Ruin probabilities /:
The book is a comprehensive treatment of classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (eg. for heavy-tailed claim size distributions), finite horizon ruin probabilities, exte...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ :
World Scientific,
2000
|
Schriftenreihe: | Advanced series on statistical science & applied probability ;
v. 2. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The book is a comprehensive treatment of classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (eg. for heavy-tailed claim size distributions), finite horizon ruin probabilities, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation or periodicity. Special features of the book are the emphasis on change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas like queueing theory. |
Beschreibung: | 1 online resource (xi, 385 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789812779311 9812779310 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-ocn827947385 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130218s2000 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCF |d YDXCP |d EBLCP |d OCLCQ |d AGLDB |d OCLCQ |d STF |d AU@ |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
020 | |a 9789812779311 |q (electronic bk.) | ||
020 | |a 9812779310 |q (electronic bk.) | ||
020 | |z 9810222939 | ||
020 | |z 9789810222932 | ||
035 | |a (OCoLC)827947385 | ||
050 | 4 | |a HG8781 |b .A83 2000eb | |
072 | 7 | |a BUS |x 033070 |2 bisacsh | |
082 | 7 | |a 368/.01 |2 22 | |
084 | |a 31.70 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Asmussen, Søren. | |
245 | 1 | 0 | |a Ruin probabilities / |c Søren Asmussen. |
260 | |a River Edge, NJ : |b World Scientific, |c 2000 |g (2001 printing) | ||
300 | |a 1 online resource (xi, 385 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Advanced series on statistical science & applied probability ; |v vol. 2 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a I. Introduction. 1. The risk process -- 2. Claim size distributions -- 3. The arrival process -- 4. A summary of main results and methods -- 5. Conventions -- II. Some general tools and results. 1. Martingales -- 2. Likelihood ratios and change of measure -- 3. Duality with other applied probability models -- 4. Random walks in discrete or continuous time -- 5. Markov additive processes -- 6. The ladder height distribution -- III. The compound Poisson model. 1. Introduction -- 2. The Pollaczeck-Khinchine formula -- 3. Special cases of the Pollaczeck-Khinchine formula -- 4. Change of measure via exponential families -- 5. Lundberg conjugation -- 6. Further topics related to the adjustment coefficient -- 7. Various approximations for the ruin probability -- 8. Comparing the risks of different claim size distributions -- 9. Sensitivity estimates -- 10. Estimation of the adjustment coefficient -- IV. The probability of ruin within finite time. 1. Exponential claims -- 2. The ruin probability with no initial reserve -- 3. Laplace transforms -- 4. When does ruin occur? -- 5. Diffusion approximations -- 6. Corrected diffusion approximations -- 7. How does ruin occur? -- V. Renewal arrivals. 1. Introduction -- 2. Exponential claims. The compound Poisson model with negative claims -- 3. Change of measure via exponential families -- 4. The duality with queuing theory -- VI. Risk theory in a Markovian environment. 1. Model and examples -- 2. The ladder height distribution -- 3. Change of measure via exponential families -- 4. Comparisons with the compound Poisson model -- 5. The Markovian arrival process -- 6. Risk theory in a periodic environment -- 7. Dual queuing models -- VII. Premiums depending on the current reserve. 1. Introduction -- 2. The model with interest -- 3. The local adjustment coefficient. Logarithmic asymptotics -- VIII. Matrix-analytic methods. 1. Definition and basic properties of phase-type distributions -- 2. Renewal theory -- 3. The compound Poisson model -- 4. The renewal model -- 5. Markov-modulated input -- 6. Matrix-exponential distributions -- 7. Reserve-dependent premiums -- IX. Ruin probabilities in the presence of heavy tails. 1. Subexponential distributions -- 2. The compound Poisson model -- 3. The renewal model -- 4. Models with dependent input -- 5. Finite horizon ruin probabilities -- 6. Reserve-dependent premiums -- X. Simulation methodology. 1. Generalities -- 2. Simulation via the Pollaczeck-Khinchine formula -- Importance sampling via Lundberg conjugation -- 4. Importance sampling for the finite horizon case -- 5. Regenerative simulation -- 6. Sensitivity analysis -- XI. Miscellaneous topics. 1. The ruin problem for Bernoulli random walk and Brownian motion. The two-barrier ruin problem -- 2. Further applications of martingales -- 3. Large deviations -- 4. The distribution of the aggregate claims -- 5. Principles for premium calculation -- 6. Reinsurance. | |
