Representation of rings over skew fields:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, [u.a.]
Cambridge University Press
1985
|
Ausgabe: | 1. publication |
Schriftenreihe: | London Mathematical Society: London Mathematical Society Lecture Note Series
92 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xii, 223 Seiten |
ISBN: | 0521278538 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000380954 | ||
003 | DE-604 | ||
005 | 20240829 | ||
007 | t | ||
008 | 870612s1985 |||| 00||| eng d | ||
020 | |a 0521278538 |9 0-521-27853-8 | ||
035 | |a (OCoLC)11469962 | ||
035 | |a (DE-599)BVBBV000380954 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-824 |a DE-703 |a DE-739 |a DE-355 |a DE-29T |a DE-83 |a DE-11 |a DE-188 |a DE-19 | ||
050 | 0 | |a QA251.3 | |
082 | 0 | |a 512/.4 |2 19 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a ELT 540d |2 stub | ||
084 | |a 16A48 |2 msc/1980 | ||
100 | 1 | |a Schofield, Aidan H. |4 aut | |
245 | 1 | 0 | |a Representation of rings over skew fields |c A. H. Schofield |
264 | 1 | |a Cambridge, [u.a.] |b Cambridge University Press |c 1985 | |
300 | |a xii, 223 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society: London Mathematical Society Lecture Note Series |v 92 | |
650 | 7 | |a Anneaux commutatifs |2 ram | |
650 | 7 | |a Corps gauches |2 ram | |
650 | 4 | |a Commutative rings | |
650 | 4 | |a Representations of rings (Algebra) | |
650 | 4 | |a Skew fields | |
650 | 0 | 7 | |a Artinscher Ring |0 (DE-588)4202669-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ringtheorie |0 (DE-588)4126571-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schiefkörper |0 (DE-588)4052359-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Artinscher Ring |0 (DE-588)4202669-6 |D s |
689 | 0 | 1 | |a Schiefkörper |0 (DE-588)4052359-7 |D s |
689 | 0 | 2 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Schiefkörper |0 (DE-588)4052359-7 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | 2 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Ringtheorie |0 (DE-588)4126571-3 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a London Mathematical Society: London Mathematical Society Lecture Note Series |v 92 |w (DE-604)BV000000130 |9 92 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000236151&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-000236151 |
Datensatz im Suchindex
_version_ | 1808769719509975040 |
---|---|
adam_text |
CONTENTS
Preface vii
Part I: Homomorphisms to simple artinian rings
1 Hereditary rings and projective rank functions 3
2 The coproduct theorems 22
3 Projective rank functions on ring coproducts 41
4 Universal localisation 50
5 Universal homomorphisms from hereditary to simple
artinian rings 68
6 Homomorphisms from hereditary to von Neumann
regular rings 89
7 Homomorphisms from rings to simple artinian rings 94
Part II: Skew subfields of simple artinian coproducts
8 The centre of the simple artinian coproduct 137
9 Finite dimensional divisions subalgebras of skew field
coproducts 143
10 The universal bimodule of derivations 166
11 Commutative subfields and centralisers in skew held
coproducts 178
12 Characterising universal localisations at a rank
function 185
13 Bimodule amalgam rings and Artin's problem 196
References 219
Index 224 |
any_adam_object | 1 |
author | Schofield, Aidan H. |
author_facet | Schofield, Aidan H. |
author_role | aut |
author_sort | Schofield, Aidan H. |
author_variant | a h s ah ahs |
building | Verbundindex |
bvnumber | BV000380954 |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.3 |
callnumber-search | QA251.3 |
callnumber-sort | QA 3251.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 230 SK 260 |
classification_tum | ELT 540d |
ctrlnum | (OCoLC)11469962 (DE-599)BVBBV000380954 |
dewey-full | 512/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.4 |
dewey-search | 512/.4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Elektrotechnik Mathematik |
edition | 1. publication |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV000380954</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240829</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">870612s1985 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521278538</subfield><subfield code="9">0-521-27853-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)11469962</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000380954</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 540d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16A48</subfield><subfield code="2">msc/1980</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schofield, Aidan H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation of rings over skew fields</subfield><subfield code="c">A. H. Schofield</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, [u.a.]