Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era /:
The operational theme permeating most definitions of the IoT concept, is the wireless communication of networked objects, in particular, smart sensing devices and machines, exchanging data a la Internet. In this book, a detailed look is taken at the fundamental principles of devices and techniques w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Gistrup, Denmark ; Delft, Netherlands :
River Publishers,
2019
|
Schriftenreihe: | River Publishers series in electronic materials and devices
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The operational theme permeating most definitions of the IoT concept, is the wireless communication of networked objects, in particular, smart sensing devices and machines, exchanging data a la Internet. In this book, a detailed look is taken at the fundamental principles of devices and techniques whose exploitation will facilitate the development of compact, power-efficient, autonomous, smart, networked sensing nodes underlying and encompassing the emerging IoT era. The book provides an understanding of nanoelectromechanical quantum circuits and systems (NEMX), as exemplified by firstly the uncovering of their origins, impetus and motivation, and secondly by developing an understanding of their device physics, including, the topics of actuation, mechanical vibration and sensing. Next the fundamentals of key devices, namely, MEMS/NEMS switches, varactors and resonators are covered, including a wide range of implementations. The book then looks at their energy supply via energy harvesting, as derived from wireless energy and mechanical vibrations. Finally, after an introduction to the fundamentals of IoT networks and nodes, the book concludes with an exploration of how the NEMX components are encroaching in a variety of emerging IoT applications. |
Beschreibung: | 1 online resource (xxxi, 197 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9788770221276 8770221278 9781003339939 100333993X 9781000796377 100079637X 9781000793604 1000793605 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1139150951 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 200207s2019 dk a ob 001 0 eng d | ||
040 | |a YDX |b eng |e pn |c YDX |d OCLCQ |d N$T |d YDX |d MYG |d OCLCO |d OCL |d ESU |d OCLCQ |d UPM |d OCLCO |d OCL |d TYFRS |d UKAHL |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d TMA |d OCLCQ | ||
020 | |a 9788770221276 |q (electronic bk.) | ||
020 | |a 8770221278 |q (electronic bk.) | ||
020 | |a 9781003339939 |q (electronic bk.) | ||
020 | |a 100333993X |q (electronic bk.) | ||
020 | |a 9781000796377 |q (electronic bk. : EPUB) | ||
020 | |a 100079637X |q (electronic bk. : EPUB) | ||
020 | |a 9781000793604 |q (electronic bk. : PDF) | ||
020 | |a 1000793605 |q (electronic bk. : PDF) | ||
020 | |z 8770221286 | ||
020 | |z 9788770221283 | ||
024 | 7 | |a 10.1201/9781003339939 |2 doi | |
035 | |a (OCoLC)1139150951 | ||
037 | |a 9781003339939 |b Taylor & Francis | ||
050 | 4 | |a QC176.8.N35 | |
072 | 7 | |a SCI |x 024000 |2 bisacsh | |
072 | 7 | |a TJFC |2 bicssc | |
082 | 7 | |a 621.395 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Santos, Héctor J. de los. |e author. |0 http://id.loc.gov/authorities/names/n99003267 | |
245 | 1 | 0 | |a Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / |c Héctor J. De Los Santos |
264 | 1 | |a Gistrup, Denmark ; |a Delft, Netherlands : |b River Publishers, |c 2019 | |
264 | 4 | |c ©2019 | |
300 | |a 1 online resource (xxxi, 197 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 0 | |a River Publishers series in electronic materials and devices | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface xiii Acknowledgments xvii -- List of Figures xix -- List of Tables xxvii -- List of Abbreviations xxix -- 1 The Internet of Things 1 -- 1.1 Origins 1 -- 1.2 IoT Motivation/Impact 3 -- 1.3 Summary 6 -- 2 Microelectromechanical and Nanoelectromechanical Systems 7 -- 2.1 MEMS/NEMS Origins 7 -- 2.2 MEMS/NEMS Impetus/Motivation 8 -- 2.3 Summary 10 -- 3 Understanding MEMS/NEMS Device Physics 11 -- 3.1 Actuation 11 -- 3.1.1 Electrostatic Actuation 11 -- 3.1.1.1 Parallel-plate capacitor 11 -- 3.1.1.2 Electrostatically actuated cantilever beam 14 -- 3.1.1.3 Interdigitated (comb-drive) capacitor 17 -- 3.1.2 Piezoelectric Actuation 18 -- 3.1.2.1 Piezoelectric cantilever probe 19 -- 3.1.3 Casimir Actuation 21 -- 3.1.3.1 Casimir's own force calculation 22 -- 3.1.3.2 Lifshitz' calculation of the casimir force 24 -- 3.1.3.3 Casimir force calculation of brown and maclay 29 -- 3.1.3.4 Casimir force calculations for arbitrary geometries 31 -- 3.1.3.4.1 Computing the casimir energy based on multipole interactions 31 -- 3.1.3.4.2 Computing the casimir force using finite-difference time-domain techniques 33 -- 3.1.3.4.3 Computing the casimir force using the framework of macroscopic quantum electrodynamics 34 -- 3.1.3.5 Corrections to ideal casimir force derivation 37 -- 3.1.4 Radiation Pressure Actuation 38 -- 3.1.4.1 Radiation pressure manipulation of particles 40 -- 3.1.4.2 Radiation pressure trapping of particles 41 -- 3.1.4.3 Radiation pressure effect on cantilever beams 42 -- 3.2 Mechanical Vibration 45 -- 3.2.1 The Single-Degree-of-Freedom System 46 -- 3.2.2 The Many-Degree-of-Freedom System 48 -- 3.2.3 Rayleigh's Method 49 -- 3.3 Thermal Noise in MEMS/NEMS 51 -- 3.3.1 Fundamental Origin of Intrinsic Noise 51 -- 3.3.1.1 Amplitude of brownian (random) displacement of cantilever beam 64 -- 3.4 Sensing 70 -- 3.4.1 The Accelerometer 70 -- 3.4.1.1 Capacitive accelerometer implementation 72 -- 3.4.1.2 Quantum mechanical tunneling accelerometer 73 -- 3.4.2 Vibration Sensors 76. | |