520 | |a The book is a comprehensive treatment of classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (eg. for heavy-tailed claim size distributions), finite horizon ruin probabilities, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation or periodicity. Special features of the book are the emphasis on change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas like queueing theory. | ||
650 | 0 | |a Insurance |x Mathematics. |0 http://id.loc.gov/authorities/subjects/sh85066815 | |
650 | 0 | |a Risk. |0 http://id.loc.gov/authorities/subjects/sh85114195 | |
650 | 2 | |a Risk |0 https://id.nlm.nih.gov/mesh/D012306 | |
650 | 6 | |a Assurance |x Mathématiques. | |
650 | 6 | |a Risque. | |
650 | 7 | |a BUSINESS & ECONOMICS |x Insurance |x Risk Assessment & Management. |2 bisacsh | |
650 | 7 | |a Insurance |x Mathematics |2 fast | |
650 | 7 | |a Risk |2 fast | |
650 | 1 | 7 | |a Waarschijnlijkheidstheorie. |2 gtt |
650 | 1 | 7 | |a Risicoanalyse. |2 gtt |
776 | 0 | 8 | |i Print version: |a Asmussen, Søren. |t Ruin probabilities. |d River Edge, NJ : World Scientific, 2000 (2001 printing) |z 9810222939 |w (DLC) 00038176 |w (OCoLC)43836603 |
830 | 0 | |a Advanced series on statistical science & applied probability ; |v v. 2. |0 http://id.loc.gov/authorities/names/n97121977 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=512616 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684861 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3051033 | ||
938 | |a EBSCOhost |b EBSC |n 512616 | ||
938 | |a YBP Library Services |b YANK |n 9966238 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-ocn827947385 |
---|---|
_version_ | 1816796907682398209 |
adam_text | |
any_adam_object | |
author | Asmussen, Søren |
author_facet | Asmussen, Søren |
author_role | |
author_sort | Asmussen, Søren |
author_variant | s a sa |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | H - Social Science |
callnumber-label | HG8781 |
callnumber-raw | HG8781 .A83 2000eb |
callnumber-search | HG8781 .A83 2000eb |
callnumber-sort | HG 48781 A83 42000EB |
callnumber-subject | HG - Finance |
collection | ZDB-4-EBU |
contents | I. Introduction. 1. The risk process -- 2. Claim size distributions -- 3. The arrival process -- 4. A summary of main results and methods -- 5. Conventions -- II. Some general tools and results. 1. Martingales -- 2. Likelihood ratios and change of measure -- 3. Duality with other applied probability models -- 4. Random walks in discrete or continuous time -- 5. Markov additive processes -- 6. The ladder height distribution -- III. The compound Poisson model. 1. Introduction -- 2. The Pollaczeck-Khinchine formula -- 3. Special cases of the Pollaczeck-Khinchine formula -- 4. Change of measure via exponential families -- 5. Lundberg conjugation -- 6. Further topics related to the adjustment coefficient -- 7. Various approximations for the ruin probability -- 8. Comparing the risks of different claim size distributions -- 9. Sensitivity estimates -- 10. Estimation of the adjustment coefficient -- IV. The probability of ruin within finite time. 1. Exponential claims -- 2. The ruin probability with no initial reserve -- 3. Laplace transforms -- 4. When does ruin occur? -- 5. Diffusion approximations -- 6. Corrected diffusion approximations -- 7. How does ruin occur? -- V. Renewal arrivals. 1. Introduction -- 2. Exponential claims. The compound Poisson model with negative claims -- 3. Change of measure via exponential families -- 4. The duality with queuing theory -- VI. Risk theory in a Markovian environment. 1. Model and examples -- 2. The ladder height distribution -- 3. Change of measure via exponential families -- 4. Comparisons with the compound Poisson model -- 5. The Markovian arrival process -- 6. Risk theory in a periodic environment -- 7. Dual queuing models -- VII. Premiums depending on the current reserve. 