Audit Analytics in the Financial Industry:
Split into six parts, contributors explore ways to integrate Audit Analytics techniques into existing audit programs for the financial industry. Chapters include topics such as fraud risks in the credit card sector, clustering techniques, fraud and anomaly detection, and using Audit Analytics to ass...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Bingley :
Emerald Publishing Limited,
2019.
|
Schriftenreihe: | Rutgers Studies in Accounting Analytics Ser.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Split into six parts, contributors explore ways to integrate Audit Analytics techniques into existing audit programs for the financial industry. Chapters include topics such as fraud risks in the credit card sector, clustering techniques, fraud and anomaly detection, and using Audit Analytics to assess risk in the lawsuit and payment processes. |
Beschreibung: | 4.1. Data Pre-Processing and Partitioning Phase |
Beschreibung: | 1 online resource (247 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 1787431738 9781787431737 9781787430853 1787430855 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1124605784 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 191019s2019 xx o 000 0 eng d | ||
010 | |a 2018278487 | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d YDX |d N$T |d UKMGB |d OCLCF |d OCLCQ |d UKAHL |d OCLCQ |d VT2 |d K6U |d OCLCO |d OCLCQ |d PSYSI |d OCLCQ |d OCLCO |d UEJ |d OCLCQ | ||
015 | |a GBB9G2773 |2 bnb | ||
015 | |a GBB9G1959 |2 bnb | ||
016 | 7 | |a 019553859 |2 Uk | |
016 | 7 | |a 019553045 |2 Uk | |
019 | |a 1124320016 |a 1130730140 |a 1235839044 | ||
020 | |a 1787431738 | ||
020 | |a 9781787431737 |q (electronic bk.) | ||
020 | |a 9781787430853 |q (PDF ebook) | ||
020 | |a 1787430855 | ||
020 | |z 1787430863 | ||
020 | |z 9781787430860 | ||
035 | |a (OCoLC)1124605784 |z (OCoLC)1124320016 |z (OCoLC)1130730140 |z (OCoLC)1235839044 | ||
037 | |a 9781787431737 |b Emerald Publishing | ||
050 | 4 | |a HF5601-5689 | |
082 | 7 | |a 657.8333045 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Dai, Jun. | |
245 | 1 | 0 | |a Audit Analytics in the Financial Industry |
260 | |a Bingley : |b Emerald Publishing Limited, |c 2019. | ||
300 | |a 1 online resource (247 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Rutgers Studies in Accounting Analytics Ser. | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Intro; Audit Analytics in the Financial Industry; Contents; Introduction: What is Audit Analytics?; References; Part I: Audit Analytics Procedures; Chapter 1: An Application of Exploratory Data Analysis in Auditing -- Credit Card Retention Case*; 1. Introduction; 2. The Audit Problem; 2.1. Scenario; 2.2. Audit Objectives; 3. Methodology; 3.1. Data; 3.2. Data Preprocessing; 3.3. Applied EDA Techniques; 4. Results and Discussion; 4.1. Policy-violating Bank Representatives and Negative Discounts; 4.2. Lazy and Inactive Bank Representatives | |
505 | 8 | |a 4.3. Non-Negotiating Bank Representatives and Short Calls5. Conclusion; References; Chapter 2: Audit Analytics: A Field Study of Credit Card After-sale Service Problem Detection at a Major Bank; 1. Introduction; 2. Related Work; 3. Audit Analytics Protocol; 3.1. Scope of Internal Auditing Issues for Audit Analytics; 3.2. A General Protocol for Audit Analytics; 4. Field Study Description; 5. Implementing the Audit Analytics Protocol; 5.1. Identifying Business Scenarios; 5.2. Defining Audit Concern; 5.3. Understanding the Auditing Data; 5.4. Preparing the Data; 5.5. Selecting Methods | |
505 | 8 | |a 5.6. Analyzing the Data6. Presenting and Explaining Results; 6.1. Negative Discount Detection; 6.2. High Discount Analysis; 6.3. Optimal Discount Estimation; 6.4. Inactive Agents; 6.5. Short Call Analysis; 6.6. Graphic Analysis of the Relationship between Call Duration and Discounts Offered by Call Centers; 6.7. Regression Analysis; 6.8. Unsuccessful Retention Analysis; 6.9. Recommendations; 7. Conclusion; References; Part II: Analytics in Credit Card Audits; Chapter 3: Automated Clustering: From Concept to Reality; 1. Introduction; 2. Background; 3. Data | |