505 | 8 | |a 3.5 Summary 79 -- 4 Understanding MEMS/NEMS Devices 81 -- 4.1 Introduction 81 -- 4.2 MEMS/NEMS Switches 81 -- 4.2.1 Nanoelectromechanical Switches 84 -- 4.2.1.1 Downscaled MEMS/NEMS switches 86 -- 4.2.1.2 MEMS/NEMS switches via new materials 92 -- 4.3 MEMS/NEMS Varactors 95 -- 4.3.1 Nanoelectromechanical Varactors 95 -- 4.3.1.1 Dual-gap MEMS/NEMS varactors 95 -- 4.3.1.2 MEMS/NEMS varactors via new materials 97 -- 4.4 MEMS/NEMS Resonators 99 -- 4.4.1 Nanoelectromechanical Resonators 99 -- 4.4.1.1 Clamp-clamp RF MEMS resonators 99 -- 4.4.1.2 MEMS/NEMS resonators via new materials 101 -- 4.5 Summary 111 -- 5 Understanding MEMS/NEMS for Energy Harvesting 113 -- 5.1 Introduction 113 -- 5.2 Wireless Energy Harvesting 113 -- 5.2.1 RF-DC Conversion Circuit 116 -- 5.2.2 Resonant Amplification of Extremely Small Signals 118 -- 5.3 Mechanical Energy Harvesting 123 -- 5.3.1 Theory of Energy Harvesting from Vibrations 125 -- 5.3.1.1 Piezoelectric conversion 127 -- 5.3.1.2 Electrostatic conversion 132 -- 5.4 Summary 136 -- 6 NEMX Applications in the IoT Era 137 -- 6.1 Introduction 137 -- 6.1.1 Wireless Connectivity 137 -- 6.1.1.1 Communication protocols 141 -- 6.1.1.2 Network range 142 -- 6.2 Roots of the Internet of Things 142 -- 6.3 Applications of the Internet of Things 144 -- 6.3.1 NEMX in Smart Home IoT Applications 144 -- 6.3.2 NEMX in Wearable IoT Applications 146 -- 6.3.3 NEMX in Smart Cities IoT Applications 146 -- 6.3.4 NEMX in Smart Grid IoT Applications 147 -- 6.3.5 NEMX in Industrial Internet IoT Applications 147 -- 6.3.6 NEMX in Connected Car IoT Applications 148 -- 6.3.7 NEMX in Connected Health IoT Applications 150 -- 6.3.8 NEMX in Smart Retail IoT Applications 150 -- 6.3.9 NEMX in Smart Supply Chain IoT Applications 151 -- 6.3.10 NEMX in Smart Farming IoT Applications 151 -- 6.4 Applications in Wireless Sensor Networks 152 -- 6.4.1 NEMX-Based Radios for the IoT 154 -- 6.4.2 Agricultural Applications 157 -- 6.5 -- 5G: Systems 157 -- 6.6 -- 5G: Technologies 160. | |
505 | 8 | |a 6.6.1 Device-to-Device Communications 160 -- 6.6.2 Simultaneous Transmission/Reception 160 -- 6.6.3 mmWave/5G Frequencies for IoT 161 -- 6.7 Summary 161 Appendix A: MEMS Fabrication Techniques Fundamentals 163 A.1 Introduction 163 A.2 The Conventional IC Fabrication Process 163 A.3 Bulk Micromachining 164 A.4 Surface Micromachining 165 A.5 Materials Systems 167 A.6 Summary 168 Appendix B: Emerging Fabrication Technologies for the IoT: Flexible Substrates and Printed Electronics 169 B.1 Flexible Substrates 169 B.1.1 Device Fabrication on Flexible Substrates 171 B.1.1.1 Thin-Film Transistors (TFTs) 171 B.1.2 Film Bulk Acoustic Wave Resonators (FBARs) 172 B.2 Printed Electronics 173 B.2.1 Printing Technologies 174 B.2.1.1 Contact Printing Techniques 174 B.2.1.2 Non-Contact Printing Techniques 174 B.3 Summary 177 -- References 179 -- Index 193 -- About the Author 199. | |
520 | |a The operational theme permeating most definitions of the IoT concept, is the wireless communication of networked objects, in particular, smart sensing devices and machines, exchanging data a la Internet. In this book, a detailed look is taken at the fundamental principles of devices and techniques whose exploitation will facilitate the development of compact, power-efficient, autonomous, smart, networked sensing nodes underlying and encompassing the emerging IoT era. The book provides an understanding of nanoelectromechanical quantum circuits and systems (NEMX), as exemplified by firstly the uncovering of their origins, impetus and motivation, and secondly by developing an understanding of their device physics, including, the topics of actuation, mechanical vibration and sensing. Next the fundamentals of key devices, namely, MEMS/NEMS switches, varactors and resonators are covered, including a wide range of implementations. The book then looks at their energy supply via energy harvesting, as derived from wireless energy and mechanical vibrations. Finally, after an introduction to the fundamentals of IoT networks and nodes, the book concludes with an exploration of how the NEMX components are encroaching in a variety of emerging IoT applications. | ||
545 | 0 | |a Héctor J. De Los Santos | |
650 | 0 | |a Nanoelectromechanical systems. |0 http://id.loc.gov/authorities/subjects/sh2006008121 | |
650 | 0 | |a Internet of things. |0 http://id.loc.gov/authorities/subjects/sh2013000266 | |
650 | 6 | |a Nanosystèmes électromécaniques. | |
650 | 6 | |a Internet des objets. | |
