Compensatory genetic fuzzy neural networks and their applications /:
This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, N.J. :
World Scientific,
1997.
|
Schriftenreihe: | Series in machine perception and artificial intelligence ;
vol. 30. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-data-level information processing. The book also proposes various novel soft computing techniques. |
Beschreibung: | 1 online resource (xii, 186 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 173-181) and index. |
ISBN: | 9789812797674 981279767X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBU-ocn824698679 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130121s1997 si a ob 001 0 eng d | ||
010 | |z 97044774 | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d STF |d AU@ |d OCLCQ |d OCLCO |d OCLCQ |d INARC |d OCLCO | ||
019 | |a 1391281922 | ||
020 | |a 9789812797674 |q (electronic bk.) | ||
020 | |a 981279767X |q (electronic bk.) | ||
020 | |z 9810233493 | ||
020 | |z 9789810233495 | ||
035 | |a (OCoLC)824698679 |z (OCoLC)1391281922 | ||
050 | 4 | |a QA76.87 |b .Z475 1997eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 006.3 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Zhang, Yan-Qing. | |
245 | 1 | 0 | |a Compensatory genetic fuzzy neural networks and their applications / |c Yan-Qing Zhang, Abraham Kandel. |
260 | |a Singapore ; |a River Edge, N.J. : |b World Scientific, |c 1997. | ||
300 | |a 1 online resource (xii, 186 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series in machine perception and artificial intelligence ; |v vol. 30 | |
504 | |a Includes bibliographical references (pages 173-181) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Introduction. 1.1. Fuzzy sets and data granularity. 1.2. Neural networks and knowledge discovery. 1.3. Genetic algorithms and adaptive optimization. 1.4. Soft computing systems and computational intelligence. 1.5. Main issues -- 2. Fuzzy compensation principles. 2.1. Fuzzy yin-yang compensation. 2.2. Compensation of fuzzy CNF and fuzzy DNF. 2.3. 2-variable-2-dimensional CNFs and DNFs. 2.4. 2-variable-m-dimensional CNFs and DNFs for m = 3,4. 2.5. Compensation of universal fuzzy CNF and fuzzy DNF. 2.6. Summary -- 3. Normal fuzzy reasoning methodology. 3.1. Primary fuzzy subsets. 3.2. The variable-input-constant-output (VICO) problem. 3.3. Normal fuzzy reasoning (NFR). 3.4. Normal fuzzy controllers -- 4. Compensatory genetic fuzzy neural networks. 4.1. Introduction. 4.2. Fuzzy neural networks with knowledge discovery. 4.3. Heuristic genetic learning algorithm for a FNNKD. 4.4. Feature expressions of trapezoidal-type fuzzy sets. 4.5. Crisp-fuzzy neural networks (CFNN) -- 5. Fuzzy knowledge rediscovery in fuzzy rule bases. 5.1. Applicability of various defuzzification techniques. 5.2. Nonlinear function approximation -- 6. Fuzzy cart-pole balancing control systems. 6.1. Cart-pole balancing fuzzy control systems. 6.2. A cart-pole balancing system with crisp inputs and outputs. 6.3. A cart-pole balancing system with fuzzy inputs and outputs -- 7. Fuzzy knowledge compression and expansion. 7.1. Compression of fuzzy rule bases. 7.2. Expansion of fuzzy rule bases -- 8. Highly nonlinear system modeling and prediction. 8.1. Nonlinear function prediction. 8.2. Chaotic time series prediction. 8.3. Box and Jenkins's gas furnace model identification -- 9. Fuzzy moves in fuzzy games. 9.1. Introduction. 9.2. Fuzzy moves. 9.3. Normal fuzzy reasoning for fuzzy moves. 9.4. Applicability of various methods. 9.5. Efficient precise decision systems for fuzzy moves. 9.6. Typical examples. 9.7. Fuzzy moves in prisoner's dilemma. 9.8. Summary -- 10. Genetic neuro-fuzzy pattern recognition. 10.1. Structure of a genetic fuzzy neural network. 10.2. Genetic-algorithms-based self-organizing learning algorithm. 10.3. Simulations. 10.4. Conclusions -- 11. Constructive approach to modeling fuzzy systems. 11.1. Introduction. 11.2. A normal-fuzzy-reasoning-based fuzzy system. 11.3. Various single-input-single-output (SISO) fuzzy systems. 11.4. Universal approximation. 11.5. A piecewise nonlinear constructive algorithm. 11.6. Simulations. 11.7. Conclusions -- 12. Conclusions. 12.1. Main Conclusions. 12.2. Future research and development. | |