1. Introduction -- 2. The model with interest -- 3. The local adjustment coefficient. Logarithmic asymptotics -- VIII. Matrix-analytic methods. 1. Definition and basic properties of phase-type distributions -- 2. Renewal theory -- 3. The compound Poisson model -- 4. The renewal model -- 5. Markov-modulated input -- 6. Matrix-exponential distributions -- 7. Reserve-dependent premiums -- IX. Ruin probabilities in the presence of heavy tails. 1. Subexponential distributions -- 2. The compound Poisson model -- 3. The renewal model -- 4. Models with dependent input -- 5. Finite horizon ruin probabilities -- 6. Reserve-dependent premiums -- X. Simulation methodology. 1. Generalities -- 2. Simulation via the Pollaczeck-Khinchine formula -- Importance sampling via Lundberg conjugation -- 4. Importance sampling for the finite horizon case -- 5. Regenerative simulation -- 6. Sensitivity analysis -- XI. Miscellaneous topics. 1. The ruin problem for Bernoulli random walk and Brownian motion. The two-barrier ruin problem -- 2. Further applications of martingales -- 3. Large deviations -- 4. The distribution of the aggregate claims -- 5. Principles for premium calculation -- 6. Reinsurance. |
ctrlnum | (OCoLC)827947385 |
dewey-full | 368/.01 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 368 - Insurance |
dewey-raw | 368/.01 |
dewey-search | 368/.01 |
dewey-sort | 3368 11 |
dewey-tens | 360 - Social problems and services; associations |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05998cam a2200589 a 4500</leader><controlfield tag="001">ZDB-4-EBU-ocn827947385</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130218s2000 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812779311</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812779310</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810222939</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810222932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)827947385</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">HG8781</subfield><subfield code="b">.A83 2000eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="x">033070</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">368/.01</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.70</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Asmussen, Søren.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ruin probabilities /</subfield><subfield code="c">Søren Asmussen.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2000</subfield><subfield code="g">(2001 printing)</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 385 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series on statistical science & applied probability ;</subfield><subfield code="v">vol. 2</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">I. Introduction. 1. The risk process -- 2. Claim size distributions -- 3. The arrival process -- 4. A summary of main results and methods -- 5. Conventions -- II. Some general tools and results. 1. Martingales -- 2. Likelihood ratios and change of measure -- 3. Duality with other applied probability models -- 4. Random walks in discrete or continuous time -- 5. Markov additive processes -- 6. The ladder height distribution -- III. The compound Poisson model. 1. Introduction -- 2. The Pollaczeck-Khinchine formula -- 3. Special cases of the Pollaczeck-Khinchine formula -- 4. Change of measure via exponential families -- 5. Lundberg conjugation -- 6. Further topics related to the adjustment coefficient -- 7. Various approximations for the ruin probability -- 8. Comparing the risks of different claim size distributions -- 9. Sensitivity estimates -- 10. Estimation of the adjustment coefficient -- IV. The probability of ruin within finite time. 1. Exponential claims -- 2. The ruin probability with no initial reserve -- 3. Laplace transforms -- 4. When does ruin occur? -- 5. Diffusion approximations -- 6. Corrected diffusion approximations -- 7. How does ruin occur? -- V. Renewal arrivals. 1. Introduction -- 2. Exponential claims. The compound Poisson model with negative claims -- 3. Change of measure via exponential families -- 4. The duality with queuing theory -- VI. Risk theory in a Markovian environment. 