Introduction to Abstract Algebra /:
Abstract algebra is an essential tool in algebra, number theory, geometry, topology, and, to a lesser extent, analysis. It is therefore a core requirement for all mathematics majors. Outside of mathematics, abstract algebra also has many applications in cryptography, coding theory, quantum chemistry...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Les Ulis :
EDP Sciences,
[2022]
|
Schriftenreihe: | Current Natural Sciences
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Abstract algebra is an essential tool in algebra, number theory, geometry, topology, and, to a lesser extent, analysis. It is therefore a core requirement for all mathematics majors. Outside of mathematics, abstract algebra also has many applications in cryptography, coding theory, quantum chemistry, and physics. This book is intended as a textbook for a one-term senior undergraduate or gradate course in abstract algebra to prepare students for further readings on relevant subjects such as Group Theory and Galois Theory. Abstract algebra being the field of mathematics that studies algebraic structures such as groups, rings, fields, and modules, we will primarily study groups, rings, and fields in this book. The authors invite readers to experience the beauty of mathematics by studying Abstract algebra which offers not only opportunities to work on complex concepts and to develop one's abstract reasoning abilities, but also a preliminary understanding of what it is like to do research in mathematics. Libin LI is professor at School of Mathematics, Yangzhou University in China. His research interests include Representation theory in Hopf algebras and Tensor category, Decoding theory and Ring theory, Weyl algebras and isomorphism problems, etc. |
Beschreibung: | 1 online resource (184 pages). |
ISBN: | 2759829162 9782759829163 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1343104564 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 220830t20222022fr fod z000 0 eng d | ||
040 | |a DEGRU |b eng |e rda |e pn |c DEGRU |d EBLCP |d OCLCQ |d N$T |d OCLCF |d OCLCQ |d OCLCO |d OCLCQ | ||
020 | |a 2759829162 | ||
020 | |a 9782759829163 |q (electronic bk.) | ||
024 | 7 | |a 10.1051/978-2-7598-2916-3 |2 doi | |
035 | |a (OCoLC)1343104564 | ||
050 | 4 | |a QA162 | |
072 | 7 | |a MAT002010 |2 bisacsh | |
082 | 7 | |a 512.02 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Li, Libin, |e author |4 aut |4 http://id.loc.gov/vocabulary/relators/aut | |
245 | 1 | 0 | |a Introduction to Abstract Algebra / |c Libin Li, Kaiming Zhao. |
264 | 1 | |a Les Ulis : |b EDP Sciences, |c [2022] | |
264 | 4 | |c ©2022 | |
300 | |a 1 online resource (184 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
347 | |b PDF | ||
490 | 0 | |a Current Natural Sciences | |
505 | 0 | 0 | |t Frontmatter -- |t Preface -- |t Contents -- |t Notations -- |t Chapter 1. Groups and Generating Sets -- |t Chapter 2. Permutation Groups and Alternating Groups -- |t Chapter 3. Finitely Generated Abelian Groups and Quotient Groups -- |t Chapter 4. Rings, Quotient Rings and Ideal Theory -- |t Chapter 5. Unique Factorization Domains -- |t Chapter 6. Extension Fields -- |t Appendix A. Equivalence Relations and Quotient Set -- |t Appendix B. Zorn's Lemma -- |t Appendix C. Quotient field -- |t Reference -- |t Index |
520 | |a Abstract algebra is an essential tool in algebra, number theory, geometry, topology, and, to a lesser extent, analysis. It is therefore a core requirement for all mathematics majors. Outside of mathematics, abstract algebra also has many applications in cryptography, coding theory, quantum chemistry, and physics. This book is intended as a textbook for a one-term senior undergraduate or gradate course in abstract algebra to prepare students for further readings on relevant subjects such as Group Theory and Galois Theory. Abstract algebra being the field of mathematics that studies algebraic structures such as groups, rings, fields, and modules, we will primarily study groups, rings, and fields in this book. The authors invite readers to experience the beauty of mathematics by studying Abstract algebra which offers not only opportunities to work on complex concepts and to develop one's abstract reasoning abilities, but also a preliminary understanding of what it is like to do research in mathematics. Libin LI is professor at School of Mathematics, Yangzhou University in China. His research interests include Representation theory in Hopf algebras and Tensor category, Decoding theory and Ring theory, Weyl algebras and isomorphism problems, etc. | ||
546 | |a In English. | ||
588 | 0 | |a Online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2022). | |
650 | 0 | |a Algebra, Abstract. |0 http://id.loc.gov/authorities/subjects/sh85003428 | |
650 | 6 | |a Algèbre abstraite. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Abstract. |2 bisacsh | |
650 | 7 | |a Algebra, Abstract |2 fast | |
700 | 1 | |a Zhao, Kaiming, |e author |4 aut |4 http://id.loc.gov/vocabulary/relators/aut | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3501020 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a De Gruyter |b DEGR |n 9782759829163 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL30810418 | ||
