Iron transport in microbes, plants and animals:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim [u.a.]
VCH
1987
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIV, 533 S. Ill. |
ISBN: | 3527266852 0895736497 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV000757937 | ||
003 | DE-604 | ||
005 | 20011122 | ||
007 | t | ||
008 | 880614s1987 a||| |||| 00||| eng d | ||
020 | |a 3527266852 |9 3-527-26685-2 | ||
020 | |a 0895736497 |9 0-89573-649-7 | ||
035 | |a (OCoLC)230905562 | ||
035 | |a (DE-599)BVBBV000757937 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-M49 |a DE-210 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QR92.I7 | |
082 | 0 | |a 574.1/33 |2 19 | |
084 | |a WD 4750 |0 (DE-625)148182: |2 rvk | ||
084 | |a WE 5400 |0 (DE-625)148308: |2 rvk | ||
084 | |a CHE 815f |2 stub | ||
084 | |a CHE 376f |2 stub | ||
245 | 1 | 0 | |a Iron transport in microbes, plants and animals |c ed. by Günther Winkelmann ... |
264 | 1 | |a Weinheim [u.a.] |b VCH |c 1987 | |
300 | |a XXIV, 533 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Biological Transport | |
650 | 4 | |a Biological transport | |
650 | 4 | |a Iron |x Metabolism | |
650 | 4 | |a Iron |x metabolism | |
650 | 4 | |a Microbial metabolism | |
650 | 4 | |a Microbiology | |
650 | 4 | |a Plants |x Metabolism | |
650 | 4 | |a Plants |x metabolism | |
650 | 0 | 7 | |a Eisen |0 (DE-588)4014002-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stofftransport |g Biologie |0 (DE-588)4443397-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physiologie |0 (DE-588)4045981-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Eisen |0 (DE-588)4014002-7 |D s |
689 | 0 | 1 | |a Stofftransport |g Biologie |0 (DE-588)4443397-9 |D s |
689 | 0 | 2 | |a Physiologie |0 (DE-588)4045981-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Eisen |0 (DE-588)4014002-7 |D s |
689 | 1 | 1 | |a Stofftransport |g Biologie |0 (DE-588)4443397-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Winkelmann, Günther |e Sonstige |4 oth | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000474454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-000474454 |
Datensatz im Suchindex
_version_ | 1804115210205659136 |
---|---|
adam_text | Jron Transport
in Microbes,
Plants and Animals
Edited by
Giinther Winkelmann
Dick van der Helm
JoeB Neilands
VCH
Contents
Part I Molecular Biology and Biochemistry of
Microbial Iron Transport
1 Comparative Biochemistry of Microbial Iron Assimilation 3
JoeB Neilands, Krystyna Konopka, Bernhard Schwyn, Mark Coy,
Ralph T Francis, Barry H Paw, and Anne Bagg
Introduction
1 The Literature of Microbial Iron Metabolism 3
2 Rationale of the Comparative Approach 3
3 Iron in the Microbial Environment 5
4 Iron: Nutritious and Noxious 5
5 Siderophorevs Non-Siderophore Iron Assimilation 6
2 Bacteria 7
2 1 Escherichia coli 7
211 TheAerobactinOperonof pColV-K30 7
212 Regulation 10
213 Hemin as Iron Source 11
214 Siderophore-Mediated Utilization of Ovo-and Lacto-Transferr in Iron 13
2 2 Rhizobium meliloti 24
3 Fungi 24
3 1 Is there a Siderophore in Common Yeast? 25
3 2 Purification of A^-Hydroxyornithine: Acetyl CoA A^-Transacetylase from
Rhodotorula pilimanae 26
1 4 Summary 28
References «30
2 Iron Transport Systemsinissc/ier/c/Haco// 35
Volkmar Braun, Klaus Hantke, Katrin Eick-Helmerich, Wolfgang KOster,
Uwe Prefiler, Martin Sauer, Sven Schaffer, Harald Schoffler, Horst Staudenmaier, and
Luitgard Zimmermann
2 1 Introduction 35
2 2 Genetics and Biochemistry of Aerobactin Biosynthesis 35
2 3 Chromosomal Genes for Ferric-Hydroxamate Uptake 37
231 FhuA(TonA) Receptor Protein in the Oufer Membrane 37