650 | 7 | |a SCIENCE / Energy |2 bisacsh | |
650 | 7 | |a Internet of things |2 fast | |
650 | 7 | |a Nanoelectromechanical systems |2 fast | |
758 | |i has work: |a Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IOT) era (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGgC7Jq36xBy3H6gGBdKgq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2363400 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH40652041 | ||
938 | |a YBP Library Services |b YANK |n 18134210 | ||
938 | |a EBSCOhost |b EBSC |n 2363400 | ||
938 | |a YBP Library Services |b YANK |n 301085431 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1139150951 |
---|---|
_version_ | 1816882510411333632 |
adam_text | |
any_adam_object | |
author | Santos, Héctor J. de los |
author_GND | http://id.loc.gov/authorities/names/n99003267 |
author_facet | Santos, Héctor J. de los |
author_role | aut |
author_sort | Santos, Héctor J. de los |
author_variant | h j d l s hjdl hjdls |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC176 |
callnumber-raw | QC176.8.N35 |
callnumber-search | QC176.8.N35 |
callnumber-sort | QC 3176.8 N35 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Preface xiii Acknowledgments xvii -- List of Figures xix -- List of Tables xxvii -- List of Abbreviations xxix -- 1 The Internet of Things 1 -- 1.1 Origins 1 -- 1.2 IoT Motivation/Impact 3 -- 1.3 Summary 6 -- 2 Microelectromechanical and Nanoelectromechanical Systems 7 -- 2.1 MEMS/NEMS Origins 7 -- 2.2 MEMS/NEMS Impetus/Motivation 8 -- 2.3 Summary 10 -- 3 Understanding MEMS/NEMS Device Physics 11 -- 3.1 Actuation 11 -- 3.1.1 Electrostatic Actuation 11 -- 3.1.1.1 Parallel-plate capacitor 11 -- 3.1.1.2 Electrostatically actuated cantilever beam 14 -- 3.1.1.3 Interdigitated (comb-drive) capacitor 17 -- 3.1.2 Piezoelectric Actuation 18 -- 3.1.2.1 Piezoelectric cantilever probe 19 -- 3.1.3 Casimir Actuation 21 -- 3.1.3.1 Casimir's own force calculation 22 -- 3.1.3.2 Lifshitz' calculation of the casimir force 24 -- 3.1.3.3 Casimir force calculation of brown and maclay 29 -- 3.1.3.4 Casimir force calculations for arbitrary geometries 31 -- 3.1.3.4.1 Computing the casimir energy based on multipole interactions 31 -- 3.1.3.4.2 Computing the casimir force using finite-difference time-domain techniques 33 -- 3.1.3.4.3 Computing the casimir force using the framework of macroscopic quantum electrodynamics 34 -- 3.1.3.5 Corrections to ideal casimir force derivation 37 -- 3.1.4 Radiation Pressure Actuation 38 -- 3.1.4.1 Radiation pressure manipulation of particles 40 -- 3.1.4.2 Radiation pressure trapping of particles 41 -- 3.1.4.3 Radiation pressure effect on cantilever beams 42 -- 3.2 Mechanical Vibration 45 -- 3.2.1 The Single-Degree-of-Freedom System 46 -- 3.2.2 The Many-Degree-of-Freedom System 48 -- 3.2.3 Rayleigh's Method 49 -- 3.3 Thermal Noise in MEMS/NEMS 51 -- 3.3.1 Fundamental Origin of Intrinsic Noise 51 -- 3.3.1.1 Amplitude of brownian (random) displacement of cantilever beam 64 -- 3.4 Sensing 70 -- 3.4.1 The Accelerometer 70 -- 3.4.1.1 Capacitive accelerometer implementation 72 -- 3.4.1.2 Quantum mechanical tunneling accelerometer 73 -- 3.4.2 Vibration Sensors 76. 3.5 Summary 79 -- 4 Understanding MEMS/NEMS Devices 81 -- 4.1 Introduction 81 -- 4.2 MEMS/NEMS Switches 81 -- 4.2.1 Nanoelectromechanical Switches 84 -- 4.2.1.1 Downscaled MEMS/NEMS switches 86 -- 4.2.1.2 MEMS/NEMS switches via new materials 92 -- 4.3 MEMS/NEMS Varactors 95 -- 4.3.1 Nanoelectromechanical Varactors 95 -- 4.3.1.1 Dual-gap MEMS/NEMS varactors 95 -- 4.3.1.2 MEMS/NEMS varactors via new materials 97 -- 4.4 MEMS/NEMS Resonators 99 -- 4.4.1 Nanoelectromechanical Resonators 99 -- 4.4.1.1 Clamp-clamp RF MEMS resonators 99 -- 4.4.1.2 MEMS/NEMS resonators via new materials 101 -- 4.5 Summary 111 -- 5 Understanding MEMS/NEMS for Energy Harvesting 113 -- 5.1 Introduction 113 -- 5.2 Wireless Energy Harvesting 113 -- 5.2.1 RF-DC Conversion Circuit 116 -- 5.2.2 Resonant Amplification of Extremely Small Signals 118 -- 5.3 Mechanical Energy Harvesting 123 -- 5.3.1 Theory of Energy Harvesting from Vibrations 125 -- 5.3.1.1 Piezoelectric conversion 127 -- 5.3.1.2 Electrostatic conversion 132 -- 5.4 Summary 136 -- 6 NEMX Applications in the IoT Era 137 -- 6.1 Introduction 137 -- 6.1.1 Wireless Connectivity 137 -- 6.1.1.1 Communication protocols 141 -- 6.1.1.2 Network range 142 -- 6.2 Roots of the Internet of Things 142 -- 6.3 Applications of the Internet of Things 144 -- 6.3.1 NEMX in Smart Home IoT Applications 144 -- 6.3.2 NEMX in Wearable IoT Applications 146 -- 6.3.3 NEMX in Smart Cities IoT Applications 146 -- 6.3.4 NEMX in Smart Grid IoT Applications 147 -- 6.3.5 NEMX in Industrial Internet IoT Applications 147 -- 6.3.6 NEMX in Connected Car IoT Applications 148 -- 6.3.7 NEMX in Connected Health IoT Applications 150 -- 6.3.8 NEMX in Smart Retail IoT Applications 150 -- 6.3.9 NEMX in Smart Supply Chain IoT Applications 151 -- 6.3.10 NEMX in Smart Farming IoT Applications 151 -- 6.4 Applications in Wireless Sensor Networks 152 -- 6.4.1 NEMX-Based Radios for the IoT 154 -- 6.4.2 Agricultural Applications 157 -- 6.5 -- 5G: Systems 157 -- 6.6 -- 5G: Technologies 160. 