505 | 8 | |a 4. Discretization, Feature Selection/Creation, and Normalization5. Analysis and Results; 6. Conclusion; References; Ch apter 4: A Multi-faceted Outlier Detection Scheme for Use in Clustering*; 1. Introduction; 2. Preliminary Issues in Outlier Detection; 3. Distance Measures for Outlier Detection; 4. Similarity Measures for Outlier Detection; 5. Outlier Detection Method -- Final Considerations; 6. Analysis and Results; 7. Outlier Detection -- Auditing Context Example; 8. Conclusion; References | |
505 | 8 | |a Chapter 5: Are Customers Offered Appropriate Discounts? An Exploratory Study of Using Clustering Techniques in Internal Auditing1. Introduction; 2. Related Work; 3. Audit Problem; 4. Method; 4.1. Data Set Analysis; 4.2. Data Set Preprocessing; 4.3. Clustering Model Selection; 5. Experiment; 5.1. Evaluation Metric; 5.2. Parameterization; 5.3. Modeling; 5.4. Results; 6. Conclusion; References; Chapter 6: Predicting Credit Card Delinquency: An Application of the Decision Tree Technique; 1. Introduction; 2. Related Research; 3. Methodology; 4. Experiment and Results | |
500 | |a 4.1. Data Pre-Processing and Partitioning Phase | ||
520 | |a Split into six parts, contributors explore ways to integrate Audit Analytics techniques into existing audit programs for the financial industry. Chapters include topics such as fraud risks in the credit card sector, clustering techniques, fraud and anomaly detection, and using Audit Analytics to assess risk in the lawsuit and payment processes. | ||
504 | |a Includes bibliographical references. | ||
650 | 0 | |a Financial services industry |x Auditing. | |
650 | 7 | |a Financial services industry |x Auditing |2 fast | |
700 | 1 | |a Vasarhelyi, Miklos A. | |
700 | 1 | |a Medinets, Ann F. | |
776 | 0 | 8 | |i Print version: |a Dai, Jun. |t Audit Analytics in the Financial Industry. |d Bingley : Emerald Publishing Limited, ©2019 |z 9781787430860 |
830 | 0 | |a Rutgers Studies in Accounting Analytics Ser. | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2198488 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2198488 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH36487838 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5942776 | ||
938 | |a EBSCOhost |b EBSC |n 2198488 | ||
938 | |a YBP Library Services |b YANK |n 16500930 | ||
938 | |a YBP Library Services |b YANK |n 300900202 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1124605784 |
---|---|
_version_ | 1813901661685415937 |
adam_text | |
any_adam_object | |
author | Dai, Jun |
author2 | Vasarhelyi, Miklos A. Medinets, Ann F. |
author2_role | |
author2_variant | m a v ma mav a f m af afm |
author_facet | Dai, Jun Vasarhelyi, Miklos A. Medinets, Ann F. |
author_role | |
author_sort | Dai, Jun |
author_variant | j d jd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | H - Social Science |
callnumber-label | HF5601-5689 |
callnumber-raw | HF5601-5689 |
callnumber-search | HF5601-5689 |
callnumber-sort | HF 45601 45689 |
callnumber-subject | HF - Commerce |
collection | ZDB-4-EBA |
contents | Intro; Audit Analytics in the Financial Industry; Contents; Introduction: What is Audit Analytics?; References; Part I: Audit Analytics Procedures; Chapter 1: An Application of Exploratory Data Analysis in Auditing -- Credit Card Retention Case*; 1. Introduction; 2. The Audit Problem; 2.1. Scenario; 2.2. Audit Objectives; 3. Methodology; 3.1. Data; 3.2. Data Preprocessing; 3.3. Applied EDA Techniques; 4. Results and Discussion; 4.1. Policy-violating Bank Representatives and Negative Discounts; 4.2. Lazy and Inactive Bank Representatives 4.3. Non-Negotiating Bank Representatives and Short Calls5. Conclusion; References; Chapter 2: Audit Analytics: A Field Study of Credit Card After-sale Service Problem Detection at a Major Bank; 1. Introduction; 2. Related Work; 3. Audit Analytics Protocol; 3.1. Scope of Internal Auditing Issues for Audit Analytics; 3.2. A General Protocol for Audit Analytics; 4. Field Study Description; 5. Implementing the Audit Analytics Protocol; 5.1. Identifying Business Scenarios; 5.2. Defining Audit Concern; 5.3. Understanding the Auditing Data; 5.4. Preparing the Data; 5.5. Selecting Methods 5.6. Analyzing the