A classical introduction to modern number theory:
Gespeichert in:
Vorheriger Titel: | Ireland Elements of numbers theory XXXX 1972 |
---|---|
Hauptverfasser: | , |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
1982
|
Ausgabe: | Rev. and expanded version |
Schriftenreihe: | Graduate texts in mathematics
84 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Frühere Ausg. u.d.T.: Ireland, Kenneth: Elements of number theory |
Beschreibung: | XIII, 341 S. |
ISBN: | 0387906258 3540906258 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000030334 | ||
003 | DE-604 | ||
005 | 20090514 | ||
007 | t | ||
008 | 870612s1982 |||| 00||| eng d | ||
020 | |a 0387906258 |9 0-387-90625-8 | ||
020 | |a 3540906258 |9 3-540-90625-8 | ||
035 | |a (OCoLC)720953118 | ||
035 | |a (DE-599)BVBBV000030334 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-91G |a DE-29T |a DE-739 |a DE-355 |a DE-824 |a DE-20 |a DE-19 |a DE-188 | ||
050 | 0 | |a QA241 | |
082 | 0 | |a 512/.7 |2 19 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a MAT 100f |2 stub | ||
100 | 1 | |a Ireland, Kenneth |e Verfasser |4 aut | |
245 | 1 | 0 | |a A classical introduction to modern number theory |c Kenneth Ireland ; Michael Rosen |
250 | |a Rev. and expanded version | ||
264 | 1 | |a New York [u.a.] |b Springer |c 1982 | |
300 | |a XIII, 341 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 84 | |
500 | |a Frühere Ausg. u.d.T.: Ireland, Kenneth: Elements of number theory | ||
650 | 7 | |a Getaltheorie |2 gtt | |
650 | 4 | |a Nombres, Théorie des | |
650 | 7 | |a Nombres, théorie des |2 ram | |
650 | 4 | |a Number theory | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rosen, Michael Ira |d 1938-1954 |e Verfasser |0 (DE-588)123553970 |4 aut | |
780 | 0 | 0 | |i Früher u.d.T. |a Ireland |t Elements of numbers theory XXXX 1972 |
830 | 0 | |a Graduate texts in mathematics |v 84 |w (DE-604)BV000000067 |9 84 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000004359&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-000004359 |
Datensatz im Suchindex
_version_ | 1804114484797636608 |
---|---|
adam_text | Contents
CHAPTER 1
Unique Factorization 1
1 Unique Factorization in Z 1
2 Unique Factorization in k x~ 6
3 Unique Factorization in a Principal Ideal Domain 8
4 The Rings Z[Z] and Z[w] 12
CHAPTER 2
Applications of Unique Factorization 17
1 Infinitely Many Primes in Z 17
2 Some Arithmetic Functions 18
3 Y, 1/P Diverges 21
4 The Growth of %{x) 22
CHAPTER 3
Congruence 28
1 Elementary Observations 28
2 Congruence in Z 29
3 The Congruence ax = b(m) 31
4 The Chinese Remainder Theorem 34
ix
X Contents
CHAPTER 4
The Structure of U(Z/nZ) 39
1 Primitive Roots and the Group Structure of U(Z/nT) 39
2 nth Power Residues 45
CHAPTER 5
Quadratic Reciprocity 50
1 Quadratic Residues 50
2 Law of Quadratic Reciprocity 53
3 A Proof of the Law of Quadratic Reciprocity 58
CHAPTER 6
Quadratic Gauss Sums 66
1 Algebraic Numbers and Algebraic Integers 66
2 The Quadratic Character of 2 69
3 Quadratic Gauss Sums 70
4 The Sign of the Quadratic Gauss Sum 73
CHAPTER 7
Finite Fields 79
1 Basic Properties of Finite Fields 79
2 The Existence of Finite Fields 83
3 An Application to Quadratic Residues 85
CHAPTER 8
Gauss and Jacobi Sums 88
1 Multiplicative Characters 88
2 Gauss Sums 91
3 Jacobi Sums 92
4 The Equation x + f = 1 in Fp 97
5 More on Jacobi Sums 98
6 Applications 101
7 A General Theorem 102
CHAPTER 9
Cubic and Biquadratic Reciprocity 108
1 The Ring Z[w] 109
2 Residue Class Rings 111
3 Cubic Residue Character 112
Contents xi
4 Proof of the Law of Cubic Reciprocity 115
5 Another Proof of the Law of Cubic Reciprocity 117
6 The Cubic Character of 2 118
7 Biquadratic Reciprocity: Preliminaries 119
8 The Quartic Residue Symbol 121
9 The Law of Biquadratic Reciprocity 123
10 Rational Biquadratic Reciprocity 127
11 The Constructibility of Regular Polygons 130