232 TheFhuC, D, and B Transport Proteins 39
233 Unusual Specificities for Ferric-Hydroxamate Uptake 41
2 4 The Iron-Dicitrate Transport System 41
2 5 Central Control of Iron-Regulated Systems 42
VIII Contents
/
2 6 New Iron-Regulated Genes 44
261 fhuF Locus 44
262 /fcLocus 44
263 irrA Locus 45
264 cirB Locus 45
2 7 Regulation of the Activity of Outer Membrane Receptor Proteins 45
271 FhuE Consensus Sequence 46
272 Further Homologies between Outer Membrane Receptor Proteins
Consensus Sequences in the TonB Protein 46
273 TheExbBProtein 47
2 8 Perspectives 47
References 50
3 Plasmid-Mediated Iron Transport in Pathogenic Bacteria 53
Jorge H Crosa
3 1 Introduction 53
3 2 TranspositionAnalysisofthelronUptakeRegionofpJMl 54
3 3 Definition of the pJMl DNA Region Encoding the OM2 Outer Membrane
Protein and Ferric Anguibactin Transport Activity 56
3 4 Cloning of the Trans-Acting Factor Genes 59
3 5 TheSiderophoreAnguibactin 61
3 6 Flanking Sequences oftheAerobactin-Mediated Iron Uptake System 62
References 64
4 Ferrienterobactin Transport in Escherichia coli 67
Charles F Earhart
4 1 Introduction 67
4 2 Biosynthesis of Enterobactin 70
421 Enzymology of Enterobactin Synthesis 70
422 Molecular Genetic Studies of enf Genes - *71
4 3 Transport of Ferrienterobactin into the Cytoplasm 72
Transport Proteins 73
1 FepA 73
2 FepB 74
3 FepC 75
4 Other Possible/e/7 Genes ;• , 75
5 TonB 75
6 ExbB : 76
432 Release of Iron from Enterobactin 77
433 Energy Requirements for Ferrienterobactin Transport 78
4 4 Regulation of the Enterobactin System 78
441 The/wrGene, Evidence for an Iron Regulon 79
442 Regulation of Enterobactin Biosynthesis 79
443 Regulation oifepA 80
Contents IX
444 Some Possible Indirect Control Mechanisms 80
4 5 Concluding Remarks 81
References 81
5 Sequences and Interactions of Prote ins Part ic ipat ing in the
Transpor t of I ron and Vi tamin B12 in£!sc/ienc/iwco// 85
Robert J Kadner, Michael D Lundrigan, and Knut Heller
5 1 Introduction 85
5 2 The Outer Membrane Receptors for Vitamin B12 and Siderophore Complexes 86
521 Genetic Organization of the Receptors 86
522 Features of Predicted Receptors 86
523 Sequence Homologies 88
5 3 Transport of Vitamin B12 across the Cytoplasmic Membrane 90
531 Role of the btuCED Region in Vitamin B12 Transport 90
532 Productsofthefc/MCEDRegion 92
533 SequenceofthefcfwCEDRegionandPropertiesoftheDeducedPolypeptides 93
534 Consequences and Predictions 95
References 96
6 Iron Transport in Shigella and Vibrio Species 99
Shelley M Payne
6 1 Introduction 99
6 2 Vibrio Iron Transport Systems 100
6 3 Shigella Iron Transport Systems 103
6 4 S/i;ge//aAerobactin Genes 103
6 5 Regulation of Aerobactin Synthesis in Shigella 105
6 6 Enterobactin Genes in Shigella 105
6 7 Iron Transport and Virulence of Shigella 107
6 8 Summary 108
References 109*
7 Iron, Siderophores, and Virulence in Aeromonas hydrophila in
B RoweByers
7 1 Introduction I l l
7 2 The Aeromonas hydrophila Siderophore (AHS) 112
721 Isolation of AHS 112
722 Some Biological Properties of AHS 113
7 3 Experimental Aeromonas hydrophila Infections 113
7 4 AHS Vaccine and Anti-AHS Antibody Production 114
7 5 Initial Genetic Studies 114
7 6 Summary and Goals of the Research 115
References 116
X Contents
/
8 Biosynthesis of Aerobactin: Enzymological and
Mechanistic Studies in
Thammaiah Viswanatha, Edward W Szczepan, and Gary J Murray
8 1 Introduction 117
8 2 Factors Influencing in vivo Aerobactin Production 118
8 3 Studies with Cell-Free System 120
831 Lysine: AP-Hydroxylase (E,) 121
8311 Preliminary Observations 121
8312 Stability 121
8313 Kinetic Properties 122
8314 Influence of Glutamate and Analogs 123
832 Acetyl Transferase (E^ 126