520 | |a This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-data-level information processing. The book also proposes various novel soft computing techniques. | ||
650 | 0 | |a Neural networks (Computer science) |0 http://id.loc.gov/authorities/subjects/sh90001937 | |
650 | 0 | |a Fuzzy systems. |0 http://id.loc.gov/authorities/subjects/sh85052628 | |
650 | 2 | |a Neural Networks, Computer |0 https://id.nlm.nih.gov/mesh/D016571 | |
650 | 6 | |a Réseaux neuronaux (Informatique) | |
650 | 6 | |a Systèmes flous. | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Fuzzy systems |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 7 | |a Réseaux neuronaux (informatique) |2 ram | |
650 | 7 | |a Systèmes flous. |2 ram | |
700 | 1 | |a Kandel, Abraham. | |
776 | 0 | 8 | |i Print version: |a Zhang, Yan-Qing. |t Compensatory genetic fuzzy neural networks and their applications. |d Singapore ; River Edge, N.J. : World Scientific, 1997 |z 9810233493 |w (DLC) 97044774 |w (OCoLC)37820143 |
830 | 0 | |a Series in machine perception and artificial intelligence ; |v vol. 30. |0 http://id.loc.gov/authorities/names/n91107585 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBU |q FWS_PDA_EBU |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=513992 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 513992 | ||
938 | |a YBP Library Services |b YANK |n 9966402 | ||
938 | |a Internet Archive |b INAR |n compensatorygene0000zhan | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBU | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBU-ocn824698679 |
---|---|
_version_ | 1816796907124555777 |
adam_text | |
any_adam_object | |
author | Zhang, Yan-Qing |
author2 | Kandel, Abraham |
author2_role | |
author2_variant | a k ak |
author_facet | Zhang, Yan-Qing Kandel, Abraham |
author_role | |
author_sort | Zhang, Yan-Qing |
author_variant | y q z yqz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87 .Z475 1997eb |
callnumber-search | QA76.87 .Z475 1997eb |
callnumber-sort | QA 276.87 Z475 41997EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBU |
contents | 1. Introduction. 1.1. Fuzzy sets and data granularity. 1.2. Neural networks and knowledge discovery. 1.3. Genetic algorithms and adaptive optimization. 1.4. Soft computing systems and computational intelligence. 1.5. Main issues -- 2. Fuzzy compensation principles. 2.1. Fuzzy yin-yang compensation. 2.2. Compensation of fuzzy CNF and fuzzy DNF. 2.3. 2-variable-2-dimensional CNFs and DNFs. 2.4. 2-variable-m-dimensional CNFs and DNFs for m = 3,4. 2.5. Compensation of universal fuzzy CNF and fuzzy DNF. 2.6. Summary -- 3. Normal fuzzy reasoning methodology. 3.1. Primary fuzzy subsets. 3.2. The variable-input-constant-output (VICO) problem. 3.3. Normal fuzzy reasoning (NFR). 3.4. Normal fuzzy controllers -- 4. Compensatory genetic fuzzy neural networks. 4.1. Introduction. 4.2. Fuzzy neural networks with knowledge discovery. 4.3. Heuristic genetic learning algorithm for a FNNKD. 4.4. Feature expressions of trapezoidal-type fuzzy sets. 4.5. Crisp-fuzzy neural networks (CFNN) -- 5. Fuzzy knowledge rediscovery in fuzzy rule bases. 5.1. Applicability of various defuzzification techniques. 5.2. Nonlinear function approximation -- 6. Fuzzy cart-pole balancing control systems. 6.1. Cart-pole balancing fuzzy control systems. 6.2. A cart-pole balancing system with crisp inputs and outputs. 6.3. A cart-pole balancing system with fuzzy inputs and outputs -- 7. Fuzzy knowledge compression and expansion. 7.1. Compression of fuzzy rule bases. 7.2. Expansion of fuzzy rule bases -- 8. Highly nonlinear system modeling and prediction. 8.1. Nonlinear function prediction. 8.2. Chaotic time series prediction. 8.3. Box and Jenkins's gas furnace model identification -- 9. Fuzzy moves in fuzzy games. 