12 Cubic Gauss Sums and the Problem of Kummer 131
CHAPTER 10
Equations over Finite Fields 138
1 Affine Space, Projective Space, and Polynomials 138
2 Chevalley s Theorem 143
3 Gauss and Jacobi Sums over Finite Fields 145
CHAPTER 11
The Zeta Function 151
1 The Zeta Function of a Projective Hypersurface 151
2 Trace and Norm in Finite Fields 158
3 The Rationality of the Zeta Function Associated to
aoxS + a,x7 + ••• + aBx™ 161
4 A Proof of the Hasse Davenport Relation 163
5 The Last Entry 166
CHAPTER 12
Algebraic Number Theory 172
1 Algebraic Preliminaries 172
2 Unique Factorization in Algebraic Number Fields 174
3 Ramification and Degree 181
CHAPTER 13
Quadratic and Cyclotomic Fields 188
1 Quadratic Number Fields 188
2 Cyclotomic Fields 193
3 Quadratic Reciprocity Revisited 199
xii Contents
CHAPTER 14
The Stickelberger Relation and the Eisenstein
Reciprocity Law 203
1 The Norm of an Ideal 203
2 The Power Residue Symbol 204
3 The Stickelberger Relation 207
4 The Proof of the Stickelberger Relation 209
5 The Proof of the Eisenstein Reciprocity Law 215
6 Three Applications 220
CHAPTER 15
Bernoulli Numbers 228
1 Bernoulli Numbers; Definitions and Applications 228
2 Congruences Involving Bernoulli Numbers 234
3 Herbrand s Theorem 241
CHAPTER 16
Dirichlet L functions 249
1 The Zeta Function 249
2 A Special Case 251
3 Dirichlet Characters 253
4 Dirichlet L functions 255
5 The Key Step 257
6 Evaluating L(s, x) at Negative Integers 261
CHAPTER 17
Diophantine Equations 269
1 Generalities and First Examples 269
2 The Method of Descent 271
3 Legendre s Theorem 272
4 Sophie Germain s Theorem 275
5 Pell s Equation 276
6 Sums of Two Squares 278
7 Sums of Four Squares 280
8 The Fermat Equation: Exponent 3 284
9 Cubic Curves with Infinitely Many Rational Points 287
10 The Equation y2 = x3 + k 288
11 The First Case of Fermat s Conjecture for Regular Exponent 290
12 Diophantine Equations and Diophantine Approximation 292
Contents xiii
CHAPTER 18
Elliptic Curves 297
1 Generalities 297
2 Local and Global Zeta Functions of an Elliptic Curve 301
3 y2 = x3 + D, the Local Case 304
4 y2 = x3 Dx, the Local Case 306
5 Hecke / functions 307
6 y1 = x3 Dx, the Global Case 310
1 f = x3 + D, the Global Case 312
8 Final Remarks 314
Selected Hints for the Exercises 319
Bibliography 327
Index 337
|
any_adam_object | 1 |
author | Ireland, Kenneth Rosen, Michael Ira 1938-1954 |
author_GND | (DE-588)123553970 |
author_facet | Ireland, Kenneth Rosen, Michael Ira 1938-1954 |
author_role | aut aut |
author_sort | Ireland, Kenneth |
author_variant | k i ki m i r mi mir |
building | Verbundindex |
bvnumber | BV000030334 |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
classification_tum | MAT 100f |
ctrlnum | (OCoLC)720953118 (DE-599)BVBBV000030334 |
dewey-full | 512/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.7 |
dewey-search | 512/.7 |
dewey-sort | 3512 17 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Rev. and expanded version |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01964nam a2200493 cb4500</leader><controlfield tag="001">BV000030334</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090514 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">870612s1982 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387906258</subfield><subfield code="9">0-387-90625-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540906258</subfield><subfield code="9">3-540-90625-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)720953118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000030334</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.7</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 100f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ireland, Kenneth</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A classical introduction to modern number theory</subfield><subfield code="c">Kenneth Ireland ; Michael