Global solutions of reaction-diffusion systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg ; New York ; Tokyo
Springer-Verlag
1984
|
Schriftenreihe: | Lecture notes in mathematics
1072 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | V, 216 Seiten |
ISBN: | 3540133658 0387133658 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000211598 | ||
003 | DE-604 | ||
005 | 20210120 | ||
007 | t | ||
008 | 870612s1984 |||| 00||| eng d | ||
020 | |a 3540133658 |9 3-540-13365-8 | ||
020 | |a 0387133658 |9 0-387-13365-8 | ||
035 | |a (OCoLC)10948372 | ||
035 | |a (DE-599)BVBBV000211598 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-19 |a DE-706 |a DE-634 |a DE-83 |a DE-188 |a DE-11 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 515.3/53 |2 19 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a MAT 356f |2 stub | ||
084 | |a BIO 105f |2 stub | ||
084 | |a 35K55 |2 msc | ||
084 | |a 92A40 |2 msc | ||
084 | |a 35Bxx |2 msc | ||
084 | |a 92A17 |2 msc | ||
084 | |a MAT 352f |2 stub | ||
100 | 1 | |a Rothe, Franz |d 1947- |0 (DE-588)1011909804 |4 aut | |
245 | 1 | 0 | |a Global solutions of reaction-diffusion systems |c Franz Rothe |
264 | 1 | |a Berlin ; Heidelberg ; New York ; Tokyo |b Springer-Verlag |c 1984 | |
300 | |a V, 216 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1072 | |
650 | 4 | |a Analyse globale (Mathématiques) | |
650 | 4 | |a Biomathématiques | |
650 | 4 | |a Équations aux dérivées partielles - Solutions numériques | |
650 | 4 | |a Équations différentielles paraboliques - Solutions numériques | |
650 | 7 | |a Équations différentielles paraboliques - Solutions numériques |2 ram | |
650 | 4 | |a Biomathematics | |
650 | 4 | |a Reaction-diffusion equations |x Numerical solutions | |
650 | 0 | 7 | |a Reaktions-Diffusionsgleichung |0 (DE-588)4323967-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Lösung |0 (DE-588)4264389-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reaktions-Diffusionsgleichung |0 (DE-588)4323967-5 |D s |
689 | 0 | 1 | |a Globale Lösung |0 (DE-588)4264389-2 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 1072 |w (DE-604)BV000676446 |9 1072 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000125097&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-000125097 |
Datensatz im Suchindex
_version_ | 1804114673818140672 |
---|---|
adam_text | Contents
Introduction 1
Part I Existence and A Priori Estimates for
Reaction Diffusion Equations 5
Basic Notations and Definitions 11
Theorem 1 (Existence of mild solutions) 32
Theorem 2 (Existence of mild solutions in the case of
minimal regularity of the initial data) 33
Corollary of Theorem 1 (Uniqueness and maximality) 54
Theorem 3 (Existence results exploiting a priori estimates) 57
Theorem 4 (Global existence and global a priori estimates) 67
Theorem 5 (Results on the behavior of the solution at a finite
maximal existence time, which are available without
global Lipschitz condition) . . 76
Theorem 6 (Global existence and uniform a priori estimates
in the case without global Lipschitz condition) 91
Theorem 7 (Stronger results for sublinear equations using
only weak primary a priori estimates) 102
Part II Some Examples of Reaction Diffusion Systems
Arising in Applications 104
Review of Standard Theorems 108
Theorem 1 (Existence of mild and classical solutions) 111
Theorem 2 (Construction of global solutions for
irregular initial data) 120
Theorem 3 (Comparison of solutions by the
strong maximum principle) 123
The Gierer Meinhardt Model 126
Theorem (Globally bounded solutions for
space dimension N = 1,2,3) 126
V
The Brusselator 1 40
Theorem 1 (Globally bounded solutions for
space dimension N = 1,2,3) 140
Theorem 2 (Global solution for space dimension N = 4) 146
The FitzHugh Nagumo System 148
Theorem 1 (Global solutions for arbitrary space dimension) 149
Theorem 2 (Sufficient conditions for decay of solutions
in space dimension N 3) 154
Chemical Reactions 157
Theorem 1 (Globally bounded solutions for
space dimension N 5) 157
Theorem 2 (Asymptotic behavior by means of entropy) 167
A Nuclear Reactor Model 172
Theorem (Boundedness and convergence to equilibrium) 173
The Volterra Lotka Model 188
Theorem 1 (Boundedness and convergence to equilibrium) 189
Theorem 2 (Degenerate cases with one nondiffusing species) 190
Theorem 3 (Boundedness and convergence to equilibrium for
some generalized Volterra Lotka systems) 207
References 211
Index 215
|
any_adam_object | 1 |
author | Rothe, Franz 1947- |
author_GND | (DE-588)1011909804 |
author_facet | Rothe, Franz 1947- |
author_role | aut |
author_sort | Rothe, Franz 1947- |
author_variant | f r fr |
building | Verbundindex |
bvnumber | BV000211598 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 SK 920 |
classification_tum | MAT 356f BIO 105f MAT 352f |
ctrlnum | (OCoLC)10948372 (DE-599)BVBBV000211598 |
dewey-full | 515.3/53 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.3/53 |
dewey-search | 515.3/53 |
dewey-sort | 3515.3 253 |
dewey-tens | 510 - Mathematics |