9.1. Introduction. 9.2. Fuzzy moves. 9.3. Normal fuzzy reasoning for fuzzy moves. 9.4. Applicability of various methods. 9.5. Efficient precise decision systems for fuzzy moves. 9.6. Typical examples. 9.7. Fuzzy moves in prisoner's dilemma. 9.8. Summary -- 10. Genetic neuro-fuzzy pattern recognition. 10.1. Structure of a genetic fuzzy neural network. 10.2. Genetic-algorithms-based self-organizing learning algorithm. 10.3. Simulations. 10.4. Conclusions -- 11. Constructive approach to modeling fuzzy systems. 11.1. Introduction. 11.2. A normal-fuzzy-reasoning-based fuzzy system. 11.3. Various single-input-single-output (SISO) fuzzy systems. 11.4. Universal approximation. 11.5. A piecewise nonlinear constructive algorithm. 11.6. Simulations. 11.7. Conclusions -- 12. Conclusions. 12.1. Main Conclusions. 12.2. Future research and development. |
ctrlnum | (OCoLC)824698679 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05937cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBU-ocn824698679</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130121s1997 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 97044774 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1391281922</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812797674</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981279767X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810233493</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810233495</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)824698679</subfield><subfield code="z">(OCoLC)1391281922</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.87</subfield><subfield code="b">.Z475 1997eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yan-Qing.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compensatory genetic fuzzy neural networks and their applications /</subfield><subfield code="c">Yan-Qing Zhang, Abraham Kandel.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">1997.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 186 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series in machine perception and artificial intelligence ;</subfield><subfield code="v">vol. 30</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 173-181) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction. 1.1. Fuzzy sets and data granularity. 1.2. Neural networks and knowledge discovery. 1.3. Genetic algorithms and adaptive optimization. 1.4. Soft computing systems and computational intelligence. 1.5. Main issues -- 2. Fuzzy compensation principles. 2.1. Fuzzy yin-yang compensation. 2.2. Compensation of fuzzy CNF and fuzzy DNF. 2.3. 2-variable-2-dimensional CNFs and DNFs. 2.4. 2-variable-m-dimensional CNFs and DNFs for m = 3,4. 2.5. Compensation of universal fuzzy CNF and fuzzy DNF. 2.6. Summary -- 3. Normal fuzzy reasoning methodology. 3.1. Primary fuzzy subsets. 3.2. The variable-input-constant-output (VICO) problem. 3.3. Normal fuzzy reasoning (NFR). 3.4. Normal fuzzy controllers -- 4. Compensatory genetic fuzzy neural networks. 4.1. Introduction. 4.2. Fuzzy neural networks with knowledge discovery. 4.3. Heuristic genetic learning algorithm for a FNNKD. 4.4. Feature expressions of trapezoidal-type fuzzy sets. 4.5. Crisp-fuzzy neural networks (CFNN) -- 5. Fuzzy knowledge rediscovery in fuzzy rule bases. 5.1. Applicability of various defuzzification techniques. 5.2. Nonlinear function approximation -- 6. Fuzzy cart-pole balancing control systems. 6.1. Cart-pole balancing fuzzy control systems. 6.2. A cart-pole balancing system with crisp inputs and outputs. 6.3. A cart-pole balancing system with fuzzy inputs and outputs -- 7. Fuzzy knowledge compression and expansion. 7.1. Compression of fuzzy rule bases. 7.2. Expansion of fuzzy rule bases -- 8. Highly nonlinear system modeling and prediction. 8.1. Nonlinear function prediction. 8.2. Chaotic time series prediction. 8.3. Box and Jenkins's gas furnace model identification -- 9. Fuzzy moves in fuzzy games. 9.1. Introduction. 9.2. Fuzzy moves. 