Unitary representations of reductive Lie groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton, New Jersey
Princeton University Press
1987
|
Schriftenreihe: | Annals of mathematics studies
number 118 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | x, 308 Seiten |
ISBN: | 0691084815 0691084823 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000805447 | ||
003 | DE-604 | ||
005 | 20220630 | ||
007 | t | ||
008 | 880920s1987 |||| 00||| eng d | ||
020 | |a 0691084815 |c hardcover |9 0-691-08481-5 | ||
020 | |a 0691084823 |c paperback |9 0-691-08482-3 | ||
035 | |a (OCoLC)15860326 | ||
035 | |a (DE-599)BVBBV000805447 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-703 |a DE-739 |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-19 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512/.55 |2 19 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 202f |2 stub | ||
084 | |a 43A80 |2 msc | ||
084 | |a 43A65 |2 msc | ||
084 | |a MAT 225f |2 stub | ||
100 | 1 | |a Vogan, David A. |d 1954- |e Verfasser |0 (DE-588)172435285 |4 aut | |
245 | 1 | 0 | |a Unitary representations of reductive Lie groups |c David A. Vogan, Jr. |
264 | 1 | |a Princeton, New Jersey |b Princeton University Press |c 1987 | |
264 | 4 | |c © 1987 | |
300 | |a x, 308 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v number 118 | |
650 | 4 | |a Lie, Groupes de | |
650 | 7 | |a Lie-groepen |2 gtt | |
650 | 7 | |a Representatie (wiskunde) |2 gtt | |
650 | 4 | |a Représentations de groupes | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of Lie groups | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unitäre Darstellung |0 (DE-588)4186906-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reduktive Lie-Gruppe |0 (DE-588)4277842-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reduktive Lie-Gruppe |0 (DE-588)4277842-6 |D s |
689 | 0 | 1 | |a Unitäre Darstellung |0 (DE-588)4186906-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Reduktive Lie-Gruppe |0 (DE-588)4277842-6 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Elektronische Reproduktion |d 2016 |z 9781400882380 |
830 | 0 | |a Annals of mathematics studies |v number 118 |w (DE-604)BV000000991 |9 118 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000504826&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q TUB-www | |
999 | |a oai:aleph.bib-bvb.de:BVB01-000504826 |
Datensatz im Suchindex
_version_ | 1804115256915525632 |
---|---|
adam_text | contents
ACKNOWLEDGEMENTS ix
INTRODUCTION 3
CHAPTER 1 COMPACT GROUPS AND THE BOREL WEIL
THEOREM 19
CHAPTER 2 HARISH CHANDRA MODULES 50
CHAPTER 3 PARABOLIC INDUCTION 62
CHAPTER 4 STEIN COMPLEMENTARY SERIES AND THE
UNITARY DUAL OF GL(n,C) 82
CHAPTER 5 COHOMOLOGICAL PARABOLIC INDUCTION:
ANALYTIC THEORY 105
CHAPTER 6 COHOMOLOGICAL PARABOLIC INDUCTION:
ALGEBRAIC THEORY 123
INTERLUDE: THE IDEA OF UNIPOTENT REPRESENTATIONS 159
vii
viii CONTENTS
CHAPTER 7 FINITE GROUPS AND UNIPOTENT REPRE¬
SENTATIONS 164
CHAPTER 8 LANGLANDS PRINCIPLE OF FUNCTORIALITY
AND UNIPOTENT REPRESENTATIONS 185
CHAPTER 9 PRIMITIVE IDEALS AND UNIPOTENT
REPRESENTATIONS 211
CHAPTER 10 THE ORBIT METHOD AND UNIPOTENT
REPRESENTATIONS 235
CHAPTER 11 K MULTIPLICITIES AND UNIPOTENT
REPRESENTATIONS 258
CHAPTER 12 ON THE DEFINITION OF UNIPOTENT
REPRESENTATIONS 284
CHAPTER 13 EXHAUSTION 290
REFERENCES 302
|
any_adam_object | 1 |
author | Vogan, David A. 1954- |
author_GND | (DE-588)172435285 |
author_facet | Vogan, David A. 1954- |
author_role | aut |
author_sort | Vogan, David A. 1954- |
author_variant | d a v da dav |
building | Verbundindex |
bvnumber | BV000805447 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 830 SK 340 |
classification_tum | MAT 202f MAT 225f |
ctrlnum | (OCoLC)15860326 (DE-599)BVBBV000805447 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02390nam a2200613 cb4500</leader><controlfield tag="001">BV000805447</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220630 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">880920s1987 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691084815</subfield><subfield code="c">hardcover</subfield><subfield code="9">0-691-08481-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691084823</subfield><subfield code="c">paperback</subfield><subfield code="9">0-691-08482-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)15860326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000805447</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 202f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43A80</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43A65</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vogan, David A.