Field theory: classical foundations and multiplicative groups
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York u.a.
Dekker
1988
|
Ausgabe: | 1. print. |
Schriftenreihe: | Pure and applied mathematics
120 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 551 S. |
ISBN: | 0824780299 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV001790872 | ||
003 | DE-604 | ||
005 | 19910805 | ||
007 | t | ||
008 | 890823s1988 |||| 00||| eng d | ||
020 | |a 0824780299 |9 0-8247-8029-9 | ||
035 | |a (OCoLC)423197412 | ||
035 | |a (DE-599)BVBBV001790872 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-91G |a DE-824 |a DE-20 | ||
050 | 0 | |a QA247K324 1988 | |
082 | 1 | |a 512.3 |2 22 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a MAT 120f |2 stub | ||
100 | 1 | |a Karpilovsky, Gregory |e Verfasser |4 aut | |
245 | 1 | 0 | |a Field theory |b classical foundations and multiplicative groups |
250 | |a 1. print. | ||
264 | 1 | |a New York u.a. |b Dekker |c 1988 | |
300 | |a VIII, 551 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Pure and applied mathematics |v 120 | |
650 | 4 | |a Anneaux (Algèbre) | |
650 | 4 | |a Corps algébriques | |
650 | 7 | |a Corps de classe |2 ram | |
650 | 4 | |a Groupes abéliens | |
650 | 7 | |a Groupes, Théorie des |2 ram | |
650 | 4 | |a Idéaux (Algèbre) | |
650 | 4 | |a Représentations de groupes | |
650 | 4 | |a Semi-groupes | |
650 | 4 | |a Théorie des groupes | |
650 | 4 | |a Théorie des nombres algébriques | |
650 | 0 | 7 | |a Körper |g Algebra |0 (DE-588)4308063-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Körpertheorie |0 (DE-588)4164455-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Körpertheorie |0 (DE-588)4164455-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Körper |g Algebra |0 (DE-588)4308063-7 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Pure and applied mathematics |v 120 |w (DE-604)BV000001885 |9 120 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001206840&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-001206840 |
Datensatz im Suchindex
_version_ | 1804116284446605312 |
---|---|
adam_text | Contents
PREFACE v
CHAPTER 1. PRELIMINARIES 1
1. Notation and terminology 1
2. Polynomial algebras 7
3. Integral extensions 29
4. Tensor products 32
5. Module theoretic prerequisites 37
6. Topological prerequisites 41
CHAPTER 2. CLASSICAL TOPICS IN FIELD THEORY 47
1. Algebraic extensions 47
2. Normal extensions 57
3. Separable, purely inseparable and simple extensions 63
4. Galois extensions 79
5. Finite fields, roots of unity and cyclotomic extensions 85
6. Norms, traces and their applications 103
7. Discriminants and integral bases 117
8. Units in quadratic fields 135
9. Units in pure cubic fields 148
10. Finite Galois theory 167
11. Profinite groups 172
12. Infinite Galois theory 184
13. Witt vectors 192
14. Cyclic extensions 205
15. Kummer theory 214
16. Radical extensions and related results 221
17. Degrees of sums in a separable field extension 242
18. Galois cohomology 247
19. The Brauer group of a field 263
20. An interpretation of h*{g,e*) 282
21. A cogalois theory for radical extensions 303
22. Abelian p extensions over fields of characteristic p 323
23. Formally real fields 333
24. Transcendental extensions 348
CHAPTER 3. VALUATION THEORY 353
1. Valuations 353
2. Valuation rings and places 368
3. Dedekind domains 376
4. Completion of a field 389
5. Extensions of valuations 400
6. Valuations of algebraic number fields 411
y j j j Contents
7. Ramification index and residue degree 414
8. Structure of complete discrete valued fields 421
A. Notation and terminology 421
B. The equal characteristic case 422
C. The unequal characteristic case 427
D. The inertia field 431
E. Cyclotomic extensions of p adic
fields 436
CHAPTER 4. MULTIPLICATIVE GROUPS OF FIELDS 439
1. Some general observations 439
2. Infinite abelian groups 443
3. The Dirichlet Chevalley Hasse Unit Theorem 449
4. The torsion subgroup 461
5. Global fields 463
6. Algebraically closed, real closed and the rational
p adic fields 468
7. Local fields 474
A. Preparatory results 475
B. The equal characteristic case 481
C. The unequal characteristic case 482
8. Extensions of algebraic number fields 487
9. Brandis s theorem 496
10. Fields with free multiplicative groups modulo torsion 501
11. A nonsplitting example 517
12. Embedding groups 519
13. Multiplicative groups under field extensions 525
14. Notes 531
BIBLIOGRAPHY 535
NOTATION 541
INDEX 547
|
any_adam_object | 1 |
author | Karpilovsky, Gregory |
author_facet | Karpilovsky, Gregory |
author_role | aut |
author_sort | Karpilovsky, Gregory |
author_variant | g k gk |
building | Verbundindex |
bvnumber | BV001790872 |
callnumber-first | Q - Science |
callnumber-label | QA247K324 1988 |
callnumber-raw | QA247K324 1988 |
callnumber-search | QA247K324 1988 |
callnumber-sort | QA 3247 K324 41988 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 230 |
classification_tum | MAT 120f |
ctrlnum | (OCoLC)423197412 (DE-599)BVBBV001790872 |
dewey-full | 512.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.3 |
dewey-search | 512.3 |