6.6.1 Device-to-Device Communications 160 -- 6.6.2 Simultaneous Transmission/Reception 160 -- 6.6.3 mmWave/5G Frequencies for IoT 161 -- 6.7 Summary 161 Appendix A: MEMS Fabrication Techniques Fundamentals 163 A.1 Introduction 163 A.2 The Conventional IC Fabrication Process 163 A.3 Bulk Micromachining 164 A.4 Surface Micromachining 165 A.5 Materials Systems 167 A.6 Summary 168 Appendix B: Emerging Fabrication Technologies for the IoT: Flexible Substrates and Printed Electronics 169 B.1 Flexible Substrates 169 B.1.1 Device Fabrication on Flexible Substrates 171 B.1.1.1 Thin-Film Transistors (TFTs) 171 B.1.2 Film Bulk Acoustic Wave Resonators (FBARs) 172 B.2 Printed Electronics 173 B.2.1 Printing Technologies 174 B.2.1.1 Contact Printing Techniques 174 B.2.1.2 Non-Contact Printing Techniques 174 B.3 Summary 177 -- References 179 -- Index 193 -- About the Author 199. |
ctrlnum | (OCoLC)1139150951 |
dewey-full | 621.395 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.395 |
dewey-search | 621.395 |
dewey-sort | 3621.395 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09035cam a2200673 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1139150951</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">200207s2019 dk a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">MYG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">ESU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UPM</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">TYFRS</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788770221276</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">8770221278</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003339939</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">100333993X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000796377</subfield><subfield code="q">(electronic bk. : EPUB)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">100079637X</subfield><subfield code="q">(electronic bk. : EPUB)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000793604</subfield><subfield code="q">(electronic bk. : PDF)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000793605</subfield><subfield code="q">(electronic bk. : PDF)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">8770221286</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9788770221283</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003339939</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1139150951</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781003339939</subfield><subfield code="b">Taylor & Francis</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC176.8.N35</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">024000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TJFC</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.395</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santos, Héctor J. de los.</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99003267</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era /</subfield><subfield code="c">Héctor J. De Los Santos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Gistrup, Denmark ;</subfield><subfield code="a">Delft, Netherlands :</subfield><subfield code="b">River Publishers,</subfield><subfield code="c">2019</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxi, 197 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">River Publishers series in electronic materials and devices</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface xiii Acknowledgments xvii -- List of Figures xix -- List of Tables xxvii -- List of Abbreviations xxix -- 1 The Internet of Things 1 -- 1.1 Origins 1 -- 1.2 IoT Motivation/Impact 3 -- 1.3 Summary 6 -- 2 Microelectromechanical and Nanoelectromechanical Systems 7 -- 2.1 MEMS/NEMS Origins 7 -- 2.2 MEMS/NEMS Impetus/Motivation 8 -- 2.3 Summary 10 -- 3 Understanding MEMS/NEMS Device Physics 11 -- 3.1 Actuation 11 -- 3.1.1 Electrostatic Actuation 11 -- 3.1.1.1 Parallel-plate capacitor 11 -- 3.1.1.2 Electrostatically actuated cantilever beam 14 -- 3.1.1.3 Interdigitated (comb-drive) capacitor 17 -- 3.1.2 Piezoelectric Actuation 18 -- 3.1.2.1 Piezoelectric cantilever probe 19 -- 3.1.3 Casimir Actuation 21 -- 3.1.3.1 Casimir's own force calculation 22 -- 3.1.3.2 Lifshitz' calculation of the casimir force 24 -- 3.1.3.3 Casimir force calculation of brown and maclay 29 -- 3.1.3.4 Casimir force calculations for arbitrary geometries 31 -- 3.1.3.4.1 Computing the casimir energy based on multipole interactions 31 -- 3.1.3.4.2 Computing the casimir force using finite-difference time-domain techniques 33 -- 3.1.3.4.3 Computing the casimir force using the framework of macroscopic quantum electrodynamics 34 -- 3.1.3.5 Corrections to ideal casimir force derivation 37 -- 3.1.4 Radiation Pressure Actuation 38 -- 3.1.4.1 Radiation pressure manipulation of particles 40 -- 3.1.4.2 Radiation pressure trapping of particles 41 -- 3.1.4.3 Radiation pressure effect on cantilever beams 42 -- 3.2 Mechanical Vibration 45 -- 3.2.1 The Single-Degree-of-Freedom System 46 -- 3.2.2 The Many-Degree-of-Freedom System 48 -- 3.2.3 Rayleigh's Method 49 -- 3.3 Thermal Noise in MEMS/NEMS 51 -- 3.3.1 Fundamental Origin of Intrinsic Noise 51 -- 3.3.1.1 Amplitude of brownian (random) displacement of cantilever beam 64 -- 3.4 Sensing 70 -- 3.4.1 The Accelerometer 70 -- 3.4.1.1 Capacitive accelerometer implementation 72 -- 3.4.1.2 Quantum mechanical tunneling accelerometer 73 -- 3.4.2 Vibration Sensors 76.