Data6. Presenting and Explaining Results; 6.1. Negative Discount Detection; 6.2. High Discount Analysis; 6.3. Optimal Discount Estimation; 6.4. Inactive Agents; 6.5. Short Call Analysis; 6.6. Graphic Analysis of the Relationship between Call Duration and Discounts Offered by Call Centers; 6.7. Regression Analysis; 6.8. Unsuccessful Retention Analysis; 6.9. Recommendations; 7. Conclusion; References; Part II: Analytics in Credit Card Audits; Chapter 3: Automated Clustering: From Concept to Reality; 1. Introduction; 2. Background; 3. Data 4. Discretization, Feature Selection/Creation, and Normalization5. Analysis and Results; 6. Conclusion; References; Ch apter 4: A Multi-faceted Outlier Detection Scheme for Use in Clustering*; 1. Introduction; 2. Preliminary Issues in Outlier Detection; 3. Distance Measures for Outlier Detection; 4. Similarity Measures for Outlier Detection; 5. Outlier Detection Method -- Final Considerations; 6. Analysis and Results; 7. Outlier Detection -- Auditing Context Example; 8. Conclusion; References Chapter 5: Are Customers Offered Appropriate Discounts? An Exploratory Study of Using Clustering Techniques in Internal Auditing1. Introduction; 2. Related Work; 3. Audit Problem; 4. Method; 4.1. Data Set Analysis; 4.2. Data Set Preprocessing; 4.3. Clustering Model Selection; 5. Experiment; 5.1. Evaluation Metric; 5.2. Parameterization; 5.3. Modeling; 5.4. Results; 6. Conclusion; References; Chapter 6: Predicting Credit Card Delinquency: An Application of the Decision Tree Technique; 1. Introduction; 2. Related Research; 3. Methodology; 4. Experiment and Results |
ctrlnum | (OCoLC)1124605784 |
dewey-full | 657.8333045 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 657 - Accounting |
dewey-raw | 657.8333045 |
dewey-search | 657.8333045 |
dewey-sort | 3657.8333045 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05503cam a2200673Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-on1124605784</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">191019s2019 xx o 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2018278487</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PSYSI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB9G2773</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB9G1959</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019553859</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019553045</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1124320016</subfield><subfield code="a">1130730140</subfield><subfield code="a">1235839044</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1787431738</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781787431737</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781787430853</subfield><subfield code="q">(PDF ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1787430855</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1787430863</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781787430860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1124605784</subfield><subfield code="z">(OCoLC)1124320016</subfield><subfield code="z">(OCoLC)1130730140</subfield><subfield code="z">(OCoLC)1235839044</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781787431737</subfield><subfield code="b">Emerald Publishing</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">HF5601-5689</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">657.8333045</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dai, Jun.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Audit Analytics in the Financial Industry</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Bingley :</subfield><subfield code="b">Emerald Publishing Limited,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (247 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Rutgers Studies in Accounting Analytics Ser.