1. Model and examples -- 2. The ladder height distribution -- 3. Change of measure via exponential families -- 4. Comparisons with the compound Poisson model -- 5. The Markovian arrival process -- 6. Risk theory in a periodic environment -- 7. Dual queuing models -- VII. Premiums depending on the current reserve. 1. Introduction -- 2. The model with interest -- 3. The local adjustment coefficient. Logarithmic asymptotics -- VIII. Matrix-analytic methods. 1. Definition and basic properties of phase-type distributions -- 2. Renewal theory -- 3. The compound Poisson model -- 4. The renewal model -- 5. Markov-modulated input -- 6. Matrix-exponential distributions -- 7. Reserve-dependent premiums -- IX. Ruin probabilities in the presence of heavy tails. 1. Subexponential distributions -- 2. The compound Poisson model -- 3. The renewal model -- 4. Models with dependent input -- 5. Finite horizon ruin probabilities -- 6. Reserve-dependent premiums -- X. Simulation methodology. 1. Generalities -- 2. Simulation via the Pollaczeck-Khinchine formula -- Importance sampling via Lundberg conjugation -- 4. Importance sampling for the finite horizon case -- 5. Regenerative simulation -- 6. Sensitivity analysis -- XI. Miscellaneous topics. 1. The ruin problem for Bernoulli random walk and Brownian motion. The two-barrier ruin problem -- 2. Further applications of martingales -- 3. Large deviations -- 4. The distribution of the aggregate claims -- 5. Principles for premium calculation -- 6. Reinsurance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book is a comprehensive treatment of classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (eg. for heavy-tailed claim size distributions), finite horizon ruin probabilities, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation or periodicity. Special features of the book are the emphasis on change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas like queueing theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Insurance</subfield><subfield code="x">Mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85066815</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Risk.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85114195</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Risk</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D012306</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Assurance</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Risque.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Insurance</subfield><subfield code="x">Risk Assessment & Management.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Insurance</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Risk</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Waarschijnlijkheidstheorie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Risicoanalyse.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Asmussen, Søren.</subfield><subfield code="t">Ruin probabilities.</subfield><subfield code="d">River Edge, NJ : World Scientific, 2000 (2001 printing)</subfield><subfield code="z">9810222939</subfield><subfield code="w">(DLC) 00038176</subfield><subfield code="w">(OCoLC)43836603</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series on statistical science & applied probability ;</subfield><subfield code="v">v. 2.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97121977</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=512616</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684861</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3051033</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">512616</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9966238</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBU-ocn827947385 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:49:08Z |
institution | BVB |
isbn | 9789812779311 9812779310 |
language | English |
oclc_num | 827947385 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 385 pages) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | World Scientific, |
record_format | marc |
series | Advanced series on statistical science & applied probability ; |
series2 | Advanced series on statistical science & applied probability ; |