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5 Summary 79 -- 4 Understanding MEMS/NEMS Devices 81 -- 4.1 Introduction 81 -- 4.2 MEMS/NEMS Switches 81 -- 4.2.1 Nanoelectromechanical Switches 84 -- 4.2.1.1 Downscaled MEMS/NEMS switches 86 -- 4.2.1.2 MEMS/NEMS switches via new materials 92 -- 4.3 MEMS/NEMS Varactors 95 -- 4.3.1 Nanoelectromechanical Varactors 95 -- 4.3.1.1 Dual-gap MEMS/NEMS varactors 95 -- 4.3.1.2 MEMS/NEMS varactors via new materials 97 -- 4.4 MEMS/NEMS Resonators 99 -- 4.4.1 Nanoelectromechanical Resonators 99 -- 4.4.1.1 Clamp-clamp RF MEMS resonators 99 -- 4.4.1.2 MEMS/NEMS resonators via new materials 101 -- 4.5 Summary 111 -- 5 Understanding MEMS/NEMS for Energy Harvesting 113 -- 5.1 Introduction 113 -- 5.2 Wireless Energy Harvesting 113 -- 5.2.1 RF-DC Conversion Circuit 116 -- 5.2.2 Resonant Amplification of Extremely Small Signals 118 -- 5.3 Mechanical Energy Harvesting 123 -- 5.3.1 Theory of Energy Harvesting from Vibrations 125 -- 5.3.1.1 Piezoelectric conversion 127 -- 5.3.1.2 Electrostatic conversion 132 -- 5.4 Summary 136 -- 6 NEMX Applications in the IoT Era 137 -- 6.1 Introduction 137 -- 6.1.1 Wireless Connectivity 137 -- 6.1.1.1 Communication protocols 141 -- 6.1.1.2 Network range 142 -- 6.2 Roots of the Internet of Things 142 -- 6.3 Applications of the Internet of Things 144 -- 6.3.1 NEMX in Smart Home IoT Applications 144 -- 6.3.2 NEMX in Wearable IoT Applications 146 -- 6.3.3 NEMX in Smart Cities IoT Applications 146 -- 6.3.4 NEMX in Smart Grid IoT Applications 147 -- 6.3.5 NEMX in Industrial Internet IoT Applications 147 -- 6.3.6 NEMX in Connected Car IoT Applications 148 -- 6.3.7 NEMX in Connected Health IoT Applications 150 -- 6.3.8 NEMX in Smart Retail IoT Applications 150 -- 6.3.9 NEMX in Smart Supply Chain IoT Applications 151 -- 6.3.10 NEMX in Smart Farming IoT Applications 151 -- 6.4 Applications in Wireless Sensor Networks 152 -- 6.4.1 NEMX-Based Radios for the IoT 154 -- 6.4.2 Agricultural Applications 157 -- 6.5 -- 5G: Systems 157 -- 6.6 -- 5G: Technologies 160.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.6.1 Device-to-Device Communications 160 -- 6.6.2 Simultaneous Transmission/Reception 160 -- 6.6.3 mmWave/5G Frequencies for IoT 161 -- 6.7 Summary 161 Appendix A: MEMS Fabrication Techniques Fundamentals 163 A.1 Introduction 163 A.2 The Conventional IC Fabrication Process 163 A.3 Bulk Micromachining 164 A.4 Surface Micromachining 165 A.5 Materials Systems 167 A.6 Summary 168 Appendix B: Emerging Fabrication Technologies for the IoT: Flexible Substrates and Printed Electronics 169 B.1 Flexible Substrates 169 B.1.1 Device Fabrication on Flexible Substrates 171 B.1.1.1 Thin-Film Transistors (TFTs) 171 B.1.2 Film Bulk Acoustic Wave Resonators (FBARs) 172 B.2 Printed Electronics 173 B.2.1 Printing Technologies 174 B.2.1.1 Contact Printing Techniques 174 B.2.1.2 Non-Contact Printing Techniques 174 B.3 Summary 177 -- References 179 -- Index 193 -- About the Author 199.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The operational theme permeating most definitions of the IoT concept, is the wireless communication of networked objects, in particular, smart sensing devices and machines, exchanging data a la Internet. In this book, a detailed look is taken at the fundamental principles of devices and techniques whose exploitation will facilitate the development of compact, power-efficient, autonomous, smart, networked sensing nodes underlying and encompassing the emerging IoT era. The book provides an understanding of nanoelectromechanical quantum circuits and systems (NEMX), as exemplified by firstly the uncovering of their origins, impetus and motivation, and secondly by developing an understanding of their device physics, including, the topics of actuation, mechanical vibration and sensing. Next the fundamentals of key devices, namely, MEMS/NEMS switches, varactors and resonators are covered, including a wide range of implementations. The book then looks at their energy supply via energy harvesting, as derived from wireless energy and mechanical vibrations. Finally, after an introduction to the fundamentals of IoT networks and nodes, the book concludes with an exploration of how the NEMX components are encroaching in a variety of emerging IoT applications.</subfield></datafield><datafield tag="545" ind1="0" ind2=" "><subfield code="a">Héctor J. De Los Santos</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanoelectromechanical systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2006008121</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Internet of things.