833 Aerobactin Synthetase (E3) 126
8 4 Inter-Relationship between Pyruvate Metabolism and Aerobactin Production 128
8 5 Future Directions 131
References 132
Part II Chemistry and Mechanisms of Microbial
Iron Transport
9 The Crystal Structures, Conformations, and Configurations
of Siderophores 135
Dick van derHelm, MAF Jalal, andM B Hossain
9 1 Introduction 135
9 2 Catecholamides 135
9 3 Pseudobactins, Pyoverdins, Mycobactins 138
9 4 Ferrioxamines • *142
9 5 Fusarinines 145
9 6 Coprogens 148
9 7 Ferrichromes 150
9 8 Iron Coordination and Model Complexes 155
981 Description 155
982 Models - 156
983 Chelates of Siderophores 159
984 Specificity : 162
9 9 Conclusions and Perspectives ^ 162
References 163
Contents XI
10 Bacterial Siderophores: Structure and Physicochemical
Properties of Pyoverdins and Related Compounds 167
Pascal Demange, Salome Wendenbaum, Andrew Bateman, Anne Dell, and
MohamedA Abdallah
10 1 Introduction 167
10 2 The Pyoverdins of Pseudomonasaeruginosa ATCC 15692 168
10 2 1 Isolation and Purification of the Pyoverdins of Pseudomonas aeruginosa
ATCC 15692 169
10 2 2 Physicochemical Properties of the Pyoverdins of Pseudomonas aeruginosa
ATCC 15692 169
10 2 3 Structure Elucidation of Pyoverdin Pa 170
10 231 NMR Spectra of Pyoverdin Pa 171
10 232 The Peptide Chain of Pyoverdin Pa 173
10 233 The Stereochemistry of the Different Chiral Groups of Pyoverdin Pa 174
10 2 4 TheStructureofPyoverdinPaA PaB andPaC 176
10 3 The Structure of Azotobactin D, the Siderophore of Azotobacter vinelandii
Strain D(CCM 289) 177
10 3 1 Isolation and Purification of Azotobactin 177
10 3 2 Physicochemical Properties of Azotobactin and Azotobactin a 177
10 3 3 Structure Elucidation of Azotobactin D 178
10 331 NMR Spectra of Azotobactin D 179
10 332 Determination ofthe Peptide Sequence 179
10 333 Stereochemistry of the Amino Acids and of the Chromophore of
Azotobactin D 182
10 3 4 The Structure of Azotobactin a 184
10 4 General Structure ofthe Pyoverdins from Other Fluorescent Pseudomonads 184
References 186
11 Siderophores of Pseudomonas - Biological Properties 189
Jean-Marie Meyer, Felix Halle, Dany Hohnadel, Philippe Lemanceau, •
Harinirina Ratefiarivelo
11 1 Introduction 189
11 2 The Pyoverdines of Fluorescent Pseudomonads 189
11 2 1 The Fluorescent Pigment 189
11 2 2 Relationships between Pyoverdine and Iron 190
11 2 3 Strain Specificity of Pyoverdine T 193
11 2 4 Ferripyoverdine Reductase 195
11 2 5 Genetics ofthe Pyoverdine System 196
11 3 Siderophores Others than Pyoverdine 7 198
11 3 1 Fluorescent Pseudomonads 198
11 3 2 Non-Fluorescent Pseudomanads 198
11 4 Biological Interests of Pyoverdines 199
11 4 1 Siderophores and Human Pathogenicity of P aeruginosa 199
XII Contents
/
11 4 2 Beneficial Effects of Plant Bacterization with Fluorescent Pseudomonads:
The Role of Pyoverdine 201
11 5 Conclusion 202
References 203
12 Iron Metabolism in Mycobacteria 207
Colin Ratledge
12 1 Introduction 207
12 2 Consequences of Iron Deficiency in Mycobacteria 208
12 3 Mycobactin 208
12 3 1 Structure and Distribution 208
12 3 2 Function 210
12 3 3 Salicylate 214
12 3 4 Exochelins 215
12 4 Other Iron Uptake Systems 217
12 4 1 Citrate 218
12 4 2 Uptake from Other Siderophores 218
12 5 Conclusions 219
References 220
13 Bacterial Iron Transport as a Target for Antibacterial Agents 223
Henry J Rogers
13 1 Introduction 223
13 1 1 Bacterial Iron Transport as a Target for Inhibitors 223
13 2 Enterochelin 224
13 2 1 Effect of Serum on Iron Transport 224
13 3 Complexes ofEnterochelin as Antibacterial Agents 225
13 3 1 Chemical Properties 225
13 3 2 Antibacterial Effects ofEnterochelin Complexes 225