spelling | Asmussen, Søren. Ruin probabilities / Søren Asmussen. River Edge, NJ : World Scientific, 2000 (2001 printing) 1 online resource (xi, 385 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Advanced series on statistical science & applied probability ; vol. 2 Includes bibliographical references and index. Print version record. I. Introduction. 1. The risk process -- 2. Claim size distributions -- 3. The arrival process -- 4. A summary of main results and methods -- 5. Conventions -- II. Some general tools and results. 1. Martingales -- 2. Likelihood ratios and change of measure -- 3. Duality with other applied probability models -- 4. Random walks in discrete or continuous time -- 5. Markov additive processes -- 6. The ladder height distribution -- III. The compound Poisson model. 1. Introduction -- 2. The Pollaczeck-Khinchine formula -- 3. Special cases of the Pollaczeck-Khinchine formula -- 4. Change of measure via exponential families -- 5. Lundberg conjugation -- 6. Further topics related to the adjustment coefficient -- 7. Various approximations for the ruin probability -- 8. Comparing the risks of different claim size distributions -- 9. Sensitivity estimates -- 10. Estimation of the adjustment coefficient -- IV. The probability of ruin within finite time. 1. Exponential claims -- 2. The ruin probability with no initial reserve -- 3. Laplace transforms -- 4. When does ruin occur? -- 5. Diffusion approximations -- 6. Corrected diffusion approximations -- 7. How does ruin occur? -- V. Renewal arrivals. 1. Introduction -- 2. Exponential claims. The compound Poisson model with negative claims -- 3. Change of measure via exponential families -- 4. The duality with queuing theory -- VI. Risk theory in a Markovian environment. 1. Model and examples -- 2. The ladder height distribution -- 3. Change of measure via exponential families -- 4. Comparisons with the compound Poisson model -- 5. The Markovian arrival process -- 6. Risk theory in a periodic environment -- 7. Dual queuing models -- VII. Premiums depending on the current reserve. 1. Introduction -- 2. The model with interest -- 3. The local adjustment coefficient. Logarithmic asymptotics -- VIII. Matrix-analytic methods. 1. Definition and basic properties of phase-type distributions -- 2. Renewal theory -- 3. The compound Poisson model -- 4. The renewal model -- 5. Markov-modulated input -- 6. Matrix-exponential distributions -- 7. Reserve-dependent premiums -- IX. Ruin probabilities in the presence of heavy tails. 1. Subexponential distributions -- 2. The compound Poisson model -- 3. The renewal model -- 4. Models with dependent input -- 5. Finite horizon ruin probabilities -- 6. Reserve-dependent premiums -- X. Simulation methodology. 1. Generalities -- 2. Simulation via the Pollaczeck-Khinchine formula -- Importance sampling via Lundberg conjugation -- 4. Importance sampling for the finite horizon case -- 5. Regenerative simulation -- 6. Sensitivity analysis -- XI. Miscellaneous topics. 1. The ruin problem for Bernoulli random walk and Brownian motion. The two-barrier ruin problem -- 2. Further applications of martingales -- 3. Large deviations -- 4. The distribution of the aggregate claims -- 5. Principles for premium calculation -- 6. Reinsurance. The book is a comprehensive treatment of classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (eg. for heavy-tailed claim size distributions), finite horizon ruin probabilities, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation or periodicity. Special features of the book are the emphasis on change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas like queueing theory. Insurance Mathematics. http://id.loc.gov/authorities/subjects/sh85066815 Risk. http://id.loc.gov/authorities/subjects/sh85114195 Risk https://id.nlm.nih.gov/mesh/D012306 Assurance Mathématiques. Risque. BUSINESS & ECONOMICS Insurance Risk Assessment & Management. bisacsh Insurance Mathematics fast Risk fast Waarschijnlijkheidstheorie. gtt Risicoanalyse. gtt Print version: Asmussen, Søren. Ruin probabilities. River Edge, NJ : World Scientific, 2000 (2001 printing) 9810222939 (DLC) 00038176 (OCoLC)43836603 Advanced series on statistical science & applied probability ; v. 2. http://id.loc.gov/authorities/names/n97121977 FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=512616 Volltext |