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2013000266</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanosystèmes électromécaniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Internet des objets.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Energy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Internet of things</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanoelectromechanical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IOT) era (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGgC7Jq36xBy3H6gGBdKgq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2363400</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH40652041</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">18134210</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2363400</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">301085431</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1139150951 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:29:46Z |
institution | BVB |
isbn | 9788770221276 8770221278 9781003339939 100333993X 9781000796377 100079637X 9781000793604 1000793605 |
language | English |
oclc_num | 1139150951 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxxi, 197 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | River Publishers, |
record_format | marc |
series2 | River Publishers series in electronic materials and devices |
spelling | Santos, Héctor J. de los. author. http://id.loc.gov/authorities/names/n99003267 Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / Héctor J. De Los Santos Gistrup, Denmark ; Delft, Netherlands : River Publishers, 2019 ©2019 1 online resource (xxxi, 197 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier River Publishers series in electronic materials and devices Includes bibliographical references and index. Preface xiii Acknowledgments xvii -- List of Figures xix -- List of Tables xxvii -- List of Abbreviations xxix -- 1 The Internet of Things 1 -- 1.1 Origins 1 -- 1.2 IoT Motivation/Impact 3 -- 1.3 Summary 6 -- 2 Microelectromechanical and Nanoelectromechanical Systems 7 -- 2.1 MEMS/NEMS Origins 7 -- 2.2 MEMS/NEMS Impetus/Motivation 8 -- 2.3 Summary 10 -- 3 Understanding MEMS/NEMS Device Physics 11 -- 3.1 Actuation 11 -- 3.1.1 Electrostatic Actuation 11 -- 3.1.1.1 Parallel-plate capacitor 11 -- 3.1.1.2 Electrostatically actuated cantilever beam 14 -- 3.1.1.3 Interdigitated (comb-drive) capacitor 17 -- 3.1.2 Piezoelectric Actuation 18 -- 3.1.2.1 Piezoelectric cantilever probe 19 -- 3.1.3 Casimir Actuation 21 -- 3.1.3.1 Casimir's own force calculation 22 -- 3.1.3.2 Lifshitz' calculation of the casimir force 24 -- 3.1.3.3 Casimir force calculation of brown and maclay 29 -- 3.1.3.4 Casimir force calculations for arbitrary geometries 31 -- 3.1.3.4.1 Computing the casimir energy based on multipole interactions 31 -- 3.1.3.4.2 Computing the casimir force using finite-difference time-domain techniques 33 -- 3.1.3.4.3 Computing the casimir force using the framework of macroscopic quantum electrodynamics 34 -- 3.1.3.5 Corrections to ideal casimir force derivation 37 -- 3.1.4 Radiation Pressure Actuation 38 -- 3.1.4.1 Radiation pressure manipulation of particles 40 -- 3.1.4.2 Radiation pressure trapping of particles 41 -- 3.1.4.3 Radiation pressure effect on cantilever beams 42 -- 3.2 Mechanical Vibration 45 -- 3.2.1 The Single-Degree-of-Freedom System 46 -- 3.2.2 The Many-Degree-of-Freedom System 48 -- 3.2.3 Rayleigh's Method 49 -- 3.3 Thermal Noise in MEMS/NEMS 51 -- 3.3.1 Fundamental Origin of Intrinsic Noise 51 -- 3.3.1.1 Amplitude of brownian (random) displacement of cantilever beam 64 -- 3.4 Sensing 70 -- 3.4.1 The Accelerometer 70 -- 3.4.1.1 Capacitive accelerometer implementation 72 -- 3.4.1.2 Quantum mechanical tunneling accelerometer 73 -- 3.4.2 Vibration Sensors 76. 3.5 Summary 79 -- 4 Understanding MEMS/NEMS Devices 81 -- 4.1 Introduction 81 -- 4.2 MEMS/NEMS Switches 81 -- 4.2.1 Nanoelectromechanical Switches 84 -- 4.2.1.1 Downscaled MEMS/NEMS switches 86 -- 4.2.1.2 MEMS/NEMS switches via new materials 92 -- 4.3 MEMS/NEMS Varactors 95 -- 4.3.1 Nanoelectromechanical Varactors 95 -- 4.3.1.1 Dual-gap MEMS/NEMS varactors 95 -- 4.3.1.2 MEMS/NEMS varactors via new materials 97 -- 4.4 MEMS/NEMS Resonators 99 -- 4.4.1 Nanoelectromechanical Resonators 99 -- 4.4.1.1 Clamp-clamp RF MEMS resonators 99 -- 4.4.1.2 MEMS/NEMS resonators via new materials 101 -- 4.5 Summary 111 -- 5 Understanding MEMS/NEMS for Energy Harvesting 113 -- 5.1 Introduction 113 -- 5.2 Wireless Energy Harvesting 113 -- 5.2.1 RF-DC Conversion Circuit 116 -- 5.2.2 Resonant Amplification of Extremely Small Signals 118 -- 5.3 Mechanical Energy Harvesting 123 -- 5.3.1 Theory of Energy Harvesting from Vibrations 125 -- 5.3.1.1 Piezoelectric conversion 127 -- 5.3.1.2 Electrostatic conversion 132 -- 5.4 Summary 136 -- 6 NEMX Applications in the IoT Era 137 -- 6.1 Introduction 137 -- 6.1.1 Wireless Connectivity 137 -- 6.1.1.1 Communication protocols 141 -- 6.1.1.2 Network range 142 -- 6.2 Roots of the Internet of Things 142 -- 6.3 Applications of the Internet of Things 144 -- 6.3.1 NEMX in Smart Home IoT Applications 144 -- 6.3.2 NEMX in Wearable IoT Applications 146 -- 6.3.3 NEMX in Smart Cities IoT Applications 146 -- 6.3.4 NEMX in Smart Grid IoT Applications 147 -- 6.3.5 NEMX in Industrial Internet IoT Applications 147 -- 6.3.6 NEMX in Connected Car IoT Applications 148 -- 6.3.7 NEMX in Connected Health IoT Applications 150 -- 6.3.8 NEMX in Smart Retail IoT Applications 150 -- 6.3.9 NEMX in Smart Supply Chain IoT Applications 151 -- 6.3.10 NEMX in Smart Farming IoT Applications 151 -- 6.4 Applications in Wireless Sensor Networks 152 -- 6.4.1 NEMX-Based Radios for the IoT 154 -- 6.4.2 Agricultural Applications 157 -- 6.5 -- 5G: Systems 157 -- 6.6 -- 5G: Technologies 160. 