Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Essen
1984
|
Schriftenreihe: | Universität <Essen> / Fachbereich Mathematik: Vorlesungen aus dem Fachbereich Mathematik der Universität Essen
11 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 148 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000302437 | ||
003 | DE-604 | ||
005 | 19980226 | ||
007 | t | ||
008 | 870612s1984 |||| 00||| eng d | ||
035 | |a (OCoLC)12690370 | ||
035 | |a (DE-599)BVBBV000302437 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-703 |a DE-355 |a DE-824 |a DE-91G | ||
050 | 0 | |a QA171 | |
084 | |a SI 713 |0 (DE-625)143180: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a MAT 225f |2 stub | ||
084 | |a MAT 203f |2 stub | ||
100 | 1 | |a Deriziōtēs, D. I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type |c D. I. Deriziotis |
264 | 1 | |a Essen |c 1984 | |
300 | |a 148 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Universität <Essen> / Fachbereich Mathematik: Vorlesungen aus dem Fachbereich Mathematik der Universität Essen |v 11 | |
650 | 4 | |a Finite groups | |
650 | 4 | |a Lie groups | |
650 | 0 | 7 | |a Chevalley-Gruppe |0 (DE-588)4147651-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbeinfaches Element |0 (DE-588)4480132-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zentralisator |0 (DE-588)4190713-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konjugationsklasse |0 (DE-588)4500519-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konjugationsklasse |0 (DE-588)4500519-9 |D s |
689 | 0 | 1 | |a Chevalley-Gruppe |0 (DE-588)4147651-7 |D s |
689 | 0 | 2 | |a Halbeinfaches Element |0 (DE-588)4480132-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Chevalley-Gruppe |0 (DE-588)4147651-7 |D s |
689 | 1 | 1 | |a Halbeinfaches Element |0 (DE-588)4480132-4 |D s |
689 | 1 | 2 | |a Zentralisator |0 (DE-588)4190713-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 2 | 1 | |a Halbeinfaches Element |0 (DE-588)4480132-4 |D s |
689 | 2 | |5 DE-604 | |
810 | 2 | |a Fachbereich Mathematik: Vorlesungen aus dem Fachbereich Mathematik der Universität Essen |t Universität <Essen> |v 11 |w (DE-604)BV001899009 |9 11 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000184608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-000184608 |
Datensatz im Suchindex
_version_ | 1804114767148744704 |
---|---|
adam_text | Table of Contents Page
CHAPTER 1
1.1 Lie Algebras and Root Systems 1
1.2 The Chevaliey Groups 13
1.3 Basic Properties 17
1.4 The Chevalley Groups as Algebraic Groups 33
1.5 Semisimple Elements 41
1.6 The Classification of G^ 44
1.7 Tori in Ga 50
CHAPTER 2
2.1 The Affine Weyl Group 54
2.2 The p Rational Points in CQ 59
2.3 The Connected Centralizers of Semisimple 61
Elements in G
2.4 The Connected Centralizers of Semisimple 74
Elements in G
2.5 The Brauer Complex and its Application to 77
the Structure of G
a
TABLES
Table 1: The Structure and the Orders of Connected 128
Centralizers of Semisimple Elements
in 2E6(q2)
Table 2: The Structure ... in F4(q) 133
Table 3: The Structure ... in 2F4(22n+1) 137
Table 4: The Structure ... in G2(q) 138
Table 5: The Structure ... in 2G2(32n+1) 139
Table 6: The Structure ... in 2B2(22n+1) 139
Table 7: The Structure ... in 3D4(q3) 140
|
any_adam_object | 1 |
author | Deriziōtēs, D. I. |
author_facet | Deriziōtēs, D. I. |
author_role | aut |
author_sort | Deriziōtēs, D. I. |
author_variant | d i d di did |
building | Verbundindex |
bvnumber | BV000302437 |
callnumber-first | Q - Science |
callnumber-label | QA171 |
callnumber-raw | QA171 |
callnumber-search | QA171 |
callnumber-sort | QA 3171 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 713 SK 230 |
classification_tum | MAT 225f MAT 203f |
ctrlnum | (OCoLC)12690370 (DE-599)BVBBV000302437 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02357nam a2200565 cb4500</leader><controlfield tag="001">BV000302437</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980226 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">870612s1984 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)12690370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000302437</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA171</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 713</subfield><subfield code="0">(DE-625)143180:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 203f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deriziōtēs, D. I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type</subfield><subfield code="c">D. I. Deriziotis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Essen</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">148 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Universität <Essen> / Fachbereich Mathematik: Vorlesungen aus dem Fachbereich Mathematik der Universität Essen</subfield><subfield code="v">11</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chevalley-Gruppe</subfield><subfield