13 3 3 Mechanismof Actionof Sc3+-enterochelin £26
13 331 General 226
13 332 Transport Studies 226
13 333 Metabolic Effects 227
13 3 4 Mechanismof Actionof In3+-enterochelin 228
13 341 Structure ofthe Complex 228
13 342 Transport Studies 228
13 343 Metabolic Effects 229
13 4 Chelators from Pseudomonasaeruginosa 229
13 5 Aerobactin and Other Hydroxamates 229
13 6 Albomycin } 230
13 7 Future Prospects 230
References 231
Contents XIII
14 Reductive Mechanisms of Iron Assimilation 235
Thomas Emery
14 1 Introduction 235
14 2 Siderophore-Mediated Iron Transport 235
14 2 1 Exchange 236
14 2 2 Gallium Exchange 237
14 2 3 Reductive Mechanisms 238
14 3 Reductive Iron Uptake in Microorganisms 238
14 4 Reductive Iron Uptake in Plants 244
14 5 The Role of Reduction in Animal Iron Assimilation 245
14 6 A Final Note 248
References 248
15 Mossbauer Spectroscopy of Microbial I ron Uptake
andMetabol ism 251
BertholdF Matzanke
15 1 Introduction 251
15 2 Microbial Iron Transport Agents 251
15 3 Microbial Iron Storage Compounds 261
15 4 Siderophore Uptake in Microorganisms and Iron Metabolism Monitored by
in vivo MOssbauer Spectroscopy 266
15 4 1 57Fe-Enterobactin Uptake inEscherichiacoli 267
15 4 2 Siderophore Transport inNeurospora crassa 273
15 4 3 NewIronMetabolitesandtheinvivoAnalysisofEnzymes AnOutlook 278
References 280
16 Synthesis and Properties of Polyamine Catecholamide
Chelators 285
Raymond J Bergeron
16 1 Introduction 285
16 2 Polyamine Catecholamide Siderophores 286
16 2 1 Synthetic Overview for Parabactin and Agrobactin Series 286
16 2 2 Molecular Disconnection Analysis for Parabactin and Agrobactin Series 287
16 3 Synthesis of Catecholamide Cheiators 288
16 3 1 SecondaryA/-BenzylatedTriamines 288
16 3 2 Synthesis ofBis-N1,A/8-(2,3-dihydroxybenzoyl)spermidine (Compound II) 291
16 3 3 Synthesis of Parabactin Analogues 292
16 34A Biomimetic Synthesis of Parabactin Analogues 293
16 3 5 Synthesis of Parabactin 294
16 3 6 Synthesis of Parabactin Azide 295
16 3 7 Synthesis of a Parabactin Affinity Column 298
16 3 8 Synthesis of Agrobactin 299
XIV Contents
16 3 9 N-Terminal Bis(t-butoxycarbonylated) Triamines; Reagents for Synthesis
of Agrobactin A and Homologues; Disconnection Analysis 300
16 3 10 Synthesisof Agrobactin A 302
16 3 11 Triprotected Triamines; Reagents for the Synthesis of Vibriobactin;
Disconnection Analysis 302
16 3 12 Synthesis of Vibriobactin 305
16 4 H NMR of Catecholamide Chelators 305
16 5 Biological Properties of Polyamine Catecholamide Iron Chelators 307
16 5 1 Effects of Catecholamide Iron Chelators on Microbial Growth 307
16 5 2 Effects of Catecholamide Iron Chelators on the Growth of Tumor Cells 311
References 314
17 Molecular Recognition and Transport of Siderophores in Fung i 317
Giinther Winkelmann and Hans-Georg Huschka
17 1 Introduction 317
17 2 Mutants of Desferrisiderophore Biosynthesis 317
17 3 Transport Mechanisms 318
17 4 Specificity of Transport 319
17 5 Siderophore Recognition 321
17 6 Uptake of Coprogens 321
17 7 Uptake of Ferrichromes 322
17 8 Position of N-Acyl Residues 322
17 9 Peptide Backbone 324
17 10 Semisynthetic Ferrichromes 325
17 11 Cyclic Nature of the Backbone 325
17 12 Configuration 325
17 13 Inhibition Studies 327
17 14 Effect of Temperature 329
17 15 The Driving Force 330
References 335
Part III Strategies for Iron Acquisition in Higher Plants 337
18 Biochemical Basis of Iron Efficiency Reactions in Plants 339
Frits Bienfait
18 1 Dicotyledons and Non-Grass Monocotyledons 339
18 1 1 Increased Capacity to Reduce Ferric Chelates (Turbo Reductase) 339
18 1 2 Rhizosphere Acidification by Proton Extrusion 344
18 1 3 Excretion of Phenolic Compounds 344