6.6.1 Device-to-Device Communications 160 -- 6.6.2 Simultaneous Transmission/Reception 160 -- 6.6.3 mmWave/5G Frequencies for IoT 161 -- 6.7 Summary 161 Appendix A: MEMS Fabrication Techniques Fundamentals 163 A.1 Introduction 163 A.2 The Conventional IC Fabrication Process 163 A.3 Bulk Micromachining 164 A.4 Surface Micromachining 165 A.5 Materials Systems 167 A.6 Summary 168 Appendix B: Emerging Fabrication Technologies for the IoT: Flexible Substrates and Printed Electronics 169 B.1 Flexible Substrates 169 B.1.1 Device Fabrication on Flexible Substrates 171 B.1.1.1 Thin-Film Transistors (TFTs) 171 B.1.2 Film Bulk Acoustic Wave Resonators (FBARs) 172 B.2 Printed Electronics 173 B.2.1 Printing Technologies 174 B.2.1.1 Contact Printing Techniques 174 B.2.1.2 Non-Contact Printing Techniques 174 B.3 Summary 177 -- References 179 -- Index 193 -- About the Author 199. The operational theme permeating most definitions of the IoT concept, is the wireless communication of networked objects, in particular, smart sensing devices and machines, exchanging data a la Internet. In this book, a detailed look is taken at the fundamental principles of devices and techniques whose exploitation will facilitate the development of compact, power-efficient, autonomous, smart, networked sensing nodes underlying and encompassing the emerging IoT era. The book provides an understanding of nanoelectromechanical quantum circuits and systems (NEMX), as exemplified by firstly the uncovering of their origins, impetus and motivation, and secondly by developing an understanding of their device physics, including, the topics of actuation, mechanical vibration and sensing. Next the fundamentals of key devices, namely, MEMS/NEMS switches, varactors and resonators are covered, including a wide range of implementations. The book then looks at their energy supply via energy harvesting, as derived from wireless energy and mechanical vibrations. Finally, after an introduction to the fundamentals of IoT networks and nodes, the book concludes with an exploration of how the NEMX components are encroaching in a variety of emerging IoT applications. Héctor J. De Los Santos Nanoelectromechanical systems. http://id.loc.gov/authorities/subjects/sh2006008121 Internet of things. http://id.loc.gov/authorities/subjects/sh2013000266 Nanosystèmes électromécaniques. Internet des objets. SCIENCE / Energy bisacsh Internet of things fast Nanoelectromechanical systems fast has work: Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IOT) era (Text) https://id.oclc.org/worldcat/entity/E39PCGgC7Jq36xBy3H6gGBdKgq https://id.oclc.org/worldcat/ontology/hasWork FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2363400 Volltext |
spellingShingle | Santos, Héctor J. de los Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / Preface xiii Acknowledgments xvii -- List of Figures xix -- List of Tables xxvii -- List of Abbreviations xxix -- 1 The Internet of Things 1 -- 1.1 Origins 1 -- 1.2 IoT Motivation/Impact 3 -- 1.3 Summary 6 -- 2 Microelectromechanical and Nanoelectromechanical Systems 7 -- 2.1 MEMS/NEMS Origins 7 -- 2.2 MEMS/NEMS Impetus/Motivation 8 -- 2.3 Summary 10 -- 3 Understanding MEMS/NEMS Device Physics 11 -- 3.1 Actuation 11 -- 3.1.1 Electrostatic Actuation 11 -- 3.1.1.1 Parallel-plate capacitor 11 -- 3.1.1.2 Electrostatically actuated cantilever beam 14 -- 3.1.1.3 Interdigitated (comb-drive) capacitor 17 -- 3.1.2 Piezoelectric Actuation 18 -- 3.1.2.1 Piezoelectric cantilever probe 19 -- 3.1.3 Casimir Actuation 21 -- 3.1.3.1 Casimir's own force calculation 22 -- 3.1.3.2 Lifshitz' calculation of the casimir force 24 -- 3.1.3.3 Casimir force calculation of brown and maclay 29 -- 3.1.3.4 Casimir force calculations for arbitrary geometries 31 -- 3.1.3.4.1 Computing the casimir energy based on multipole interactions 31 -- 3.1.3.4.2 Computing the casimir force using finite-difference time-domain techniques 33 -- 3.1.3.4.3 Computing the casimir force using the framework of macroscopic quantum electrodynamics 34 -- 3.1.3.5 Corrections to ideal casimir force derivation 37 -- 3.1.4 Radiation Pressure Actuation 38 -- 3.1.4.1 Radiation pressure manipulation of particles 40 -- 3.1.4.2 Radiation pressure trapping of particles 41 -- 3.1.4.3 Radiation pressure effect on cantilever beams 42 -- 3.2 Mechanical Vibration 45 -- 3.2.1 The Single-Degree-of-Freedom System 46 -- 3.2.2 The Many-Degree-of-Freedom System 48 -- 3.2.3 Rayleigh's Method 49 -- 3.3 Thermal Noise in MEMS/NEMS 51 -- 3.3.1 Fundamental Origin of Intrinsic Noise 51 -- 3.3.1.1 Amplitude of brownian (random) displacement of cantilever beam 64 -- 3.4 Sensing 70 -- 3.4.1 The Accelerometer 70 -- 3.4.1.1 Capacitive accelerometer implementation 72 -- 3.4.1.2 Quantum mechanical tunneling accelerometer 73 -- 3.4.2 Vibration Sensors 76. 