</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 223 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society: London Mathematical Society Lecture Note Series</subfield><subfield code="v">92</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anneaux commutatifs</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corps gauches</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of rings (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skew fields</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Artinscher Ring</subfield><subfield code="0">(DE-588)4202669-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Artinscher Ring</subfield><subfield code="0">(DE-588)4202669-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society: London Mathematical Society Lecture Note Series</subfield><subfield code="v">92</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">92</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000236151&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000236151</subfield></datafield></record></collection> |
id | DE-604.BV000380954 |
illustrated | Not Illustrated |
indexdate | 2024-08-30T00:20:25Z |
institution | BVB |
isbn | 0521278538 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000236151 |
oclc_num | 11469962 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-824 DE-703 DE-739 DE-355 DE-BY-UBR DE-29T DE-83 DE-11 DE-188 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-824 DE-703 DE-739 DE-355 DE-BY-UBR DE-29T DE-83 DE-11 DE-188 DE-19 DE-BY-UBM |
physical | xii, 223 Seiten |
psigel | TUB-nveb |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press |
record_format | marc |
series | London Mathematical Society: London Mathematical Society Lecture Note Series |
series2 | London Mathematical Society: London Mathematical Society Lecture Note Series |
spelling | Schofield, Aidan H. aut Representation of rings over skew fields A. H. Schofield Cambridge, [u.a.] Cambridge University Press 1985 xii, 223 Seiten txt rdacontent n rdamedia nc rdacarrier London Mathematical Society: London Mathematical Society Lecture Note Series 92 Anneaux commutatifs ram Corps gauches ram Commutative rings Representations of rings (Algebra) Skew fields Artinscher Ring (DE-588)4202669-6 gnd rswk-swf Ringtheorie (DE-588)4126571-3 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 gnd rswk-swf Schiefkörper (DE-588)4052359-7 gnd rswk-swf Artinscher Ring (DE-588)4202669-6 s Schiefkörper (DE-588)4052359-7 s Darstellungstheorie (DE-588)4148816-7 s DE-604 Ring Mathematik (DE-588)4128084-2 s Ringtheorie (DE-588)4126571-3 s London Mathematical Society: London Mathematical Society Lecture Note Series 92 (DE-604)BV000000130 92 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000236151&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Schofield, Aidan H. Representation of rings over skew fields London Mathematical Society: London Mathematical Society Lecture Note Series Anneaux commutatifs ram Corps gauches ram Commutative rings Representations of rings (Algebra) Skew fields Artinscher Ring (DE-588)4202669-6 gnd Ringtheorie (DE-588)4126571-3 gnd Darstellungstheorie (DE-588)4148816-7 gnd Ring Mathematik (DE-588)4128084-2 gnd Schiefkörper (DE-588)4052359-7 gnd |
subject_GND | (DE-588)4202669-6 (DE-588)4126571-3 (DE-588)4148816-7 (DE-588)4128084-2 (DE-588)4052359-7 |
title | Representation of rings over skew fields |
title_auth | Representation of rings over skew fields |
title_exact_search | Representation of rings over skew fields |
title_full | Representation of rings over skew fields A. H. Schofield |
title_fullStr | Representation of rings over skew fields A. H. Schofield |
title_full_unstemmed | Representation of rings over skew fields A. H. Schofield |
title_short | Representation of rings over skew fields |
title_sort | representation of rings over skew fields |
topic | Anneaux commutatifs ram Corps gauches ram Commutative rings Representations of rings (Algebra) Skew fields Artinscher Ring (DE-588)4202669-6 gnd Ringtheorie (DE-588)4126571-3 gnd Darstellungstheorie (DE-588)4148816-7 gnd Ring Mathematik (DE-588)4128084-2 gnd Schiefkörper (DE-588)4052359-7 gnd |
topic_facet | Anneaux commutatifs Corps gauches Commutative rings Representations of rings (Algebra) Skew fields Artinscher Ring Ringtheorie Darstellungstheorie Ring Mathematik Schiefkörper |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000236151&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000130 |
work_keys_str_mv | AT schofieldaidanh representationofringsoverskewfields |