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro; Audit Analytics in the Financial Industry; Contents; Introduction: What is Audit Analytics?; References; Part I: Audit Analytics Procedures; Chapter 1: An Application of Exploratory Data Analysis in Auditing -- Credit Card Retention Case*; 1. Introduction; 2. The Audit Problem; 2.1. Scenario; 2.2. Audit Objectives; 3. Methodology; 3.1. Data; 3.2. Data Preprocessing; 3.3. Applied EDA Techniques; 4. Results and Discussion; 4.1. Policy-violating Bank Representatives and Negative Discounts; 4.2. Lazy and Inactive Bank Representatives</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3. Non-Negotiating Bank Representatives and Short Calls5. Conclusion; References; Chapter 2: Audit Analytics: A Field Study of Credit Card After-sale Service Problem Detection at a Major Bank; 1. Introduction; 2. Related Work; 3. Audit Analytics Protocol; 3.1. Scope of Internal Auditing Issues for Audit Analytics; 3.2. A General Protocol for Audit Analytics; 4. Field Study Description; 5. Implementing the Audit Analytics Protocol; 5.1. Identifying Business Scenarios; 5.2. Defining Audit Concern; 5.3. Understanding the Auditing Data; 5.4. Preparing the Data; 5.5. Selecting Methods</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.6. Analyzing the Data6. Presenting and Explaining Results; 6.1. Negative Discount Detection; 6.2. High Discount Analysis; 6.3. Optimal Discount Estimation; 6.4. Inactive Agents; 6.5. Short Call Analysis; 6.6. Graphic Analysis of the Relationship between Call Duration and Discounts Offered by Call Centers; 6.7. Regression Analysis; 6.8. Unsuccessful Retention Analysis; 6.9. Recommendations; 7. Conclusion; References; Part II: Analytics in Credit Card Audits; Chapter 3: Automated Clustering: From Concept to Reality; 1. Introduction; 2. Background; 3. Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Discretization, Feature Selection/Creation, and Normalization5. Analysis and Results; 6. Conclusion; References; Ch apter 4: A Multi-faceted Outlier Detection Scheme for Use in Clustering*; 1. Introduction; 2. Preliminary Issues in Outlier Detection; 3. Distance Measures for Outlier Detection; 4. Similarity Measures for Outlier Detection; 5. Outlier Detection Method -- Final Considerations; 6. Analysis and Results; 7. Outlier Detection -- Auditing Context Example; 8. Conclusion; References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 5: Are Customers Offered Appropriate Discounts? An Exploratory Study of Using Clustering Techniques in Internal Auditing1. Introduction; 2. Related Work; 3. Audit Problem; 4. Method; 4.1. Data Set Analysis; 4.2. Data Set Preprocessing; 4.3. Clustering Model Selection; 5. Experiment; 5.1. Evaluation Metric; 5.2. Parameterization; 5.3. Modeling; 5.4. Results; 6. Conclusion; References; Chapter 6: Predicting Credit Card Delinquency: An Application of the Decision Tree Technique; 1. Introduction; 2. Related Research; 3. Methodology; 4. Experiment and Results</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4.1. Data Pre-Processing and Partitioning Phase</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Split into six parts, contributors explore ways to integrate Audit Analytics techniques into existing audit programs for the financial industry. Chapters include topics such as fraud risks in the credit card sector, clustering techniques, fraud and anomaly detection, and using Audit Analytics to assess risk in the lawsuit and payment processes.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Financial services industry</subfield><subfield code="x">Auditing.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Financial services industry</subfield><subfield code="x">Auditing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vasarhelyi, Miklos A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medinets, Ann F.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dai, Jun.</subfield><subfield code="t">Audit Analytics in the Financial Industry.</subfield><subfield code="d">Bingley : Emerald Publishing Limited, ©2019</subfield><subfield code="z">9781787430860</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Rutgers Studies in Accounting Analytics Ser.</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2198488</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2198488</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36487838</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5942776</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2198488</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">16500930</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">300900202</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1124605784 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T15:50:27Z |
