Principles of Big Data:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Ashland :
Arcler Press,
2020.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 7.4. Step Wise Approach In Analysis of Big Data. |
Beschreibung: | 1 online resource (200 pages) |
ISBN: | 1774078147 9781774078143 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1231606332 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 210116s2020 xx o 000 0 eng d | ||
040 | |a EBLCP |b eng |c EBLCP |d YDX |d UKAHL |d N$T |d OCLCO |d OCLCF |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ | ||
019 | |a 1229972595 | ||
020 | |a 1774078147 |q (electronic bk.) | ||
020 | |a 9781774078143 |q (electronic bk.) | ||
035 | |a (OCoLC)1231606332 |z (OCoLC)1229972595 | ||
050 | 4 | |a QA76.9.B45 | |
082 | 7 | |a 005.7 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Luna, Alvin Albuero De. | |
245 | 1 | 0 | |a Principles of Big Data |h [electronic resource] / |c Alvin Albuero De Luna. |
260 | |a Ashland : |b Arcler Press, |c 2020. | ||
300 | |a 1 online resource (200 pages) | ||
505 | 0 | |a Cover -- Title Page -- Copyright -- ABOUT THE AUTHOR -- TABLE OF CONTENTS -- List of Abbreviations -- Preface -- Chapter 1 Introduction to Big Data -- 1.1. Introduction -- 1.2. Concept of Big Data -- 1.3. What is Data? -- 1.4. What is Big Data? -- 1.5. The Big Data Systems are Different -- 1.6. Big Data Analytics -- 1.7. Case Study: German Telecom Company -- 1.8. Checkpoints -- Chapter 2 Identifier Systems -- 2.1. Meaning Of Identifier System -- 2.2. Features Of An Identifier System -- 2.3. Database Identifiers -- 2.4. Classes Of Identifiers -- 2.5. Rules For Regular Identifiers | |
505 | 8 | |a 2.6. One-Way Hash Function -- 2.7. De-Identification And Data Scrubbing -- 2.8. Concept Of De-Identification -- 2.9. The Process Of De-Identifications -- 2.10. Techniques Of De-Identification -- 2.11. Assessing The Risk Of Re-Identification -- 2.12. Case Study: Mastercard: Applying Social Media Research Insights For Better Business Decisions -- 2.13. Checkpoints -- Chapter 3 Improving the Quality of Big Data and Its Measurement -- 3.1. Data Scrubbing -- 3.2. Meaning of Bad Data -- 3.3. Common Approaches to Improve Data Quality -- 3.4. Measuring Big Data -- 3.5. How To Measure Big Data | |
505 | 8 | |a 3.6. Measuring Big Data Roi: A Sign of Data Maturity -- 3.7. The Interplay Of Hard And Soft Benefits -- 3.8. When Big Data Projects Require Big Investments -- 3.9. Real-Time, Real-World Roi -- 3.10. Case Study 2: Southwest Airlines: Big Data Pr Analysis Aids on-Time Performance -- 3.11. Checkpoints -- Chapter 4 Ontologies -- Introduction -- 4.1. Concept of Ontologies -- 4.2. Relation of Ontologies To Big Data Trend -- 4.3. Advantages And Limitations of Ontologies -- 4.4. Why Are Ontologies Developed? -- 4.5. Semantic Web -- 4.6. Major Components of Semantic Web -- 4.7. Checkpoints | |
505 | 8 | |a Chapter 5 Data Integration and Interoperability -- 5.1. What Is Data Integration? -- 5.2. Data Integration Areas -- 5.3. Types of Data Integration -- 5.4. Challenges of Data Integration and Interoperability in Big Data -- 5.5. Challenges of Big Data Integration And Interoperability -- 5.6. Immutability And Immortality -- 5.7. Data Types and Data Objects -- 5.8. Legacy Data -- 5.9. Data Born From Data -- 5.10. Reconciling Identifiers Across Institutions -- 5.11. Simple But Powerful Business Data Techniques -- 5.12. Association Rule Learning (ARL) -- 5.13. Classification Tree Analysis | |
