Rational homotopy type: a constructive study via the theory of the I*-measure
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo
Springer
1987
|
Schriftenreihe: | Lecture notes in mathematics
1264 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 219 Seiten |
ISBN: | 3540136118 0387136118 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000737032 | ||
003 | DE-604 | ||
005 | 20201124 | ||
007 | t | ||
008 | 880504s1987 |||| 00||| eng d | ||
020 | |a 3540136118 |9 3-540-13611-8 | ||
020 | |a 0387136118 |9 0-387-13611-8 | ||
035 | |a (OCoLC)230893090 | ||
035 | |a (DE-599)BVBBV000737032 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-706 |a DE-19 |a DE-634 |a DE-11 |a DE-188 |a DE-83 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 510 |2 19 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 55P62 |2 msc | ||
084 | |a MAT 285f |2 stub | ||
084 | |a MAT 553f |2 stub | ||
100 | 1 | |a Wu, Wenjun |d 1919-2017 |0 (DE-588)111549116 |4 aut | |
245 | 1 | 0 | |a Rational homotopy type |b a constructive study via the theory of the I*-measure |c Wu Wen-tsün |
264 | 1 | |a Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo |b Springer |c 1987 | |
300 | |a VIII, 219 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1264 | |
650 | 4 | |a Differential algebra | |
650 | 4 | |a Homotopy theory | |
650 | 4 | |a Measure theory | |
650 | 0 | 7 | |a Differentialform |0 (DE-588)4149772-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopie |0 (DE-588)4025803-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graduierte Algebra |0 (DE-588)4304029-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialalgebra |0 (DE-588)4134657-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homotopie |0 (DE-588)4025803-8 |D s |
689 | 0 | 1 | |a Differentialform |0 (DE-588)4149772-7 |D s |
689 | 0 | 2 | |a Graduierte Algebra |0 (DE-588)4304029-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialalgebra |0 (DE-588)4134657-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 1264 |w (DE-604)BV000676446 |9 1264 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000461387&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1805071482814988288 |
---|---|
adam_text |
CONTENTS
Preface III
Chapter I Fundamental Concepts — Measure and Calculability . 1
1. The Notion of Measure 1
2. Examples in Measures with Applications 4
3. Adequacy of Measures 12
4. Geometrical Category of Homotopic -Simplicial Spaces 18
Chapter II DGA and Minimal Model 20
1. Notion of DGA and its Homology 20
2. DGA-Morphisms and Homotopy of DGA's 24
3. Minimal Model of a DGA-Existence 29
4. Minimal Model of a DGA—Uniqueness 34
5. Induced Morphisms of Minimal DGA's . 41
6. Some Auxiliary Theorems about Twisted Products 50
*
Chapter III The DeRham -Sullivan Theorem and I -Measure 58
1. The DeRham -Sullivan Algebra of a Simplicial Complex and the deRham-
Sullivan Theorem 58
2. The Weil DGA of a Complex 60
3. Proof of the deRham-Sullivan Theorem 66
4. Integration and Duality 78
5. Homotopy Invariance and Calculability of I -Measure 87
Chapter IV I -Measure and Homotopy 93
1. The Cartan -Serre Extension of a DGA and the Hurewicz Number . 93
2. The Cartan -Serre Extension of a Space 96
3. The Cartan -Serre Tower of a Space and the Hurewicz Homomorphism . . 101
4. Whitehead Products of Homotopy Groups 106
Chapter V I -Measure of a Homogeneous Space - The Cartan Theorem 116
1. DGA of Left-Invariant Forms on a Lie Group 116
2. Homogeneous Space and Invariant Forms — Method of E. Cartan . 123
3. The Weil Algebra 127
4. The Cartan Algebra and the Theorem of Cartan 135
Chapter VI Effective Computation and Axiomatic System of I -Measure . 143
1. An Extension Theorem . . 143
2. Union of Complexes along a Subcomplex 148
3. Some Particular Cases - Cone-Construction and Suspension 155
4. Effective Computation and Axiomatic System of I*-Measure * 161
5. Some Applications to Fibrations - Fiber Space Theorem 165
6. Some Applications to Fibrations - Transgression and a Theorem of Bo-
rel-Hirsch 173
Chapter VII I -Measures Connected with 'Fibrations 178
1. Some Algebraic Preparations 178
2. Simplicial Fibration and some Spectral Sequences 184
3. Fiber-Square Constructions and Fiber-Square Theorem for I -Measures 191
4. Proof of the Fiber-Square Theorem 197
5. Fiber-Space Theorem and other Applications 202
Bibliography 214
Index 218 |
any_adam_object | 1 |
author | Wu, Wenjun 1919-2017 |
author_GND | (DE-588)111549116 |
author_facet | Wu, Wenjun 1919-2017 |
author_role | aut |
author_sort | Wu, Wenjun 1919-2017 |
author_variant | w w ww |
building | Verbundindex |
bvnumber | BV000737032 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
classification_tum | MAT 285f MAT 553f |