18 1 4 Excretion of Flavins 345
18 2 Grasses 345
18 3 Regulation of Iron-Efficiency Responses 346
References 349
Contents XV
19 Existence of Two Different Strategies for the Acquisition of
Iron in Higher Plants 353
Volker ROmheld
19 1 Introduction 353
19 2 Mechanisms of Iron Acquisition 325
19 3 Phylogenetic Distribution ofthe Various Adaptive Mechanisms (Strategies) 355
19 4 Strategy I 359
19 4 1 Fe(III) Reduction 359
19 4 2 Proton Release 360
19 4 3 Cooperative System 362
19 5 Strategy II: Phytosiderophore System 363
19 5 1 Iron Mobilizing Root Exudates 362
19 5 2 Specific Membrane Transport System for FerratedPhytosiderophores 364
19 6 Ecological Significance 367
19 7 Agricultural Significance 372
References 373
20 Microbial Siderophores as Iron Sources for Plants 375
D E Crowley, CPP Reid, and P J Szaniszlo
20 1 Introduction 375
20 2 Chemistry of Iron in Soils 375
20 3 IronChelationandChelateStability 376
20 4 Production and Occurrence of Siderophores in Soils 378
20 5 Plant Utilization of Chelated Iron 380
20 6 Summary 384
References 385
21 Plant Growth Stimulation by Biological Interference
in Iron Metabolism in the Rhizosphere 387
Letty A de Weger, Bob Schippers, and Ben Lugtenberg
Biology of Yield Decrease Resulting from Short Rotation 387
Introduction 387
SuppressionofYieldDecreasebyFluorescentPreurfo/no/tosspp 387
AModeltoExplainSuppressionofYieldDecreasebyPseurfomonasBacteria 388
Interference of Fluorescent Pseudomonas spp with Iron Metabolism 388
Root Colonization 389
21 2 Molecular Aspects of Interference of Pseudomonas Bacteria with Iron Metabolism
in the Soil 389
21 2 1 Antagonistic Activity of Fluorescent Pseudomonas spp is the Result of
Siderophores Produced during Limitation for Fe3+ 390
21 2 2 Siderophores Produced by Pseudomonas spp 390
21 2 3 Analysis ofthe Genes Involved in the Synthesis of Siderophores 392
XVI Contents
21 -2 4 Uptake of Fe3+-Siderophore Complex 392
21 2 5 Iron Limitation in the Rhizosphere 393
21 2 6 Role of Siderophores in Plant Growth Stimulation 394
21 2 7 Beneficial Pseudoraortas spp Comprise a Strongly Diverse Family of Strains 394
21 2 8 Nature of Harmful Microorganisms 395
21 3 Importance of Plant-Root Colonization for Yield Increase 395
21 3 1 Rationale 395
21 3 2 Factors Influencing Plant-Root Colonization 396
21 3 3 Strategy for Studying Plant-Root Colonization 396
21 4 Application in the Field 398
References 398
22 Mugineic Acids, Studies on Phytosiderophores 401
Kyosuke Nomoto, Yukio Sugiura, andSei-ichi Takagi
22 1 Introduction 401
22 2 Discovery of Mugineic Acids from Root Washings of Gramineous Plants
(Rice and Oat) 402
22 2 1 Plant Culture and Collection of Root Washings 402
22 2 2 Determination ofthe Iron-Chelating Activity 402
22 2 3 Fractionation ofthe Root Washings 403
22 2 A Iron-Solubilizing Capacity of Oat and Rice Root Washings 403
22 3 Isolation of Mugineic Acids 404
22 4 Structural Elucidation of Mugineic Acids 404
22 4 1 Mugineic Acid 404
22 4 2 Pseudo-Mugineic Acids 408
22 4 3 Related Amino Acids 411
22 5 Synthesesof Mugineic Acids 411
22 5 1 Syntheses of2 -Deoxymugineic Acid and AvenicAcidA 411
22 5 2 Synthesis of Mugineic Acid 412
22 6 Physiological Aspects of Mugineic Acid 412
22 6 1 Diurnal Variation in Mugineic Acid Secretion by Iron-Stressed Barley Roots - 412
22 6 2 Effects of Additional Iron(III) Ion on Fluctuation
in Daily Mugineic Acid Secretion in Barley 413
22 6 3 Effect of Mugineic Acid and Its Related Compounds on 59Fe-Uptake and
Synthesis of Chlorophyll in Rice Plants 414
22 7 MolecularStructureandPropertiesoftheMugineicAcid-Fe(III)Complex 415
22 7 1 Molecular Structure 415
22 7 2 Spectroscopic and Electrochemical Properties of the Mugineic Acid-Fe(III)