505 | 8 | |a 5.14. Checkpoints -- Chapter 6 Clustering, Classification, and Reduction -- Introduction -- 6.1. Logistic Regression (Predictive Learning Model) -- 6.2. Clustering Algorithms -- 6.3. Data Reduction Strategies -- 6.4. Data Reduction Methods -- 6.5. Data Visualization: Data Reduction For Everyone -- 6.6. Case Study: Coca-Cola Enterprises (CCE) Case Study: The Thirst For Hr Analytics Grows -- 6.5. Checkpoints -- Chapter 7 Key Considerations in Big Data Analysis -- Introduction -- 7.1. Major Considerations For Big Data And Analytics -- 7.2. Overfitting -- 7.3. Bigness Bias | |
500 | |a 7.4. Step Wise Approach In Analysis of Big Data. | ||
588 | 0 | |a Description based upon print version of record. | |
650 | 0 | |a Big data. |0 http://id.loc.gov/authorities/subjects/sh2012003227 | |
650 | 0 | |a Database management. |0 http://id.loc.gov/authorities/subjects/sh85035848 | |
650 | 6 | |a Données volumineuses. | |
650 | 6 | |a Bases de données |x Gestion. | |
650 | 7 | |a Big data |2 fast | |
650 | 7 | |a Database management |2 fast | |
776 | 0 | 8 | |i Print version: |a Luna, Alvin Albuero De |t Principles of Big Data |d Ashland : Arcler Press,c2020 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2725218 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH38250041 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL6453449 | ||
938 | |a YBP Library Services |b YANK |n 301864282 | ||
938 | |a EBSCOhost |b EBSC |n 2725218 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1231606332 |
---|---|
_version_ | 1816882536835448832 |
adam_text | |
any_adam_object | |
author | Luna, Alvin Albuero De |
author_facet | Luna, Alvin Albuero De |
author_role | |
author_sort | Luna, Alvin Albuero De |
author_variant | a a d l aad aadl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.B45 |
callnumber-search | QA76.9.B45 |
callnumber-sort | QA 276.9 B45 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover -- Title Page -- Copyright -- ABOUT THE AUTHOR -- TABLE OF CONTENTS -- List of Abbreviations -- Preface -- Chapter 1 Introduction to Big Data -- 1.1. Introduction -- 1.2. Concept of Big Data -- 1.3. What is Data? -- 1.4. What is Big Data? -- 1.5. The Big Data Systems are Different -- 1.6. Big Data Analytics -- 1.7. Case Study: German Telecom Company -- 1.8. Checkpoints -- Chapter 2 Identifier Systems -- 2.1. Meaning Of Identifier System -- 2.2. Features Of An Identifier System -- 2.3. Database Identifiers -- 2.4. Classes Of Identifiers -- 2.5. Rules For Regular Identifiers 2.6. One-Way Hash Function -- 2.7. De-Identification And Data Scrubbing -- 2.8. Concept Of De-Identification -- 2.9. The Process Of De-Identifications -- 2.10. Techniques Of De-Identification -- 2.11. Assessing The Risk Of Re-Identification -- 2.12. Case Study: Mastercard: Applying Social Media Research Insights For Better Business Decisions -- 2.13. Checkpoints -- Chapter 3 Improving the Quality of Big Data and Its Measurement -- 3.1. Data Scrubbing -- 3.2. Meaning of Bad Data -- 3.3. Common Approaches to Improve Data Quality -- 3.4. Measuring Big Data -- 3.5. How To Measure Big Data 3.6. Measuring Big Data Roi: A Sign of Data Maturity -- 3.7. The Interplay Of Hard And Soft Benefits -- 3.8. When Big Data Projects Require Big Investments -- 3.9. Real-Time, Real-World Roi -- 3.10. Case Study 2: Southwest Airlines: Big Data Pr Analysis Aids on-Time Performance -- 3.11. Checkpoints -- Chapter 4 Ontologies -- Introduction -- 4.1. Concept of Ontologies -- 4.2. Relation of Ontologies To Big Data Trend -- 4.3. Advantages And Limitations of Ontologies -- 4.4. Why Are Ontologies Developed? -- 4.5. Semantic Web -- 4.6. Major Components of Semantic Web -- 4.7. Checkpoints Chapter 5 Data Integration and Interoperability -- 5.1. What Is Data Integration? -- 5.2. Data Integration Areas -- 5.3. Types of Data Integration -- 5.4. Challenges of Data Integration