institution | BVB |
isbn | 1787431738 9781787431737 9781787430853 1787430855 |
language | English |
lccn | 2018278487 |
oclc_num | 1124605784 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (247 pages) |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Emerald Publishing Limited, |
record_format | marc |
series | Rutgers Studies in Accounting Analytics Ser. |
series2 | Rutgers Studies in Accounting Analytics Ser. |
spelling | Dai, Jun. Audit Analytics in the Financial Industry Bingley : Emerald Publishing Limited, 2019. 1 online resource (247 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Rutgers Studies in Accounting Analytics Ser. Print version record. Intro; Audit Analytics in the Financial Industry; Contents; Introduction: What is Audit Analytics?; References; Part I: Audit Analytics Procedures; Chapter 1: An Application of Exploratory Data Analysis in Auditing -- Credit Card Retention Case*; 1. Introduction; 2. The Audit Problem; 2.1. Scenario; 2.2. Audit Objectives; 3. Methodology; 3.1. Data; 3.2. Data Preprocessing; 3.3. Applied EDA Techniques; 4. Results and Discussion; 4.1. Policy-violating Bank Representatives and Negative Discounts; 4.2. Lazy and Inactive Bank Representatives 4.3. Non-Negotiating Bank Representatives and Short Calls5. Conclusion; References; Chapter 2: Audit Analytics: A Field Study of Credit Card After-sale Service Problem Detection at a Major Bank; 1. Introduction; 2. Related Work; 3. Audit Analytics Protocol; 3.1. Scope of Internal Auditing Issues for Audit Analytics; 3.2. A General Protocol for Audit Analytics; 4. Field Study Description; 5. Implementing the Audit Analytics Protocol; 5.1. Identifying Business Scenarios; 5.2. Defining Audit Concern; 5.3. Understanding the Auditing Data; 5.4. Preparing the Data; 5.5. Selecting Methods 5.6. Analyzing the Data6. Presenting and Explaining Results; 6.1. Negative Discount Detection; 6.2. High Discount Analysis; 6.3. Optimal Discount Estimation; 6.4. Inactive Agents; 6.5. Short Call Analysis; 6.6. Graphic Analysis of the Relationship between Call Duration and Discounts Offered by Call Centers; 6.7. Regression Analysis; 6.8. Unsuccessful Retention Analysis; 6.9. Recommendations; 7. Conclusion; References; Part II: Analytics in Credit Card Audits; Chapter 3: Automated Clustering: From Concept to Reality; 1. Introduction; 2. Background; 3. Data 4. Discretization, Feature Selection/Creation, and Normalization5. Analysis and Results; 6. Conclusion; References; Ch apter 4: A Multi-faceted Outlier Detection Scheme for Use in Clustering*; 1. Introduction; 2. Preliminary Issues in Outlier Detection; 3. Distance Measures for Outlier Detection; 4. Similarity Measures for Outlier Detection; 5. Outlier Detection Method -- Final Considerations; 6. Analysis and Results; 7. Outlier Detection -- Auditing Context Example; 8. Conclusion; References Chapter 5: Are Customers Offered Appropriate Discounts? An Exploratory Study of Using Clustering Techniques in Internal Auditing1. Introduction; 2. Related Work; 3. Audit Problem; 4. Method; 4.1. Data Set Analysis; 4.2. Data Set Preprocessing; 4.3. Clustering Model Selection; 5. Experiment; 5.1. Evaluation Metric; 5.2. Parameterization; 5.3. Modeling; 5.4. Results; 6. Conclusion; References; Chapter 6: Predicting Credit Card Delinquency: An Application of the Decision Tree Technique; 1. Introduction; 2. Related Research; 3. Methodology; 4. Experiment and Results 4.1. Data Pre-Processing and Partitioning Phase Split into six parts, contributors explore ways to integrate Audit Analytics techniques into existing audit programs for the financial industry. Chapters include topics such as fraud risks in the credit card sector, clustering techniques, fraud and anomaly detection, and using Audit Analytics to assess risk in the lawsuit and payment processes. Includes bibliographical references. Financial services industry Auditing. Financial services industry Auditing fast Vasarhelyi, Miklos A. Medinets, Ann F. Print version: Dai, Jun. Audit Analytics in the Financial Industry. Bingley : Emerald Publishing Limited, ©2019 9781787430860 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2198488 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2198488 Volltext |