Complex : 417
22 7 3 Potentiometric Titration 420
22 8 Solution Structures of Mugineic Acid and Its Metal Complexes 420
22 9 Inhibition Mechanism of the Iron-Solubilizing Action by the Presence of
Divalent Metals 422
22 10 Probable Mechanism for Iron-Transport in Gramineous Plants 423
References 424
Contents XVII
Part IV Iron Transport in Animals
23 Iron Bioavailability 429
Manju B Reddy, Mankulathu V Chidambaram, and George W Bates
23 1 Prevalence, Causes and Effects of Iron Deficiency 429
23 2 Iron Absorption: Physiological Factors 430
23 3 Iron Absorption: Dietary Factors 431
23 4 In vitro Studies of Food Iron Bioavailability 432
23 5 Recent Observations on the in vitro Digestive Chemistry of Pinto Bean Iron 435
23 5 1 Methodological Aspects 435
23 5 2 Results 435
23 5 3 Conclusions 442
References 443
24 Ferritin and Bacterioferritin: Iron Sequestering Molecules
from Man to Microbe 445
PaulineM Harrison, Simon C Andrews, Geoffrey C Ford, John M A Smith,
Amyra Treffry, and Janice L White
24 1 Introduction 445
24 2 Iron-Cores in Ferritins and Bacterioferritins: Composition, Crystallinity,
and Mossbauer Spectra 445
24 3 Haemosiderin in Vertebrates and Invertebrates 450
24 4 Three-Dimensional Structure of Apoferritin from Horse Spleen 452
24 5 Species Variation and Subunit Heterogeneity within Ferritins 456
24 5 1 Primary Structures of Mammalian and Amphibian Ferritins 456
24 5 2 Subunit Heterogeneity in Other Ferritins 459
24 5 3 Functional Significance of Subunit Heterogeneity 460
24 5 4 In vitro Iron Uptake Studies Relating to Heterogeneity 460
24 5 5 Heterogeneity Due to Post-Translational Effects 460
24 6 Molecular Mechanisms of Iron Sequestration by Ferritin 464
24 6 1 Role ofthe Protein 464
24 6 2 Location of Possible Fe(III) Ligands 465
24 6 3 Iron Entry into Ferritin Molecules 467
24 7 Bacterioferritins 469
24 7 1 The Structure of the Haemoprotein of Bacterioferritins 469
24 7 2 Functional Properties of Bacterioferritin • 471
24 8 Mobilization of Ferritin Iron 471
24 9 Future Prospects 472
References t 473
XVIII Contents
/
25 The Role of Iron Binding Proteins in Bacterial Infections 477
Guenther Sawatzki
25 1 The Decrease ofPlasma Iron in Infection 477
25 2 The Role of Iron-Saturation of Transferrin in Infection 477
25 3 Growth Inhibition of Microorganisms by Iron-Binding Proteins 479
25 4 Iron-Overload is a Risk Factor for Bacterial Infection 479
25 5 Lactoferrin, an Iron-Binding Protein Localized at Sites of Microbial Invasion 480
25 6 Lactoferrin in NeutrophilGranulocytes 480
25 7 Plasma Lactoferrin Levels after Bacterial Infection or LPS Challenge in vivo 481
25 8 The Role of Lactoferrin in Plasma Iron Decrease 482
25 9 Lactoferrin Can Capture Iron from Plasma Transferrin 483
25 10 The Course of Lactoferrin and Iron in Infection 485
25 11 The Cooperation of Iron, Transferrin, and Lactoferrin in Infection 487
References 488
26 The Storage and Transport of Iron in Animal Cells 491
Elizabeth C Theil and Philip A isen
26 1 Introduction 491
26 2 Macromolecules of Iron Metabolism: Structure 491
26 2 1 Transferrin 491
26 2 2 The Transferrin Receptor 492
26 221 Occurrence 492
26 222 Structure 493
26 2 3 Ferritin 494
26 231 The Outer, Apoferritin Coat 494
26 232 The Iron/Protein Interface 495
26 233 The Inner, Iron Core and Hemosiderin 495
26 2 4 Ferritin Receptors 496
26 3 Macromolecules of Iron Metabolism: Synthesis 496
26 3 1 Transferrin -• 496
26 3 2 The Transferrin Receptor: Synthesis and Regulation 497
26 3 3 Ferritin 498
26 331 Apoferritin Synthesis 498
26 332 Formation ofthe Iron Core 499
26 4 Cellular Iron Metabolism 500