code="0">(DE-588)4147651-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbeinfaches Element</subfield><subfield code="0">(DE-588)4480132-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zentralisator</subfield><subfield code="0">(DE-588)4190713-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konjugationsklasse</subfield><subfield code="0">(DE-588)4500519-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konjugationsklasse</subfield><subfield code="0">(DE-588)4500519-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chevalley-Gruppe</subfield><subfield code="0">(DE-588)4147651-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Halbeinfaches Element</subfield><subfield code="0">(DE-588)4480132-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chevalley-Gruppe</subfield><subfield code="0">(DE-588)4147651-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Halbeinfaches Element</subfield><subfield code="0">(DE-588)4480132-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Zentralisator</subfield><subfield code="0">(DE-588)4190713-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Halbeinfaches Element</subfield><subfield code="0">(DE-588)4480132-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Fachbereich Mathematik: Vorlesungen aus dem Fachbereich Mathematik der Universität Essen</subfield><subfield code="t">Universität <Essen></subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV001899009</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000184608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000184608</subfield></datafield></record></collection> |
id | DE-604.BV000302437 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:11:57Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000184608 |
oclc_num | 12690370 |
open_access_boolean | |
owner | DE-12 DE-384 DE-703 DE-355 DE-BY-UBR DE-824 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-384 DE-703 DE-355 DE-BY-UBR DE-824 DE-91G DE-BY-TUM |
physical | 148 S. |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
record_format | marc |
series2 | Universität <Essen> / Fachbereich Mathematik: Vorlesungen aus dem Fachbereich Mathematik der Universität Essen |
spelling | Deriziōtēs, D. I. Verfasser aut Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type D. I. Deriziotis Essen 1984 148 S. txt rdacontent n rdamedia nc rdacarrier Universität <Essen> / Fachbereich Mathematik: Vorlesungen aus dem Fachbereich Mathematik der Universität Essen 11 Finite groups Lie groups Chevalley-Gruppe (DE-588)4147651-7 gnd rswk-swf Halbeinfaches Element (DE-588)4480132-4 gnd rswk-swf Zentralisator (DE-588)4190713-9 gnd rswk-swf Konjugationsklasse (DE-588)4500519-9 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Konjugationsklasse (DE-588)4500519-9 s Chevalley-Gruppe (DE-588)4147651-7 s Halbeinfaches Element (DE-588)4480132-4 s DE-604 Zentralisator (DE-588)4190713-9 s Lie-Gruppe (DE-588)4035695-4 s Fachbereich Mathematik: Vorlesungen aus dem Fachbereich Mathematik der Universität Essen Universität <Essen> 11 (DE-604)BV001899009 11 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000184608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Deriziōtēs, D. I. Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type Finite groups Lie groups Chevalley-Gruppe (DE-588)4147651-7 gnd Halbeinfaches Element (DE-588)4480132-4 gnd Zentralisator (DE-588)4190713-9 gnd Konjugationsklasse (DE-588)4500519-9 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
subject_GND | (DE-588)4147651-7 (DE-588)4480132-4 (DE-588)4190713-9 (DE-588)4500519-9 (DE-588)4035695-4 |
title | Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type |
title_auth | Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type |
title_exact_search | Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type |
title_full | Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type D. I. Deriziotis |
title_fullStr | Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type D. I. Deriziotis |
title_full_unstemmed | Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type D. I. Deriziotis |
title_short | Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type |
title_sort | conjugacy classes and centralizers of semisimple elements in finite groups of lie type |
topic | Finite groups Lie groups Chevalley-Gruppe (DE-588)4147651-7 gnd Halbeinfaches Element (DE-588)4480132-4 gnd Zentralisator (DE-588)4190713-9 gnd Konjugationsklasse (DE-588)4500519-9 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
topic_facet | Finite groups Lie groups Chevalley-Gruppe Halbeinfaches Element Zentralisator Konjugationsklasse Lie-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000184608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001899009 |
work_keys_str_mv | AT deriziotesdi conjugacyclassesandcentralizersofsemisimpleelementsinfinitegroupsoflietype |