938 | |a EBSCOhost |b EBSC |n 3501020 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1343104564 |
---|---|
_version_ | 1816882564524146688 |
adam_text | |
any_adam_object | |
author | Li, Libin Zhao, Kaiming |
author_facet | Li, Libin Zhao, Kaiming |
author_role | aut aut |
author_sort | Li, Libin |
author_variant | l l ll k z kz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA162 |
callnumber-raw | QA162 |
callnumber-search | QA162 |
callnumber-sort | QA 3162 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface -- Contents -- Notations -- Chapter 1. Groups and Generating Sets -- Chapter 2. Permutation Groups and Alternating Groups -- Chapter 3. Finitely Generated Abelian Groups and Quotient Groups -- Chapter 4. Rings, Quotient Rings and Ideal Theory -- Chapter 5. Unique Factorization Domains -- Chapter 6. Extension Fields -- Appendix A. Equivalence Relations and Quotient Set -- Appendix B. Zorn's Lemma -- Appendix C. Quotient field -- Reference -- Index |
ctrlnum | (OCoLC)1343104564 |
dewey-full | 512.02 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.02 |
dewey-search | 512.02 |
dewey-sort | 3512.02 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03569cam a2200517 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1343104564</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">220830t20222022fr fod z000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DEGRU</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DEGRU</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">2759829162</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782759829163</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/978-2-7598-2916-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1343104564</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA162</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT002010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.02</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Libin,</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield><subfield code="4">http://id.loc.gov/vocabulary/relators/aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Abstract Algebra /</subfield><subfield code="c">Libin Li, Kaiming Zhao.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Les Ulis :</subfield><subfield code="b">EDP Sciences,</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (184 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="b">PDF</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Current Natural Sciences</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Notations --</subfield><subfield code="t">Chapter 1. Groups and Generating Sets --</subfield><subfield code="t">Chapter 2. Permutation Groups and Alternating Groups --</subfield><subfield code="t">Chapter 3. Finitely Generated Abelian Groups and Quotient Groups --</subfield><subfield code="t">Chapter 4. Rings, Quotient Rings and Ideal Theory --</subfield><subfield code="t">Chapter 5. Unique Factorization Domains --</subfield><subfield code="t">Chapter 6. Extension Fields --</subfield><subfield code="t">Appendix A. Equivalence Relations and Quotient Set --</subfield><subfield code="t">Appendix B. Zorn's Lemma --</subfield><subfield code="t">Appendix C. Quotient field --</subfield><subfield code="t">Reference --</subfield><subfield code="t">Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract algebra is an essential tool in algebra, number theory, geometry, topology, and, to a lesser extent, analysis. It is therefore a core requirement for all mathematics majors. Outside of mathematics, abstract algebra also has many applications in cryptography, coding theory, quantum chemistry, and physics. This book is intended as a textbook for a one-term senior undergraduate or gradate course in abstract algebra to prepare students for further readings on relevant subjects such as Group Theory and Galois Theory. Abstract algebra being the field of mathematics that studies algebraic structures such as groups, rings, fields, and modules, we will primarily study groups, rings, and fields in this book. The authors invite readers to experience the beauty of mathematics by studying Abstract algebra which offers not only opportunities to work on complex concepts and to develop one's abstract reasoning abilities, but also a preliminary understanding of what it is like to do research in mathematics. Libin LI is professor at School of Mathematics, Yangzhou University in China. His research interests include Representation theory in Hopf algebras and Tensor category, Decoding theory and Ring theory, Weyl algebras and isomorphism problems, etc.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2022).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebra, Abstract.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003428</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre abstraite.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Abstract.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra, Abstract</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Kaiming,</subfield><subfield code="e">author</subfield><subfield code="4">aut</subfield><subfield code="4">http://id.loc.gov/vocabulary/relators/aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3501020</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9782759829163</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL30810418</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3501020</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1343104564 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:37Z |
