Basics of Polymers, Volume II :: Instrumental Methods of Testing /
Wide-range polymer materials require polymer testing, which is associated with public and economic factors. Perhaps in no other aspect of the materials is there a great need for a dispassionate and rigorous analysis because of the characteristics of a polymer. Polymer testing with instrumental metho...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Place of publication not identified] :
Momentum Press,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Wide-range polymer materials require polymer testing, which is associated with public and economic factors. Perhaps in no other aspect of the materials is there a great need for a dispassionate and rigorous analysis because of the characteristics of a polymer. Polymer testing with instrumental methods are reliable with respect to technological options and economics of the operations. Polymer testing is long established and highly successful. However, the variations in the raw materials and additives, yet not without particular problems such as variations in molecular weight, result in quality problems in the product. |
Beschreibung: | 1 online resource |
ISBN: | 1949449025 9781949449020 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1100941609 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | | ||
007 | cr ||||||||||| | ||
008 | 190304s2019 enk go 000 0 eng d | ||
040 | |a UKAHL |b eng |e rda |e pn |c UKAHL |d OCLCQ |d S2H |d N$T |d OCLCF |d K6U |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 1949449025 | ||
020 | |a 9781949449020 |q (electronic bk.) | ||
035 | |a (OCoLC)1100941609 | ||
050 | 4 | |a TA455.P58 |b M8732 2019 | |
082 | 7 | |a 620.192 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Muralisrinivasan, Subramanian, |e author. | |
245 | 1 | 0 | |a Basics of Polymers, Volume II : |b Instrumental Methods of Testing / |c Subramanian Muralisrinivasan. |
264 | 1 | |a [Place of publication not identified] : |b Momentum Press, |c 2019. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a 1. Introduction -- 1.1. Objective: polymer testing -- 1.2. Necessity of instrumental methods -- 1.3. Specialization | |
505 | 8 | |a 2. Importance of polymer testing -- 2.1. Polymers -- 2.1.1. Chemical aspects -- 2.1.2. Architectural aspects -- 2.2. Polymer properties -- 2.3. Functionality type distribution -- 2.4. Chemical composition distribution -- 2.5. Physical properties -- 2.6. Chemical properties -- 2.7. Thermal properties -- 2.8. Rheological properties -- 2.9. Additives -- 2.10. Testing of additives -- 2.11. Instrumental methods and their role -- 2.12. Spectroscopy -- 2.13. Chromatography -- 2.14. Thermal analysis -- 2.15. Rheological measurements -- 2.16. Other measurements -- 2.17. Chemical methods versus instrumental methods -- 2.18. Importance of instrumental methods | |
505 | 8 | |a 3. Spectroscopic techniques -- 3.1. Spectrophotometric analysis -- 3.2. Fourier transform -- 3.3. Ultraviolet and visible absorption spectroscopy -- 3.4. Near-infrared (NIR) spectroscopy -- 3.4.1. Industrial applications -- 3.4.2. Advantages -- 3.4.3. Disadvantage -- 3.5. Infrared spectroscopy -- 3.5.1. Basics -- 3.5.2. Fourier transform infrared spectrophotometer -- 3.5.3. Instrumentation -- 3.5.4. Interferometry -- 3.5.5. Attenuated total reflectance -- 3.5.6. Importance of infrared spectroscopy -- 3.5.7. Identification of unknown compounds -- 3.5.8. Elemental analysis -- 3.5.9. Quantitative analysis -- 3.5.10. Molecular structure -- 3.5.11. Infrared spectrum -- 3.5.12. Shortcomings -- 3.5.13. Some of the advantages of FTIR are -- 3.6. Mass spectrometry -- 3.6.1. Instrumentation -- 3.6.2. Mass spectrometry and polymers -- 3.6.3. Pyrolysis-mass spectrometry -- 3.6.4. Secondary ion mass spectrometry -- 3.6.5. Electrospray ionization -- 3.6.6. Field desorption mass spectrometry 43 3.6.7. matrix-assisted laser desorption ionization time-of-flight 43 3.6.8. shortcomings -- 3.6.9. Advantages -- 3.7. Nuclear magnetic resonance spectroscopy -- 3.7.1. Basics -- 3.7.2. NMR spectrum -- 3.7.3. Solvents -- 3.7.4. Proton 1H NMR spectrum -- 3.7.5. Carbon 13C NMR spectrum -- 3.7.6. Fluorine 19F NMR spectrum -- 3.7.7. Shortcomings -- 3.7.8. Advantages -- 3.8. Raman spectroscopy -- 3.8.1. Importance of the raman spectrum -- 3.8.2. Shortcomings -- 3.8.3. Advantages | |