9.3. Normal fuzzy reasoning for fuzzy moves. 9.4. Applicability of various methods. 9.5. Efficient precise decision systems for fuzzy moves. 9.6. Typical examples. 9.7. Fuzzy moves in prisoner's dilemma. 9.8. Summary -- 10. Genetic neuro-fuzzy pattern recognition. 10.1. Structure of a genetic fuzzy neural network. 10.2. Genetic-algorithms-based self-organizing learning algorithm. 10.3. Simulations. 10.4. Conclusions -- 11. Constructive approach to modeling fuzzy systems. 11.1. Introduction. 11.2. A normal-fuzzy-reasoning-based fuzzy system. 11.3. Various single-input-single-output (SISO) fuzzy systems. 11.4. Universal approximation. 11.5. A piecewise nonlinear constructive algorithm. 11.6. Simulations. 11.7. Conclusions -- 12. Conclusions. 12.1. Main Conclusions. 12.2. Future research and development.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-data-level information processing. The book also proposes various novel soft computing techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90001937</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fuzzy systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052628</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Neural Networks, Computer</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D016571</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes flous.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Réseaux neuronaux (informatique)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systèmes flous.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kandel, Abraham.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Zhang, Yan-Qing.</subfield><subfield code="t">Compensatory genetic fuzzy neural networks and their applications.</subfield><subfield code="d">Singapore ; River Edge, N.J. : World Scientific, 1997</subfield><subfield code="z">9810233493</subfield><subfield code="w">(DLC) 97044774</subfield><subfield code="w">(OCoLC)37820143</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series in machine perception and artificial intelligence ;</subfield><subfield code="v">vol. 30.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91107585</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBU</subfield><subfield code="q">FWS_PDA_EBU</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=513992</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">513992</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9966402</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">compensatorygene0000zhan</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBU</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBU-ocn824698679 |
illustrated | Illustrated |
indexdate | 2024-11-26T14:49:08Z |
institution | BVB |
isbn | 9789812797674 981279767X |
language | English |
oclc_num | 824698679 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 186 pages) : illustrations |
psigel | ZDB-4-EBU |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | World Scientific, |
record_format | marc |
series | Series in machine perception and artificial intelligence ; |
series2 | Series in machine perception and artificial intelligence ; |
spelling | Zhang, Yan-Qing. Compensatory genetic fuzzy neural networks and their applications / Yan-Qing Zhang, Abraham Kandel. Singapore ; River Edge, N.J. : World Scientific, 1997. 1 online resource (xii, 186 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Series in machine perception and artificial intelligence ; vol. 30 Includes bibliographical references (pages 173-181) and index. Print version record. 1. Introduction. 1.1. Fuzzy sets and data granularity. 1.2. Neural networks and knowledge discovery. 1.3. Genetic algorithms and adaptive optimization. 1.4. Soft computing systems and computational intelligence. 1.5. Main issues -- 2. Fuzzy compensation principles. 2.1. Fuzzy yin-yang compensation. 2.2. Compensation of fuzzy CNF and fuzzy DNF. 2.3. 2-variable-2-dimensional CNFs and DNFs. 2.4. 2-variable-m-dimensional CNFs and DNFs for m = 3,4. 