005407 |
work_keys_str_mv | AT kaupludger holomorphicfunctionsofseveralvariablesanintroductiontothefundamentaltheory AT kaupburchard holomorphicfunctionsofseveralvariablesanintroductiontothefundamentaltheory |