26 4 1 Iron Uptake 500
26 411 Introduction 500
26 412 Iron Uptake by Erythroid Cells 1 501
26 413 Transferrin Receptors and Iron Uptake in Non-Erythroid Cells 504
26 414 Alternative Views of Receptor-Transferrin Interactions 504
26 415 Are Transferrin and Its Receptor Essential for Physiological Uptake? 505
26 416 The Fate of the Transferrin Receptor 506
26 417 Acquisition of Iron from Sources Other than Transferrin 507
26 418 Other Routes for the Utilization ofTransferrin-Bound Iron by Cells 508
Contents XIX
26 4 2 Storage 508
26 421 Incorporation of Iron into Ferritin 509
26 422 ReleaseoflronfromFerritin 510
26 423 Advantages in Variable Rates of Storage Iron Turnover 511
26 4 3 Release of Iron from Cells 512
26 431 Iron Release by Hepatocytes 512
26 432 Iron Release by Reticuloendothelial Cells 513
26 5 Summary and Perspective 514
References 515
Index 521
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV000757937 |
callnumber-first | Q - Science |
callnumber-label | QR92 |
callnumber-raw | QR92.I7 |
callnumber-search | QR92.I7 |
callnumber-sort | QR 292 I7 |
callnumber-subject | QR - Microbiology |
classification_rvk | WD 4750 WE 5400 |
classification_tum | CHE 815f CHE 376f |
ctrlnum | (OCoLC)230905562 (DE-599)BVBBV000757937 |
dewey-full | 574.1/33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 574 - [Unassigned] |
dewey-raw | 574.1/33 |
dewey-search | 574.1/33 |
dewey-sort | 3574.1 233 |
dewey-tens | 570 - Biology |
discipline | Biologie Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02103nam a2200577 c 4500</leader><controlfield tag="001">BV000757937</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20011122 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">880614s1987 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527266852</subfield><subfield code="9">3-527-26685-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0895736497</subfield><subfield code="9">0-89573-649-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)230905562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000757937</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR92.I7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">574.1/33</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 4750</subfield><subfield code="0">(DE-625)148182:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 5400</subfield><subfield code="0">(DE-625)148308:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 815f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 376f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iron transport in microbes, plants and animals</subfield><subfield code="c">ed. by Günther Winkelmann ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim [u.a.]</subfield><subfield code="b">VCH</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 533 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological Transport</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological transport</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron</subfield><subfield code="x">Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron</subfield><subfield code="x">metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plants</subfield><subfield code="x">Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plants</subfield><subfield code="x">metabolism</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eisen</subfield><subfield code="0">(DE-588)4014002-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stofftransport</subfield><subfield code="g">Biologie</subfield><subfield code="0">(DE-588)4443397-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eisen</subfield><subfield