3.5 Summary 79 -- 4 Understanding MEMS/NEMS Devices 81 -- 4.1 Introduction 81 -- 4.2 MEMS/NEMS Switches 81 -- 4.2.1 Nanoelectromechanical Switches 84 -- 4.2.1.1 Downscaled MEMS/NEMS switches 86 -- 4.2.1.2 MEMS/NEMS switches via new materials 92 -- 4.3 MEMS/NEMS Varactors 95 -- 4.3.1 Nanoelectromechanical Varactors 95 -- 4.3.1.1 Dual-gap MEMS/NEMS varactors 95 -- 4.3.1.2 MEMS/NEMS varactors via new materials 97 -- 4.4 MEMS/NEMS Resonators 99 -- 4.4.1 Nanoelectromechanical Resonators 99 -- 4.4.1.1 Clamp-clamp RF MEMS resonators 99 -- 4.4.1.2 MEMS/NEMS resonators via new materials 101 -- 4.5 Summary 111 -- 5 Understanding MEMS/NEMS for Energy Harvesting 113 -- 5.1 Introduction 113 -- 5.2 Wireless Energy Harvesting 113 -- 5.2.1 RF-DC Conversion Circuit 116 -- 5.2.2 Resonant Amplification of Extremely Small Signals 118 -- 5.3 Mechanical Energy Harvesting 123 -- 5.3.1 Theory of Energy Harvesting from Vibrations 125 -- 5.3.1.1 Piezoelectric conversion 127 -- 5.3.1.2 Electrostatic conversion 132 -- 5.4 Summary 136 -- 6 NEMX Applications in the IoT Era 137 -- 6.1 Introduction 137 -- 6.1.1 Wireless Connectivity 137 -- 6.1.1.1 Communication protocols 141 -- 6.1.1.2 Network range 142 -- 6.2 Roots of the Internet of Things 142 -- 6.3 Applications of the Internet of Things 144 -- 6.3.1 NEMX in Smart Home IoT Applications 144 -- 6.3.2 NEMX in Wearable IoT Applications 146 -- 6.3.3 NEMX in Smart Cities IoT Applications 146 -- 6.3.4 NEMX in Smart Grid IoT Applications 147 -- 6.3.5 NEMX in Industrial Internet IoT Applications 147 -- 6.3.6 NEMX in Connected Car IoT Applications 148 -- 6.3.7 NEMX in Connected Health IoT Applications 150 -- 6.3.8 NEMX in Smart Retail IoT Applications 150 -- 6.3.9 NEMX in Smart Supply Chain IoT Applications 151 -- 6.3.10 NEMX in Smart Farming IoT Applications 151 -- 6.4 Applications in Wireless Sensor Networks 152 -- 6.4.1 NEMX-Based Radios for the IoT 154 -- 6.4.2 Agricultural Applications 157 -- 6.5 -- 5G: Systems 157 -- 6.6 -- 5G: Technologies 160. 6.6.1 Device-to-Device Communications 160 -- 6.6.2 Simultaneous Transmission/Reception 160 -- 6.6.3 mmWave/5G Frequencies for IoT 161 -- 6.7 Summary 161 Appendix A: MEMS Fabrication Techniques Fundamentals 163 A.1 Introduction 163 A.2 The Conventional IC Fabrication Process 163 A.3 Bulk Micromachining 164 A.4 Surface Micromachining 165 A.5 Materials Systems 167 A.6 Summary 168 Appendix B: Emerging Fabrication Technologies for the IoT: Flexible Substrates and Printed Electronics 169 B.1 Flexible Substrates 169 B.1.1 Device Fabrication on Flexible Substrates 171 B.1.1.1 Thin-Film Transistors (TFTs) 171 B.1.2 Film Bulk Acoustic Wave Resonators (FBARs) 172 B.2 Printed Electronics 173 B.2.1 Printing Technologies 174 B.2.1.1 Contact Printing Techniques 174 B.2.1.2 Non-Contact Printing Techniques 174 B.3 Summary 177 -- References 179 -- Index 193 -- About the Author 199. Nanoelectromechanical systems. http://id.loc.gov/authorities/subjects/sh2006008121 Internet of things. http://id.loc.gov/authorities/subjects/sh2013000266 Nanosystèmes électromécaniques. Internet des objets. SCIENCE / Energy bisacsh Internet of things fast Nanoelectromechanical systems fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2006008121 http://id.loc.gov/authorities/subjects/sh2013000266 |
title | Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / |
title_auth | Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / |
title_exact_search | Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / |
title_full | Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / Héctor J. De Los Santos |
title_fullStr | Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / Héctor J. De Los Santos |
title_full_unstemmed | Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / Héctor J. De Los Santos |
title_short | Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IoT) Era / |
title_sort | understanding nanoelectromechanical quantum circuits and systems nemx for the internet of things iot era |
topic | Nanoelectromechanical systems. http://id.loc.gov/authorities/subjects/sh2006008121 Internet of things. http://id.loc.gov/authorities/subjects/sh2013000266 Nanosystèmes électromécaniques. Internet des objets. SCIENCE / Energy bisacsh Internet of things fast Nanoelectromechanical systems fast |
topic_facet | Nanoelectromechanical systems. Internet of things. Nanosystèmes électromécaniques. Internet des objets. SCIENCE / Energy Internet of things Nanoelectromechanical systems |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2363400 |
work_keys_str_mv | AT santoshectorjdelos understandingnanoelectromechanicalquantumcircuitsandsystemsnemxfortheinternetofthingsiotera |