spellingShingle | Dai, Jun Audit Analytics in the Financial Industry Rutgers Studies in Accounting Analytics Ser. Intro; Audit Analytics in the Financial Industry; Contents; Introduction: What is Audit Analytics?; References; Part I: Audit Analytics Procedures; Chapter 1: An Application of Exploratory Data Analysis in Auditing -- Credit Card Retention Case*; 1. Introduction; 2. The Audit Problem; 2.1. Scenario; 2.2. Audit Objectives; 3. Methodology; 3.1. Data; 3.2. Data Preprocessing; 3.3. Applied EDA Techniques; 4. Results and Discussion; 4.1. Policy-violating Bank Representatives and Negative Discounts; 4.2. Lazy and Inactive Bank Representatives 4.3. Non-Negotiating Bank Representatives and Short Calls5. Conclusion; References; Chapter 2: Audit Analytics: A Field Study of Credit Card After-sale Service Problem Detection at a Major Bank; 1. Introduction; 2. Related Work; 3. Audit Analytics Protocol; 3.1. Scope of Internal Auditing Issues for Audit Analytics; 3.2. A General Protocol for Audit Analytics; 4. Field Study Description; 5. Implementing the Audit Analytics Protocol; 5.1. Identifying Business Scenarios; 5.2. Defining Audit Concern; 5.3. Understanding the Auditing Data; 5.4. Preparing the Data; 5.5. Selecting Methods 5.6. Analyzing the Data6. Presenting and Explaining Results; 6.1. Negative Discount Detection; 6.2. High Discount Analysis; 6.3. Optimal Discount Estimation; 6.4. Inactive Agents; 6.5. Short Call Analysis; 6.6. Graphic Analysis of the Relationship between Call Duration and Discounts Offered by Call Centers; 6.7. Regression Analysis; 6.8. Unsuccessful Retention Analysis; 6.9. Recommendations; 7. Conclusion; References; Part II: Analytics in Credit Card Audits; Chapter 3: Automated Clustering: From Concept to Reality; 1. Introduction; 2. Background; 3. Data 4. Discretization, Feature Selection/Creation, and Normalization5. Analysis and Results; 6. Conclusion; References; Ch apter 4: A Multi-faceted Outlier Detection Scheme for Use in Clustering*; 1. Introduction; 2. Preliminary Issues in Outlier Detection; 3. Distance Measures for Outlier Detection; 4. Similarity Measures for Outlier Detection; 5. Outlier Detection Method -- Final Considerations; 6. Analysis and Results; 7. Outlier Detection -- Auditing Context Example; 8. Conclusion; References Chapter 5: Are Customers Offered Appropriate Discounts? An Exploratory Study of Using Clustering Techniques in Internal Auditing1. Introduction; 2. Related Work; 3. Audit Problem; 4. Method; 4.1. Data Set Analysis; 4.2. Data Set Preprocessing; 4.3. Clustering Model Selection; 5. Experiment; 5.1. Evaluation Metric; 5.2. Parameterization; 5.3. Modeling; 5.4. Results; 6. Conclusion; References; Chapter 6: Predicting Credit Card Delinquency: An Application of the Decision Tree Technique; 1. Introduction; 2. Related Research; 3. Methodology; 4. Experiment and Results Financial services industry Auditing. Financial services industry Auditing fast |
title | Audit Analytics in the Financial Industry |
title_auth | Audit Analytics in the Financial Industry |
title_exact_search | Audit Analytics in the Financial Industry |
title_full | Audit Analytics in the Financial Industry |
title_fullStr | Audit Analytics in the Financial Industry |
title_full_unstemmed | Audit Analytics in the Financial Industry |
title_short | Audit Analytics in the Financial Industry |
title_sort | audit analytics in the financial industry |
topic | Financial services industry Auditing. Financial services industry Auditing fast |
topic_facet | Financial services industry Auditing. Financial services industry Auditing |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2198488 |
work_keys_str_mv | AT daijun auditanalyticsinthefinancialindustry AT vasarhelyimiklosa auditanalyticsinthefinancialindustry AT medinetsannf auditanalyticsinthefinancialindustry |