and Interoperability in Big Data -- 5.5. Challenges of Big Data Integration And Interoperability -- 5.6. Immutability And Immortality -- 5.7. Data Types and Data Objects -- 5.8. Legacy Data -- 5.9. Data Born From Data -- 5.10. Reconciling Identifiers Across Institutions -- 5.11. Simple But Powerful Business Data Techniques -- 5.12. Association Rule Learning (ARL) -- 5.13. Classification Tree Analysis 5.14. Checkpoints -- Chapter 6 Clustering, Classification, and Reduction -- Introduction -- 6.1. Logistic Regression (Predictive Learning Model) -- 6.2. Clustering Algorithms -- 6.3. Data Reduction Strategies -- 6.4. Data Reduction Methods -- 6.5. Data Visualization: Data Reduction For Everyone -- 6.6. Case Study: Coca-Cola Enterprises (CCE) Case Study: The Thirst For Hr Analytics Grows -- 6.5. Checkpoints -- Chapter 7 Key Considerations in Big Data Analysis -- Introduction -- 7.1. Major Considerations For Big Data And Analytics -- 7.2. Overfitting -- 7.3. Bigness Bias |
ctrlnum | (OCoLC)1231606332 |
dewey-full | 005.7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7 |
dewey-search | 005.7 |
dewey-sort | 15.7 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04717cam a2200493 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1231606332</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">210116s2020 xx o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="c">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">UKAHL</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1229972595</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1774078147</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781774078143</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1231606332</subfield><subfield code="z">(OCoLC)1229972595</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.B45</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luna, Alvin Albuero De.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of Big Data</subfield><subfield code="h">[electronic resource] /</subfield><subfield code="c">Alvin Albuero De Luna.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Ashland :</subfield><subfield code="b">Arcler Press,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (200 pages)</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- ABOUT THE AUTHOR -- TABLE OF CONTENTS -- List of Abbreviations -- Preface -- Chapter 1 Introduction to Big Data -- 1.1. Introduction -- 1.2. Concept of Big Data -- 1.3. What is Data? -- 1.4. What is Big Data? -- 1.5. The Big Data Systems are Different -- 1.6. Big Data Analytics -- 1.7. Case Study: German Telecom Company -- 1.8. Checkpoints -- Chapter 2 Identifier Systems -- 2.1. Meaning Of Identifier System -- 2.2. Features Of An Identifier System -- 2.3. Database Identifiers -- 2.4. Classes Of Identifiers -- 2.5. Rules For Regular Identifiers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.6. One-Way Hash Function -- 2.7. De-Identification And Data Scrubbing -- 2.8. Concept Of De-Identification -- 2.9. The Process Of De-Identifications -- 2.10. Techniques Of De-Identification -- 2.11. Assessing The Risk Of Re-Identification -- 2.12. Case Study: Mastercard: Applying Social Media Research Insights For Better Business Decisions -- 2.13. Checkpoints -- Chapter 3 Improving the Quality of Big Data and Its Measurement -- 3.1. Data Scrubbing -- 3.2. Meaning of Bad Data -- 3.3. Common Approaches to Improve Data Quality -- 3.4. Measuring Big Data -- 3.5. How To Measure Big Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6. Measuring Big Data Roi: A Sign of Data Maturity -- 3.7. The Interplay Of Hard And Soft Benefits -- 3.8. When Big Data Projects Require Big Investments -- 3.9. Real-Time, Real-World Roi -- 3.10. Case Study 2: Southwest Airlines: Big Data Pr Analysis Aids on-Time Performance -- 3.11. Checkpoints -- Chapter 4 Ontologies -- Introduction -- 4.1. Concept of Ontologies -- 4.2. Relation of Ontologies To Big Data Trend -- 4.3. Advantages And Limitations of Ontologies -- 4.4. Why Are Ontologies Developed? -- 4.5. Semantic Web -- 4.6. Major Components of Semantic Web -- 4.7. Checkpoints</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 5 Data Integration and Interoperability -- 5.1. What Is Data Integration? -- 5.2. Data Integration Areas -- 5.3. Types of Data Integration -- 5.4. Challenges of Data Integration and Interoperability in Big Data -- 5.5. Challenges of Big Data Integration And Interoperability -- 5.6. Immutability And Immortality -- 5.7. Data Types and Data Objects -- 5.8. Legacy Data -- 5.9. Data Born From Data -- 5.10. Reconciling Identifiers Across Institutions -- 5.11. Simple But Powerful Business Data Techniques -- 5.12. Association Rule Learning (ARL) -- 5.13. Classification Tree Analysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.14. Checkpoints -- Chapter 6 Clustering, Classification, and Reduction -- Introduction -- 6.1. Logistic Regression (Predictive Learning Model) -- 6.2. Clustering Algorithms -- 6.3. Data Reduction Strategies -- 6.4. Data Reduction Methods -- 6.5. Data Visualization: Data Reduction For Everyone -- 6.6. Case Study: Coca-Cola Enterprises (CCE) Case Study: The Thirst For Hr Analytics Grows -- 6.5. Checkpoints -- Chapter 7 Key Considerations in Big Data Analysis -- Introduction -- 7.1. Major Considerations For Big Data And Analytics -- 7.2. Overfitting -- 7.3. Bigness Bias</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.4. Step Wise Approach In Analysis of Big Data.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Description based upon print version of record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2012003227</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Database management.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85035848</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Données volumineuses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Bases de données</subfield><subfield code="x">Gestion.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Database management</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Luna, Alvin Albuero De</subfield><subfield code="t">Principles of Big Data</subfield><subfield code="d">Ashland : Arcler Press,c2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2725218</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH38250041</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL6453449</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">301864282</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2725218</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1231606332 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:11Z |
institution | BVB |
isbn | 1774078147 9781774078143 |
language | English |
oclc_num | 1231606332 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (200 pages) |
psigel | ZDB-4-EBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Arcler Press, |
record_format | marc |