dewey-sort | 3512.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01931nam a2200541 cb4500</leader><controlfield tag="001">BV001790872</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19910805 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890823s1988 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0824780299</subfield><subfield code="9">0-8247-8029-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)423197412</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001790872</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA247K324 1988</subfield></datafield><datafield tag="082" ind1="1" ind2=" "><subfield code="a">512.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 120f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karpilovsky, Gregory</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Field theory</subfield><subfield code="b">classical foundations and multiplicative groups</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Dekker</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 551 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Pure and applied mathematics</subfield><subfield code="v">120</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anneaux (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corps algébriques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corps de classe</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes abéliens</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes, Théorie des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Idéaux (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentations de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semi-groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie des groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie des nombres algébriques</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Körper</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4308063-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Körpertheorie</subfield><subfield code="0">(DE-588)4164455-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Körpertheorie</subfield><subfield code="0">(DE-588)4164455-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Körper</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4308063-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Pure and applied mathematics</subfield><subfield code="v">120</subfield><subfield code="w">(DE-604)BV000001885</subfield><subfield code="9">120</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001206840&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001206840</subfield></datafield></record></collection> |
id | DE-604.BV001790872 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:36:04Z |
institution | BVB |
isbn | 0824780299 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001206840 |
oclc_num | 423197412 |
open_access_boolean | |
owner | DE-12 DE-384 DE-91G DE-BY-TUM DE-824 DE-20 |
owner_facet | DE-12 DE-384 DE-91G DE-BY-TUM DE-824 DE-20 |
physical | VIII, 551 S. |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Dekker |
record_format | marc |
series | Pure and applied mathematics |
series2 | Pure and applied mathematics |
spelling | Karpilovsky, Gregory Verfasser aut Field theory classical foundations and multiplicative groups 1. print. New York u.a. Dekker 1988 VIII, 551 S. txt rdacontent n rdamedia nc rdacarrier Pure and applied mathematics 120 Anneaux (Algèbre) Corps algébriques Corps de classe ram Groupes abéliens Groupes, Théorie des ram Idéaux (Algèbre) Représentations de groupes Semi-groupes Théorie des groupes Théorie des nombres algébriques Körper Algebra (DE-588)4308063-7 gnd rswk-swf Körpertheorie (DE-588)4164455-4 gnd rswk-swf Körpertheorie (DE-588)4164455-4 s DE-604 Körper Algebra (DE-588)4308063-7 s Pure and applied mathematics 120 (DE-604)BV000001885 120 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001206840&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Karpilovsky, Gregory Field theory classical foundations and multiplicative groups Pure and applied mathematics Anneaux (Algèbre) Corps algébriques Corps de classe ram Groupes abéliens Groupes, Théorie des ram Idéaux (Algèbre) Représentations de groupes Semi-groupes Théorie des groupes Théorie des nombres algébriques Körper Algebra (DE-588)4308063-7 gnd Körpertheorie (DE-588)4164455-4 gnd |
subject_GND | (DE-588)4308063-7 (DE-588)4164455-4 |
title | Field theory classical foundations and multiplicative groups |
title_auth | Field theory classical foundations and multiplicative groups |
title_exact_search | Field theory classical foundations and multiplicative groups |
title_full | Field theory classical foundations and multiplicative groups |
title_fullStr | Field theory classical foundations and multiplicative groups |
title_full_unstemmed | Field theory classical foundations and multiplicative groups |
title_short | Field theory |
title_sort | field theory classical foundations and multiplicative groups |
title_sub | classical foundations and multiplicative groups |
topic | Anneaux (Algèbre) Corps algébriques Corps de classe ram Groupes abéliens Groupes, Théorie des ram Idéaux (Algèbre) Représentations de groupes Semi-groupes Théorie des groupes Théorie des nombres algébriques Körper Algebra (DE-588)4308063-7 gnd Körpertheorie (DE-588)4164455-4 gnd |
topic_facet | Anneaux (Algèbre) Corps algébriques Corps de classe Groupes abéliens Groupes, Théorie des Idéaux (Algèbre) Représentations de groupes Semi-groupes Théorie des groupes Théorie des nombres algébriques Körper Algebra Körpertheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001206840&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000001885 |
work_keys_str_mv | AT karpilovskygregory fieldtheoryclassicalfoundationsandmultiplicativegroups |