discipline | Biologie Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02305nam a2200577 cb4500</leader><controlfield tag="001">BV000211598</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">870612s1984 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540133658</subfield><subfield code="9">3-540-13365-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387133658</subfield><subfield code="9">0-387-13365-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)10948372</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000211598</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.3/53</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 356f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 105f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35K55</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">92A40</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Bxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">92A17</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 352f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rothe, Franz</subfield><subfield code="d">1947-</subfield><subfield code="0">(DE-588)1011909804</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global solutions of reaction-diffusion systems</subfield><subfield code="c">Franz Rothe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; Tokyo</subfield><subfield code="b">Springer-Verlag</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">V, 216 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1072</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse globale (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations aux dérivées partielles - Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles paraboliques - Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Équations différentielles paraboliques - Solutions numériques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction-diffusion equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Lösung</subfield><subfield code="0">(DE-588)4264389-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Globale Lösung</subfield><subfield code="0">(DE-588)4264389-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1072</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1072</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000125097&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000125097</subfield></datafield></record></collection> |
id | DE-604.BV000211598 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:10:28Z |
institution | BVB |
isbn | 3540133658 0387133658 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000125097 |
oclc_num | 10948372 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-188 DE-11 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-634 DE-83 DE-188 DE-11 |
physical | V, 216 Seiten |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Springer-Verlag |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Rothe, Franz 1947- (DE-588)1011909804 aut Global solutions of reaction-diffusion systems Franz Rothe Berlin ; Heidelberg ; New York ; Tokyo Springer-Verlag 1984 V, 216 Seiten txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1072 Analyse globale (Mathématiques) Biomathématiques Équations aux dérivées partielles - Solutions numériques Équations différentielles paraboliques - Solutions numériques Équations différentielles paraboliques - Solutions numériques ram Biomathematics Reaction-diffusion equations Numerical solutions Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd rswk-swf Globale Lösung (DE-588)4264389-2 gnd rswk-swf Reaktions-Diffusionsgleichung (DE-588)4323967-5 s Globale Lösung (DE-588)4264389-2 s DE-604 Lecture notes in mathematics 1072 (DE-604)BV000676446 1072 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000125097&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Rothe, Franz 1947- Global solutions of reaction-diffusion systems Lecture notes in mathematics Analyse globale (Mathématiques) Biomathématiques Équations aux dérivées partielles - Solutions numériques Équations différentielles paraboliques - Solutions numériques Équations différentielles paraboliques - Solutions numériques ram Biomathematics Reaction-diffusion equations Numerical solutions Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd Globale Lösung (DE-588)4264389-2 gnd |
subject_GND | (DE-588)4323967-5 (DE-588)4264389-2 |
title | Global solutions of reaction-diffusion systems |
title_auth | Global solutions of reaction-diffusion systems |
title_exact_search | Global solutions of reaction-diffusion systems |
title_full | Global solutions of reaction-diffusion systems Franz Rothe |
title_fullStr | Global solutions of reaction-diffusion systems Franz Rothe |
title_full_unstemmed | Global solutions of reaction-diffusion systems Franz Rothe |
title_short | Global solutions of reaction-diffusion systems |
title_sort | global solutions of reaction diffusion systems |
topic | Analyse globale (Mathématiques) Biomathématiques Équations aux dérivées partielles - Solutions numériques Équations différentielles paraboliques - Solutions numériques Équations différentielles paraboliques - Solutions numériques ram Biomathematics Reaction-diffusion equations Numerical solutions Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd Globale Lösung (DE-588)4264389-2 gnd |
topic_facet | Analyse globale (Mathématiques) Biomathématiques Équations aux dérivées partielles - Solutions numériques Équations différentielles paraboliques - Solutions numériques Biomathematics Reaction-diffusion equations Numerical solutions Reaktions-Diffusionsgleichung Globale Lösung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000125097&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT rothefranz globalsolutionsofreactiondiffusionsystems |