ctrlnum | (OCoLC)230893090 (DE-599)BVBBV000737032 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV000737032</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201124</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">880504s1987 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540136118</subfield><subfield code="9">3-540-13611-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387136118</subfield><subfield code="9">0-387-13611-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)230893090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000737032</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55P62</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 285f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 553f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Wenjun</subfield><subfield code="d">1919-2017</subfield><subfield code="0">(DE-588)111549116</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rational homotopy type</subfield><subfield code="b">a constructive study via the theory of the I*-measure</subfield><subfield code="c">Wu Wen-tsün</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo</subfield><subfield code="b">Springer</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 219 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1264</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graduierte Algebra</subfield><subfield code="0">(DE-588)4304029-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialalgebra</subfield><subfield code="0">(DE-588)4134657-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Graduierte Algebra</subfield><subfield code="0">(DE-588)4304029-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialalgebra</subfield><subfield code="0">(DE-588)4134657-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1264</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1264</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000461387&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV000737032 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T04:38:31Z |
institution | BVB |
isbn | 3540136118 0387136118 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000461387 |
oclc_num | 230893090 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-706 DE-19 DE-BY-UBM DE-634 DE-11 DE-188 DE-83 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-706 DE-19 DE-BY-UBM DE-634 DE-11 DE-188 DE-83 |
physical | VIII, 219 Seiten |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Wu, Wenjun 1919-2017 (DE-588)111549116 aut Rational homotopy type a constructive study via the theory of the I*-measure Wu Wen-tsün Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo Springer 1987 VIII, 219 Seiten txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1264 Differential algebra Homotopy theory Measure theory Differentialform (DE-588)4149772-7 gnd rswk-swf Homotopie (DE-588)4025803-8 gnd rswk-swf Graduierte Algebra (DE-588)4304029-9 gnd rswk-swf Differentialalgebra (DE-588)4134657-9 gnd rswk-swf Homotopie (DE-588)4025803-8 s Differentialform (DE-588)4149772-7 s Graduierte Algebra (DE-588)4304029-9 s 1\p DE-604 Differentialalgebra (DE-588)4134657-9 s 2\p DE-604 Lecture notes in mathematics 1264 (DE-604)BV000676446 1264 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000461387&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wu, Wenjun 1919-2017 Rational homotopy type a constructive study via the theory of the I*-measure Lecture notes in mathematics Differential algebra Homotopy theory Measure theory Differentialform (DE-588)4149772-7 gnd Homotopie (DE-588)4025803-8 gnd Graduierte Algebra (DE-588)4304029-9 gnd Differentialalgebra (DE-588)4134657-9 gnd |
subject_GND | (DE-588)4149772-7 (DE-588)4025803-8 (DE-588)4304029-9 (DE-588)4134657-9 |
title | Rational homotopy type a constructive study via the theory of the I*-measure |
title_auth | Rational homotopy type a constructive study via the theory of the I*-measure |
title_exact_search | Rational homotopy type a constructive study via the theory of the I*-measure |
title_full | Rational homotopy type a constructive study via the theory of the I*-measure Wu Wen-tsün |
title_fullStr | Rational homotopy type a constructive study via the theory of the I*-measure Wu Wen-tsün |
title_full_unstemmed | Rational homotopy type a constructive study via the theory of the I*-measure Wu Wen-tsün |
title_short | Rational homotopy type |
title_sort | rational homotopy type a constructive study via the theory of the i measure |
title_sub | a constructive study via the theory of the I*-measure |
topic | Differential algebra Homotopy theory Measure theory Differentialform (DE-588)4149772-7 gnd Homotopie (DE-588)4025803-8 gnd Graduierte Algebra (DE-588)4304029-9 gnd Differentialalgebra (DE-588)4134657-9 gnd |
topic_facet | Differential algebra Homotopy theory Measure theory Differentialform Homotopie Graduierte Algebra Differentialalgebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000461387&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT wuwenjun rationalhomotopytypeaconstructivestudyviathetheoryoftheimeasure |