2.5. Compensation of universal fuzzy CNF and fuzzy DNF. 2.6. Summary -- 3. Normal fuzzy reasoning methodology. 3.1. Primary fuzzy subsets. 3.2. The variable-input-constant-output (VICO) problem. 3.3. Normal fuzzy reasoning (NFR). 3.4. Normal fuzzy controllers -- 4. Compensatory genetic fuzzy neural networks. 4.1. Introduction. 4.2. Fuzzy neural networks with knowledge discovery. 4.3. Heuristic genetic learning algorithm for a FNNKD. 4.4. Feature expressions of trapezoidal-type fuzzy sets. 4.5. Crisp-fuzzy neural networks (CFNN) -- 5. Fuzzy knowledge rediscovery in fuzzy rule bases. 5.1. Applicability of various defuzzification techniques. 5.2. Nonlinear function approximation -- 6. Fuzzy cart-pole balancing control systems. 6.1. Cart-pole balancing fuzzy control systems. 6.2. A cart-pole balancing system with crisp inputs and outputs. 6.3. A cart-pole balancing system with fuzzy inputs and outputs -- 7. Fuzzy knowledge compression and expansion. 7.1. Compression of fuzzy rule bases. 7.2. Expansion of fuzzy rule bases -- 8. Highly nonlinear system modeling and prediction. 8.1. Nonlinear function prediction. 8.2. Chaotic time series prediction. 8.3. Box and Jenkins's gas furnace model identification -- 9. Fuzzy moves in fuzzy games. 9.1. Introduction. 9.2. Fuzzy moves. 9.3. Normal fuzzy reasoning for fuzzy moves. 9.4. Applicability of various methods. 9.5. Efficient precise decision systems for fuzzy moves. 9.6. Typical examples. 9.7. Fuzzy moves in prisoner's dilemma. 9.8. Summary -- 10. Genetic neuro-fuzzy pattern recognition. 10.1. Structure of a genetic fuzzy neural network. 10.2. Genetic-algorithms-based self-organizing learning algorithm. 10.3. Simulations. 10.4. Conclusions -- 11. Constructive approach to modeling fuzzy systems. 11.1. Introduction. 11.2. A normal-fuzzy-reasoning-based fuzzy system. 11.3. Various single-input-single-output (SISO) fuzzy systems. 11.4. Universal approximation. 11.5. A piecewise nonlinear constructive algorithm. 11.6. Simulations. 11.7. Conclusions -- 12. Conclusions. 12.1. Main Conclusions. 12.2. Future research and development. This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and related intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-data-level information processing. The book also proposes various novel soft computing techniques. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Fuzzy systems. http://id.loc.gov/authorities/subjects/sh85052628 Neural Networks, Computer https://id.nlm.nih.gov/mesh/D016571 Réseaux neuronaux (Informatique) Systèmes flous. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Fuzzy systems fast Neural networks (Computer science) fast Réseaux neuronaux (informatique) ram Systèmes flous. ram Kandel, Abraham. Print version: Zhang, Yan-Qing. Compensatory genetic fuzzy neural networks and their applications. Singapore ; River Edge, N.J. : World Scientific, 1997 9810233493 (DLC) 97044774 (OCoLC)37820143 Series in machine perception and artificial intelligence ; vol. 30. http://id.loc.gov/authorities/names/n91107585 FWS01 ZDB-4-EBU FWS_PDA_EBU https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=513992 Volltext |
spellingShingle | Zhang, Yan-Qing Compensatory genetic fuzzy neural networks and their applications / Series in machine perception and artificial intelligence ; 1. Introduction. 1.1. Fuzzy sets and data granularity. 1.2. Neural networks and knowledge discovery. 1.3. Genetic algorithms and adaptive optimization. 1.4. Soft computing systems and computational intelligence. 1.5. Main issues -- 2. Fuzzy compensation principles. 2.1. Fuzzy yin-yang compensation. 2.2. Compensation of fuzzy CNF and fuzzy DNF. 2.3. 2-variable-2-dimensional CNFs and DNFs. 2.4. 2-variable-m-dimensional CNFs and DNFs for m = 3,4. 2.5. Compensation of universal fuzzy CNF and fuzzy DNF. 2.6. Summary -- 3. Normal fuzzy reasoning methodology. 3.1. Primary fuzzy subsets. 3.2. The variable-input-constant-output (VICO) problem. 3.3. Normal fuzzy reasoning (NFR). 3.4. Normal fuzzy controllers -- 4. Compensatory genetic fuzzy neural networks. 