A cutting plane algorithm for the linear ordering problem:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Augsburg
1983
|
Schriftenreihe: | Mathematisches Institut <Augsburg>: Prepint
8 |
Beschreibung: | 38 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000438012 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 870612s1983 |||| 00||| ger d | ||
035 | |a (OCoLC)46036860 | ||
035 | |a (DE-599)BVBBV000438012 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
049 | |a DE-12 | ||
084 | |a SI 910 |0 (DE-625)143212: |2 rvk | ||
100 | 1 | |a Grötschel, Martin |d 1948- |e Verfasser |0 (DE-588)108975282 |4 aut | |
245 | 1 | 0 | |a A cutting plane algorithm for the linear ordering problem |c by M. Grötschel ; M. Jünger ; G. Reinelt |
264 | 1 | |a Augsburg |c 1983 | |
300 | |a 38 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematisches Institut <Augsburg>: Prepint |v 8 | |
830 | 0 | |a Mathematisches Institut <Augsburg>: Prepint |v 8 |w (DE-604)BV000015847 |9 8 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-000271316 |
Datensatz im Suchindex
_version_ | 1804114898331893760 |
---|---|
any_adam_object | |
author | Grötschel, Martin 1948- |
author_GND | (DE-588)108975282 |
author_facet | Grötschel, Martin 1948- |
author_role | aut |
author_sort | Grötschel, Martin 1948- |
author_variant | m g mg |
building | Verbundindex |
bvnumber | BV000438012 |
classification_rvk | SI 910 |
ctrlnum | (OCoLC)46036860 (DE-599)BVBBV000438012 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00905nam a2200277 cb4500</leader><controlfield tag="001">BV000438012</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">870612s1983 |||| 00||| ger d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)46036860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000438012</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 910</subfield><subfield code="0">(DE-625)143212:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grötschel, Martin</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108975282</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A cutting plane algorithm for the linear ordering problem</subfield><subfield code="c">by M. Grötschel ; M. Jünger ; G. Reinelt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Augsburg</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">38 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematisches Institut <Augsburg>: Prepint</subfield><subfield code="v">8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematisches Institut <Augsburg>: Prepint</subfield><subfield code="v">8</subfield><subfield code="w">(DE-604)BV000015847</subfield><subfield code="9">8</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000271316</subfield></datafield></record></collection> |
id | DE-604.BV000438012 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:14:02Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000271316 |
oclc_num | 46036860 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | 38 S. |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
record_format | marc |
series | Mathematisches Institut <Augsburg>: Prepint |
series2 | Mathematisches Institut <Augsburg>: Prepint |
spelling | Grötschel, Martin 1948- Verfasser (DE-588)108975282 aut A cutting plane algorithm for the linear ordering problem by M. Grötschel ; M. Jünger ; G. Reinelt Augsburg 1983 38 S. txt rdacontent n rdamedia nc rdacarrier Mathematisches Institut <Augsburg>: Prepint 8 Mathematisches Institut <Augsburg>: Prepint 8 (DE-604)BV000015847 8 |
spellingShingle | Grötschel, Martin 1948- A cutting plane algorithm for the linear ordering problem Mathematisches Institut <Augsburg>: Prepint |
title | A cutting plane algorithm for the linear ordering problem |
title_auth | A cutting plane algorithm for the linear ordering problem |
title_exact_search | A cutting plane algorithm for the linear ordering problem |
title_full | A cutting plane algorithm for the linear ordering problem by M. Grötschel ; M. Jünger ; G. Reinelt |
title_fullStr | A cutting plane algorithm for the linear ordering problem by M. Grötschel ; M. Jünger ; G. Reinelt |
title_full_unstemmed | A cutting plane algorithm for the linear ordering problem by M. Grötschel ; M. Jünger ; G. Reinelt |
title_short | A cutting plane algorithm for the linear ordering problem |
title_sort | a cutting plane algorithm for the linear ordering problem |
volume_link | (DE-604)BV000015847 |
work_keys_str_mv | AT grotschelmartin acuttingplanealgorithmforthelinearorderingproblem |