Rosen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Rev. and expanded version</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 341 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">84</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Frühere Ausg. u.d.T.: Ireland, Kenneth: Elements of number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Getaltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nombres, théorie des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosen, Michael Ira</subfield><subfield code="d">1938-1954</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123553970</subfield><subfield code="4">aut</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Früher u.d.T.</subfield><subfield code="a">Ireland</subfield><subfield code="t">Elements of numbers theory XXXX 1972</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">84</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">84</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000004359&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-000004359</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV000030334 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:07:27Z |
institution | BVB |
isbn | 0387906258 3540906258 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000004359 |
oclc_num | 720953118 |
open_access_boolean | |
owner | DE-12 DE-384 DE-91G DE-BY-TUM DE-29T DE-739 DE-355 DE-BY-UBR DE-824 DE-20 DE-19 DE-BY-UBM DE-188 |
owner_facet | DE-12 DE-384 DE-91G DE-BY-TUM DE-29T DE-739 DE-355 DE-BY-UBR DE-824 DE-20 DE-19 DE-BY-UBM DE-188 |
physical | XIII, 341 S. |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Ireland, Kenneth Verfasser aut A classical introduction to modern number theory Kenneth Ireland ; Michael Rosen Rev. and expanded version New York [u.a.] Springer 1982 XIII, 341 S. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 84 Frühere Ausg. u.d.T.: Ireland, Kenneth: Elements of number theory Getaltheorie gtt Nombres, Théorie des Nombres, théorie des ram Number theory Zahlentheorie (DE-588)4067277-3 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Zahlentheorie (DE-588)4067277-3 s DE-604 Rosen, Michael Ira 1938-1954 Verfasser (DE-588)123553970 aut Früher u.d.T. Ireland Elements of numbers theory XXXX 1972 Graduate texts in mathematics 84 (DE-604)BV000000067 84 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000004359&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ireland, Kenneth Rosen, Michael Ira 1938-1954 A classical introduction to modern number theory Graduate texts in mathematics Getaltheorie gtt Nombres, Théorie des Nombres, théorie des ram Number theory Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4067277-3 (DE-588)4151278-9 |
title | A classical introduction to modern number theory |
title_auth | A classical introduction to modern number theory |
title_exact_search | A classical introduction to modern number theory |
title_full | A classical introduction to modern number theory Kenneth Ireland ; Michael Rosen |
title_fullStr | A classical introduction to modern number theory Kenneth Ireland ; Michael Rosen |
title_full_unstemmed | A classical introduction to modern number theory Kenneth Ireland ; Michael Rosen |
title_old | Ireland Elements of numbers theory XXXX 1972 |
title_short | A classical introduction to modern number theory |
title_sort | a classical introduction to modern number theory |
topic | Getaltheorie gtt Nombres, Théorie des Nombres, théorie des ram Number theory Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Getaltheorie Nombres, Théorie des Nombres, théorie des Number theory Zahlentheorie Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000004359&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT irelandkenneth aclassicalintroductiontomodernnumbertheory AT rosenmichaelira aclassicalintroductiontomodernnumbertheory |