code="0">(DE-588)4014002-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stofftransport</subfield><subfield code="g">Biologie</subfield><subfield code="0">(DE-588)4443397-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Physiologie</subfield><subfield code="0">(DE-588)4045981-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Eisen</subfield><subfield code="0">(DE-588)4014002-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stofftransport</subfield><subfield code="g">Biologie</subfield><subfield code="0">(DE-588)4443397-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Winkelmann, Günther</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000474454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000474454</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV000757937 |
illustrated | Illustrated |
indexdate | 2024-07-09T15:18:59Z |
institution | BVB |
isbn | 3527266852 0895736497 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000474454 |
oclc_num | 230905562 |
open_access_boolean | |
owner | DE-12 DE-M49 DE-BY-TUM DE-210 DE-83 DE-11 DE-188 |
owner_facet | DE-12 DE-M49 DE-BY-TUM DE-210 DE-83 DE-11 DE-188 |
physical | XXIV, 533 S. Ill. |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | VCH |
record_format | marc |
spelling | Iron transport in microbes, plants and animals ed. by Günther Winkelmann ... Weinheim [u.a.] VCH 1987 XXIV, 533 S. Ill. txt rdacontent n rdamedia nc rdacarrier Biological Transport Biological transport Iron Metabolism Iron metabolism Microbial metabolism Microbiology Plants Metabolism Plants metabolism Eisen (DE-588)4014002-7 gnd rswk-swf Stofftransport Biologie (DE-588)4443397-9 gnd rswk-swf Physiologie (DE-588)4045981-0 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Eisen (DE-588)4014002-7 s Stofftransport Biologie (DE-588)4443397-9 s Physiologie (DE-588)4045981-0 s DE-604 Winkelmann, Günther Sonstige oth HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000474454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Iron transport in microbes, plants and animals Biological Transport Biological transport Iron Metabolism Iron metabolism Microbial metabolism Microbiology Plants Metabolism Plants metabolism Eisen (DE-588)4014002-7 gnd Stofftransport Biologie (DE-588)4443397-9 gnd Physiologie (DE-588)4045981-0 gnd |
subject_GND | (DE-588)4014002-7 (DE-588)4443397-9 (DE-588)4045981-0 (DE-588)4143413-4 |
title | Iron transport in microbes, plants and animals |
title_auth | Iron transport in microbes, plants and animals |
title_exact_search | Iron transport in microbes, plants and animals |
title_full | Iron transport in microbes, plants and animals ed. by Günther Winkelmann ... |
title_fullStr | Iron transport in microbes, plants and animals ed. by Günther Winkelmann ... |
title_full_unstemmed | Iron transport in microbes, plants and animals ed. by Günther Winkelmann ... |
title_short | Iron transport in microbes, plants and animals |
title_sort | iron transport in microbes plants and animals |
topic | Biological Transport Biological transport Iron Metabolism Iron metabolism Microbial metabolism Microbiology Plants Metabolism Plants metabolism Eisen (DE-588)4014002-7 gnd Stofftransport Biologie (DE-588)4443397-9 gnd Physiologie (DE-588)4045981-0 gnd |
topic_facet | Biological Transport Biological transport Iron Metabolism Iron metabolism Microbial metabolism Microbiology Plants Metabolism Plants metabolism Eisen Stofftransport Biologie Physiologie Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000474454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT winkelmanngunther irontransportinmicrobesplantsandanimals |