</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172435285</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unitary representations of reductive Lie groups</subfield><subfield code="c">David A. Vogan, Jr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, New Jersey</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 308 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">number 118</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie-groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representatie (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentations de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Lie-Gruppe</subfield><subfield code="0">(DE-588)4277842-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reduktive Lie-Gruppe</subfield><subfield code="0">(DE-588)4277842-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Reduktive Lie-Gruppe</subfield><subfield code="0">(DE-588)4277842-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Elektronische Reproduktion</subfield><subfield code="d">2016</subfield><subfield code="z">9781400882380</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">number 118</subfield><subfield code="w">(DE-604)BV000000991</subfield><subfield code="9">118</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000504826&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-www</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000504826</subfield></datafield></record></collection> |
id | DE-604.BV000805447 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:19:44Z |
institution | BVB |
isbn | 0691084815 0691084823 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000504826 |
oclc_num | 15860326 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-83 DE-11 DE-188 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-83 DE-11 DE-188 |
physical | x, 308 Seiten |
psigel | TUB-www |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Vogan, David A. 1954- Verfasser (DE-588)172435285 aut Unitary representations of reductive Lie groups David A. Vogan, Jr. Princeton, New Jersey Princeton University Press 1987 © 1987 x, 308 Seiten txt rdacontent n rdamedia nc rdacarrier Annals of mathematics studies number 118 Lie, Groupes de Lie-groepen gtt Representatie (wiskunde) gtt Représentations de groupes Lie groups Representations of Lie groups Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Unitäre Darstellung (DE-588)4186906-0 gnd rswk-swf Reduktive Lie-Gruppe (DE-588)4277842-6 gnd rswk-swf Reduktive Lie-Gruppe (DE-588)4277842-6 s Unitäre Darstellung (DE-588)4186906-0 s DE-604 Darstellungstheorie (DE-588)4148816-7 s Elektronische Reproduktion 2016 9781400882380 Annals of mathematics studies number 118 (DE-604)BV000000991 118 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000504826&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Vogan, David A. 1954- Unitary representations of reductive Lie groups Annals of mathematics studies Lie, Groupes de Lie-groepen gtt Representatie (wiskunde) gtt Représentations de groupes Lie groups Representations of Lie groups Darstellungstheorie (DE-588)4148816-7 gnd Unitäre Darstellung (DE-588)4186906-0 gnd Reduktive Lie-Gruppe (DE-588)4277842-6 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4186906-0 (DE-588)4277842-6 |
title | Unitary representations of reductive Lie groups |
title_auth | Unitary representations of reductive Lie groups |
title_exact_search | Unitary representations of reductive Lie groups |
title_full | Unitary representations of reductive Lie groups David A. Vogan, Jr. |
title_fullStr | Unitary representations of reductive Lie groups David A. Vogan, Jr. |
title_full_unstemmed | Unitary representations of reductive Lie groups David A. Vogan, Jr. |
title_short | Unitary representations of reductive Lie groups |
title_sort | unitary representations of reductive lie groups |
topic | Lie, Groupes de Lie-groepen gtt Representatie (wiskunde) gtt Représentations de groupes Lie groups Representations of Lie groups Darstellungstheorie (DE-588)4148816-7 gnd Unitäre Darstellung (DE-588)4186906-0 gnd Reduktive Lie-Gruppe (DE-588)4277842-6 gnd |
topic_facet | Lie, Groupes de Lie-groepen Representatie (wiskunde) Représentations de groupes Lie groups Representations of Lie groups Darstellungstheorie Unitäre Darstellung Reduktive Lie-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000504826&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000991 |
work_keys_str_mv | AT vogandavida unitaryrepresentationsofreductiveliegroups |