4.1. Introduction. 4.2. Fuzzy neural networks with knowledge discovery. 4.3. Heuristic genetic learning algorithm for a FNNKD. 4.4. Feature expressions of trapezoidal-type fuzzy sets. 4.5. Crisp-fuzzy neural networks (CFNN) -- 5. Fuzzy knowledge rediscovery in fuzzy rule bases. 5.1. Applicability of various defuzzification techniques. 5.2. Nonlinear function approximation -- 6. Fuzzy cart-pole balancing control systems. 6.1. Cart-pole balancing fuzzy control systems. 6.2. A cart-pole balancing system with crisp inputs and outputs. 6.3. A cart-pole balancing system with fuzzy inputs and outputs -- 7. Fuzzy knowledge compression and expansion. 7.1. Compression of fuzzy rule bases. 7.2. Expansion of fuzzy rule bases -- 8. Highly nonlinear system modeling and prediction. 8.1. Nonlinear function prediction. 8.2. Chaotic time series prediction. 8.3. Box and Jenkins's gas furnace model identification -- 9. Fuzzy moves in fuzzy games. 9.1. Introduction. 9.2. Fuzzy moves. 9.3. Normal fuzzy reasoning for fuzzy moves. 9.4. Applicability of various methods. 9.5. Efficient precise decision systems for fuzzy moves. 9.6. Typical examples. 9.7. Fuzzy moves in prisoner's dilemma. 9.8. Summary -- 10. Genetic neuro-fuzzy pattern recognition. 10.1. Structure of a genetic fuzzy neural network. 10.2. Genetic-algorithms-based self-organizing learning algorithm. 10.3. Simulations. 10.4. Conclusions -- 11. Constructive approach to modeling fuzzy systems. 11.1. Introduction. 11.2. A normal-fuzzy-reasoning-based fuzzy system. 11.3. Various single-input-single-output (SISO) fuzzy systems. 11.4. Universal approximation. 11.5. A piecewise nonlinear constructive algorithm. 11.6. Simulations. 11.7. Conclusions -- 12. Conclusions. 12.1. Main Conclusions. 12.2. Future research and development. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Fuzzy systems. http://id.loc.gov/authorities/subjects/sh85052628 Neural Networks, Computer https://id.nlm.nih.gov/mesh/D016571 Réseaux neuronaux (Informatique) Systèmes flous. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Fuzzy systems fast Neural networks (Computer science) fast Réseaux neuronaux (informatique) ram Systèmes flous. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh90001937 http://id.loc.gov/authorities/subjects/sh85052628 https://id.nlm.nih.gov/mesh/D016571 |
title | Compensatory genetic fuzzy neural networks and their applications / |
title_auth | Compensatory genetic fuzzy neural networks and their applications / |
title_exact_search | Compensatory genetic fuzzy neural networks and their applications / |
title_full | Compensatory genetic fuzzy neural networks and their applications / Yan-Qing Zhang, Abraham Kandel. |
title_fullStr | Compensatory genetic fuzzy neural networks and their applications / Yan-Qing Zhang, Abraham Kandel. |
title_full_unstemmed | Compensatory genetic fuzzy neural networks and their applications / Yan-Qing Zhang, Abraham Kandel. |
title_short | Compensatory genetic fuzzy neural networks and their applications / |
title_sort | compensatory genetic fuzzy neural networks and their applications |
topic | Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Fuzzy systems. http://id.loc.gov/authorities/subjects/sh85052628 Neural Networks, Computer https://id.nlm.nih.gov/mesh/D016571 Réseaux neuronaux (Informatique) Systèmes flous. COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Fuzzy systems fast Neural networks (Computer science) fast Réseaux neuronaux (informatique) ram Systèmes flous. ram |
topic_facet | Neural networks (Computer science) Fuzzy systems. Neural Networks, Computer Réseaux neuronaux (Informatique) Systèmes flous. COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. Fuzzy systems Réseaux neuronaux (informatique) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=513992 |
work_keys_str_mv | AT zhangyanqing compensatorygeneticfuzzyneuralnetworksandtheirapplications AT kandelabraham compensatorygeneticfuzzyneuralnetworksandtheirapplications |