spelling | Luna, Alvin Albuero De. Principles of Big Data [electronic resource] / Alvin Albuero De Luna. Ashland : Arcler Press, 2020. 1 online resource (200 pages) Cover -- Title Page -- Copyright -- ABOUT THE AUTHOR -- TABLE OF CONTENTS -- List of Abbreviations -- Preface -- Chapter 1 Introduction to Big Data -- 1.1. Introduction -- 1.2. Concept of Big Data -- 1.3. What is Data? -- 1.4. What is Big Data? -- 1.5. The Big Data Systems are Different -- 1.6. Big Data Analytics -- 1.7. Case Study: German Telecom Company -- 1.8. Checkpoints -- Chapter 2 Identifier Systems -- 2.1. Meaning Of Identifier System -- 2.2. Features Of An Identifier System -- 2.3. Database Identifiers -- 2.4. Classes Of Identifiers -- 2.5. Rules For Regular Identifiers 2.6. One-Way Hash Function -- 2.7. De-Identification And Data Scrubbing -- 2.8. Concept Of De-Identification -- 2.9. The Process Of De-Identifications -- 2.10. Techniques Of De-Identification -- 2.11. Assessing The Risk Of Re-Identification -- 2.12. Case Study: Mastercard: Applying Social Media Research Insights For Better Business Decisions -- 2.13. Checkpoints -- Chapter 3 Improving the Quality of Big Data and Its Measurement -- 3.1. Data Scrubbing -- 3.2. Meaning of Bad Data -- 3.3. Common Approaches to Improve Data Quality -- 3.4. Measuring Big Data -- 3.5. How To Measure Big Data 3.6. Measuring Big Data Roi: A Sign of Data Maturity -- 3.7. The Interplay Of Hard And Soft Benefits -- 3.8. When Big Data Projects Require Big Investments -- 3.9. Real-Time, Real-World Roi -- 3.10. Case Study 2: Southwest Airlines: Big Data Pr Analysis Aids on-Time Performance -- 3.11. Checkpoints -- Chapter 4 Ontologies -- Introduction -- 4.1. Concept of Ontologies -- 4.2. Relation of Ontologies To Big Data Trend -- 4.3. Advantages And Limitations of Ontologies -- 4.4. Why Are Ontologies Developed? -- 4.5. Semantic Web -- 4.6. Major Components of Semantic Web -- 4.7. Checkpoints Chapter 5 Data Integration and Interoperability -- 5.1. What Is Data Integration? -- 5.2. Data Integration Areas -- 5.3. Types of Data Integration -- 5.4. Challenges of Data Integration and Interoperability in Big Data -- 5.5. Challenges of Big Data Integration And Interoperability -- 5.6. Immutability And Immortality -- 5.7. Data Types and Data Objects -- 5.8. Legacy Data -- 5.9. Data Born From Data -- 5.10. Reconciling Identifiers Across Institutions -- 5.11. Simple But Powerful Business Data Techniques -- 5.12. Association Rule Learning (ARL) -- 5.13. Classification Tree Analysis 5.14. Checkpoints -- Chapter 6 Clustering, Classification, and Reduction -- Introduction -- 6.1. Logistic Regression (Predictive Learning Model) -- 6.2. Clustering Algorithms -- 6.3. Data Reduction Strategies -- 6.4. Data Reduction Methods -- 6.5. Data Visualization: Data Reduction For Everyone -- 6.6. Case Study: Coca-Cola Enterprises (CCE) Case Study: The Thirst For Hr Analytics Grows -- 6.5. Checkpoints -- Chapter 7 Key Considerations in Big Data Analysis -- Introduction -- 7.1. Major Considerations For Big Data And Analytics -- 7.2. Overfitting -- 7.3. Bigness Bias 7.4. Step Wise Approach In Analysis of Big Data. Description based upon print version of record. Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Database management. http://id.loc.gov/authorities/subjects/sh85035848 Données volumineuses. Bases de données Gestion. Big data fast Database management fast Print version: Luna, Alvin Albuero De Principles of Big Data Ashland : Arcler Press,c2020 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2725218 Volltext |
spellingShingle | Luna, Alvin Albuero De Principles of Big Data Cover -- Title Page -- Copyright -- ABOUT THE AUTHOR -- TABLE OF CONTENTS -- List of Abbreviations -- Preface -- Chapter 1 Introduction to Big Data -- 1.1. Introduction -- 1.2. Concept of Big Data -- 1.3. What is Data? -- 1.4. What is Big Data? -- 1.5. The Big Data Systems are Different -- 1.6. Big Data Analytics -- 1.7. Case Study: German Telecom Company -- 1.8. Checkpoints -- Chapter 2 Identifier Systems -- 2.1. Meaning Of Identifier System -- 2.2. Features Of An Identifier System -- 2.3. Database