spellingShingle | Asmussen, Søren Ruin probabilities / Advanced series on statistical science & applied probability ; I. Introduction. 1. The risk process -- 2. Claim size distributions -- 3. The arrival process -- 4. A summary of main results and methods -- 5. Conventions -- II. Some general tools and results. 1. Martingales -- 2. Likelihood ratios and change of measure -- 3. Duality with other applied probability models -- 4. Random walks in discrete or continuous time -- 5. Markov additive processes -- 6. The ladder height distribution -- III. The compound Poisson model. 1. Introduction -- 2. The Pollaczeck-Khinchine formula -- 3. Special cases of the Pollaczeck-Khinchine formula -- 4. Change of measure via exponential families -- 5. Lundberg conjugation -- 6. Further topics related to the adjustment coefficient -- 7. Various approximations for the ruin probability -- 8. Comparing the risks of different claim size distributions -- 9. Sensitivity estimates -- 10. Estimation of the adjustment coefficient -- IV. The probability of ruin within finite time. 1. Exponential claims -- 2. The ruin probability with no initial reserve -- 3. Laplace transforms -- 4. When does ruin occur? -- 5. Diffusion approximations -- 6. Corrected diffusion approximations -- 7. How does ruin occur? -- V. Renewal arrivals. 1. Introduction -- 2. Exponential claims. The compound Poisson model with negative claims -- 3. Change of measure via exponential families -- 4. The duality with queuing theory -- VI. Risk theory in a Markovian environment. 1. Model and examples -- 2. The ladder height distribution -- 3. Change of measure via exponential families -- 4. Comparisons with the compound Poisson model -- 5. The Markovian arrival process -- 6. Risk theory in a periodic environment -- 7. Dual queuing models -- VII. Premiums depending on the current reserve. 1. Introduction -- 2. The model with interest -- 3. The local adjustment coefficient. Logarithmic asymptotics -- VIII. Matrix-analytic methods. 1. Definition and basic properties of phase-type distributions -- 2. Renewal theory -- 3. The compound Poisson model -- 4. The renewal model -- 5. Markov-modulated input -- 6. Matrix-exponential distributions -- 7. Reserve-dependent premiums -- IX. Ruin probabilities in the presence of heavy tails. 1. Subexponential distributions -- 2. The compound Poisson model -- 3. The renewal model -- 4. Models with dependent input -- 5. Finite horizon ruin probabilities -- 6. Reserve-dependent premiums -- X. Simulation methodology. 1. Generalities -- 2. Simulation via the Pollaczeck-Khinchine formula -- Importance sampling via Lundberg conjugation -- 4. Importance sampling for the finite horizon case -- 5. Regenerative simulation -- 6. Sensitivity analysis -- XI. Miscellaneous topics. 1. The ruin problem for Bernoulli random walk and Brownian motion. The two-barrier ruin problem -- 2. Further applications of martingales -- 3. Large deviations -- 4. The distribution of the aggregate claims -- 5. Principles for premium calculation -- 6. Reinsurance. Insurance Mathematics. http://id.loc.gov/authorities/subjects/sh85066815 Risk. http://id.loc.gov/authorities/subjects/sh85114195 Risk https://id.nlm.nih.gov/mesh/D012306 Assurance Mathématiques. Risque. BUSINESS & ECONOMICS Insurance Risk Assessment & Management. bisacsh Insurance Mathematics fast Risk fast Waarschijnlijkheidstheorie. gtt Risicoanalyse. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85066815 http://id.loc.gov/authorities/subjects/sh85114195 https://id.nlm.nih.gov/mesh/D012306 |
title | Ruin probabilities / |
title_auth | Ruin probabilities / |
title_exact_search | Ruin probabilities / |
title_full | Ruin probabilities / Søren Asmussen. |
title_fullStr | Ruin probabilities / Søren Asmussen. |
title_full_unstemmed | Ruin probabilities / Søren Asmussen. |
title_short | Ruin probabilities / |
title_sort | ruin probabilities |
topic | Insurance Mathematics. http://id.loc.gov/authorities/subjects/sh85066815 Risk. http://id.loc.gov/authorities/subjects/sh85114195 Risk https://id.nlm.nih.gov/mesh/D012306 Assurance Mathématiques. Risque. BUSINESS & ECONOMICS Insurance Risk Assessment & Management. bisacsh Insurance Mathematics fast Risk fast Waarschijnlijkheidstheorie. gtt Risicoanalyse. gtt |
topic_facet | Insurance Mathematics. Risk. Risk Assurance Mathématiques. Risque. BUSINESS & ECONOMICS Insurance Risk Assessment & Management. Insurance Mathematics Waarschijnlijkheidstheorie. Risicoanalyse. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=512616 |
work_keys_str_mv | AT asmussensøren ruinprobabilities |