institution | BVB |
isbn | 2759829162 9782759829163 |
language | English |
oclc_num | 1343104564 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (184 pages). |
psigel | ZDB-4-EBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | EDP Sciences, |
record_format | marc |
series2 | Current Natural Sciences |
spelling | Li, Libin, author aut http://id.loc.gov/vocabulary/relators/aut Introduction to Abstract Algebra / Libin Li, Kaiming Zhao. Les Ulis : EDP Sciences, [2022] ©2022 1 online resource (184 pages). text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Current Natural Sciences Frontmatter -- Preface -- Contents -- Notations -- Chapter 1. Groups and Generating Sets -- Chapter 2. Permutation Groups and Alternating Groups -- Chapter 3. Finitely Generated Abelian Groups and Quotient Groups -- Chapter 4. Rings, Quotient Rings and Ideal Theory -- Chapter 5. Unique Factorization Domains -- Chapter 6. Extension Fields -- Appendix A. Equivalence Relations and Quotient Set -- Appendix B. Zorn's Lemma -- Appendix C. Quotient field -- Reference -- Index Abstract algebra is an essential tool in algebra, number theory, geometry, topology, and, to a lesser extent, analysis. It is therefore a core requirement for all mathematics majors. Outside of mathematics, abstract algebra also has many applications in cryptography, coding theory, quantum chemistry, and physics. This book is intended as a textbook for a one-term senior undergraduate or gradate course in abstract algebra to prepare students for further readings on relevant subjects such as Group Theory and Galois Theory. Abstract algebra being the field of mathematics that studies algebraic structures such as groups, rings, fields, and modules, we will primarily study groups, rings, and fields in this book. The authors invite readers to experience the beauty of mathematics by studying Abstract algebra which offers not only opportunities to work on complex concepts and to develop one's abstract reasoning abilities, but also a preliminary understanding of what it is like to do research in mathematics. Libin LI is professor at School of Mathematics, Yangzhou University in China. His research interests include Representation theory in Hopf algebras and Tensor category, Decoding theory and Ring theory, Weyl algebras and isomorphism problems, etc. In English. Online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2022). Algebra, Abstract. http://id.loc.gov/authorities/subjects/sh85003428 Algèbre abstraite. MATHEMATICS Algebra Abstract. bisacsh Algebra, Abstract fast Zhao, Kaiming, author aut http://id.loc.gov/vocabulary/relators/aut FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3501020 Volltext |
spellingShingle | Li, Libin Zhao, Kaiming Introduction to Abstract Algebra / Frontmatter -- Preface -- Contents -- Notations -- Chapter 1. Groups and Generating Sets -- Chapter 2. Permutation Groups and Alternating Groups -- Chapter 3. Finitely Generated Abelian Groups and Quotient Groups -- Chapter 4. Rings, Quotient Rings and Ideal Theory -- Chapter 5. Unique Factorization Domains -- Chapter 6. Extension Fields -- Appendix A. Equivalence Relations and Quotient Set -- Appendix B. Zorn's Lemma -- Appendix C. Quotient field -- Reference -- Index Algebra, Abstract. http://id.loc.gov/authorities/subjects/sh85003428 Algèbre abstraite. MATHEMATICS Algebra Abstract. bisacsh Algebra, Abstract fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85003428 |
title | Introduction to Abstract Algebra / |
title_alt | Frontmatter -- Preface -- Contents -- Notations -- Chapter 1. Groups and Generating Sets -- Chapter 2. Permutation Groups and Alternating Groups -- Chapter 3. Finitely Generated Abelian Groups and Quotient Groups -- Chapter 4. Rings, Quotient Rings and Ideal Theory -- Chapter 5. Unique Factorization Domains -- Chapter 6. Extension Fields -- Appendix A. Equivalence Relations and Quotient Set -- Appendix B. Zorn's Lemma -- Appendix C. Quotient field -- Reference -- Index |
title_auth | Introduction to Abstract Algebra / |
title_exact_search | Introduction to Abstract Algebra / |
title_full | Introduction to Abstract Algebra / Libin Li, Kaiming Zhao. |
title_fullStr | Introduction to Abstract Algebra / Libin Li, Kaiming Zhao. |
title_full_unstemmed | Introduction to Abstract Algebra / Libin Li, Kaiming Zhao. |
title_short | Introduction to Abstract Algebra / |
title_sort | introduction to abstract algebra |
topic | Algebra, Abstract. http://id.loc.gov/authorities/subjects/sh85003428 Algèbre abstraite. MATHEMATICS Algebra Abstract. bisacsh Algebra, Abstract fast |
topic_facet | Algebra, Abstract. Algèbre abstraite. MATHEMATICS Algebra Abstract. Algebra, Abstract |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3501020 |
work_keys_str_mv | AT lilibin introductiontoabstractalgebra AT zhaokaiming introductiontoabstractalgebra |