Identifiers -- 2.4. Classes Of Identifiers -- 2.5. Rules For Regular Identifiers 2.6. One-Way Hash Function -- 2.7. De-Identification And Data Scrubbing -- 2.8. Concept Of De-Identification -- 2.9. The Process Of De-Identifications -- 2.10. Techniques Of De-Identification -- 2.11. Assessing The Risk Of Re-Identification -- 2.12. Case Study: Mastercard: Applying Social Media Research Insights For Better Business Decisions -- 2.13. Checkpoints -- Chapter 3 Improving the Quality of Big Data and Its Measurement -- 3.1. Data Scrubbing -- 3.2. Meaning of Bad Data -- 3.3. Common Approaches to Improve Data Quality -- 3.4. Measuring Big Data -- 3.5. How To Measure Big Data 3.6. Measuring Big Data Roi: A Sign of Data Maturity -- 3.7. The Interplay Of Hard And Soft Benefits -- 3.8. When Big Data Projects Require Big Investments -- 3.9. Real-Time, Real-World Roi -- 3.10. Case Study 2: Southwest Airlines: Big Data Pr Analysis Aids on-Time Performance -- 3.11. Checkpoints -- Chapter 4 Ontologies -- Introduction -- 4.1. Concept of Ontologies -- 4.2. Relation of Ontologies To Big Data Trend -- 4.3. Advantages And Limitations of Ontologies -- 4.4. Why Are Ontologies Developed? -- 4.5. Semantic Web -- 4.6. Major Components of Semantic Web -- 4.7. Checkpoints Chapter 5 Data Integration and Interoperability -- 5.1. What Is Data Integration? -- 5.2. Data Integration Areas -- 5.3. Types of Data Integration -- 5.4. Challenges of Data Integration and Interoperability in Big Data -- 5.5. Challenges of Big Data Integration And Interoperability -- 5.6. Immutability And Immortality -- 5.7. Data Types and Data Objects -- 5.8. Legacy Data -- 5.9. Data Born From Data -- 5.10. Reconciling Identifiers Across Institutions -- 5.11. Simple But Powerful Business Data Techniques -- 5.12. Association Rule Learning (ARL) -- 5.13. Classification Tree Analysis 5.14. Checkpoints -- Chapter 6 Clustering, Classification, and Reduction -- Introduction -- 6.1. Logistic Regression (Predictive Learning Model) -- 6.2. Clustering Algorithms -- 6.3. Data Reduction Strategies -- 6.4. Data Reduction Methods -- 6.5. Data Visualization: Data Reduction For Everyone -- 6.6. Case Study: Coca-Cola Enterprises (CCE) Case Study: The Thirst For Hr Analytics Grows -- 6.5. Checkpoints -- Chapter 7 Key Considerations in Big Data Analysis -- Introduction -- 7.1. Major Considerations For Big Data And Analytics -- 7.2. Overfitting -- 7.3. Bigness Bias Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Database management. http://id.loc.gov/authorities/subjects/sh85035848 Données volumineuses. Bases de données Gestion. Big data fast Database management fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2012003227 http://id.loc.gov/authorities/subjects/sh85035848 |
title | Principles of Big Data |
title_auth | Principles of Big Data |
title_exact_search | Principles of Big Data |
title_full | Principles of Big Data [electronic resource] / Alvin Albuero De Luna. |
title_fullStr | Principles of Big Data [electronic resource] / Alvin Albuero De Luna. |
title_full_unstemmed | Principles of Big Data [electronic resource] / Alvin Albuero De Luna. |
title_short | Principles of Big Data |
title_sort | principles of big data |
topic | Big data. http://id.loc.gov/authorities/subjects/sh2012003227 Database management. http://id.loc.gov/authorities/subjects/sh85035848 Données volumineuses. Bases de données Gestion. Big data fast Database management fast |
topic_facet | Big data. Database management. Données volumineuses. Bases de données Gestion. Big data Database management |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2725218 |
work_keys_str_mv | AT lunaalvinalbuerode principlesofbigdata |