505 | 8 | |a 4. Chromatographic techniques -- 4.1. High-performance liquid chromatography -- 4.1.1. Instrumentation -- 4.1.2. Reverse phase HPLC -- 4.1.3. Mobile phase -- 4.1.4. Stationary phase -- 4.1.5. Elution -- 4.1.6. Column -- 4.1.7. Mechanism of retention -- 4.1.8. Chromatogram -- 4.1.9. Advantages -- 4.1.10. Shortcomings -- 4.2. Size exclusion chromatography -- 4.2.1. Instrumentation -- 4.2.2. Detectors -- 4.2.3 Effects on column packing -- 4.2.4. Effects on velocity -- 4.2.5. Solvents effect -- 4.2.6. Calibration -- 4.2.7. Plate count -- 4.2.8. Role of SEC -- 4.2.9. Shortcomings -- 4.2.10. Advantages -- 4.3. Gas chromatography -- 4.3.1. Thermal fragmentation -- 4.3.2. Instrumentation -- 4.3.3. Analyte separation and quantitative determination -- 4.3.4. Shortcomings -- 4.3.5. Advantages | |
505 | 8 | |a 5. Thermal analysis -- 5.1. Thermogravimetric analysis (TGA) -- 5.1.1. Importance of thermal analysis -- 5.1.2. Instrumentation -- 5.1.3. Essentials of thermogravimetric instrument -- 5.1.4. Advantages -- 5.2. Differential scanning calorimetry (DSC) -- 5.2.1. Basics -- 5.2.2. Instrumentation -- 5.2.3. Advantages | |
505 | 8 | |a 6. Other essential instrumental methods of analysis -- 6.1. Heat stability test -- 6.2. Gel content determination -- 6.3. Microscopy -- 6.4. Scanning electron microscopy -- 6.5. Transmission electron microscopy (TEM) -- 6.6. Atomic force microscopy (AFM) -- 6.7. Small-angle x-ray scattering (SAXS) -- 6.8. Viscometric determination of molecular weight -- 6.9. Ultracentrifugation -- 6.10. Light scattering technique -- 6.11. Supercritical fluid extraction (SFE) -- 6.11.1. Advantages | |
505 | 8 | |a 7. Future trends -- 7.1. Role of polymer testing -- 7.2. Quality control -- 7.3. Developments in polymer testing -- 7.4. Driving forces -- 7.5. Requirements and challenges | |
505 | 8 | |a About the author -- Index. | |
520 | 3 | |a Wide-range polymer materials require polymer testing, which is associated with public and economic factors. Perhaps in no other aspect of the materials is there a great need for a dispassionate and rigorous analysis because of the characteristics of a polymer. Polymer testing with instrumental methods are reliable with respect to technological options and economics of the operations. Polymer testing is long established and highly successful. However, the variations in the raw materials and additives, yet not without particular problems such as variations in molecular weight, result in quality problems in the product. | |
650 | 0 | |a Polymers |x Testing. |0 http://id.loc.gov/authorities/subjects/sh85104674 | |
650 | 7 | |a Polymers |x Testing |2 fast | |
758 | |i has work: |a Instrumental methods of testing Volume II Basics of polymers (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGfG4xpRMCt3v78Cwv7MWC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2027933 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n BDZ0039756482 | ||
938 | |a EBSCOhost |b EBSC |n 2027933 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1100941609 |
---|---|
_version_ | 1816882492648456192 |
adam_text | |
any_adam_object | |
author | Muralisrinivasan, Subramanian |
author_facet | Muralisrinivasan, Subramanian |
author_role | aut |
author_sort | Muralisrinivasan, Subramanian |
author_variant | s m sm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA455 |
callnumber-raw | TA455.P58 M8732 2019 |
callnumber-search | TA455.P58 M8732 2019 |
callnumber-sort | TA 3455 P58 M8732 42019 |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | 1. Introduction -- 1.1. Objective: polymer testing -- 1.2. Necessity of instrumental methods -- 1.3. Specialization 2. Importance of polymer testing -- 2.1. Polymers -- 2.1.1. Chemical aspects -- 2.1.2. Architectural aspects -- 2.2. Polymer properties -- 2.3. Functionality type distribution -- 2.4. Chemical composition distribution -- 2.5. Physical properties -- 2.6. Chemical properties -- 2.7. Thermal properties -- 2.8. Rheological properties -- 2.9. Additives -- 2.10. Testing of additives -- 2.11. Instrumental methods and their role -- 2.12. Spectroscopy -- 2.13. Chromatography -- 2.14. Thermal analysis -- 2.15. Rheological measurements -- 2.16. Other measurements -- 2.17. Chemical methods versus instrumental methods -- 2.18. Importance of instrumental methods 3. Spectroscopic techniques -- 3.1. Spectrophotometric analysis -- 3.2. Fourier transform -- 3.3. Ultraviolet and visible absorption spectroscopy -- 3.4. Near-infrared (NIR) spectroscopy -- 3.4.1. Industrial applications -- 3.4.2. Advantages -- 3.4.3. Disadvantage -- 3.5. Infrared spectroscopy -- 3.5.1. Basics -- 3.5.2. Fourier transform infrared spectrophotometer -- 3.5.3. Instrumentation -- 3.5.4. Interferometry -- 3.5.5. Attenuated total reflectance -- 3.5.6. Importance of infrared spectroscopy -- 3.5.7. Identification of unknown compounds -- 3.5.8. Elemental analysis -- 3.5.9. Quantitative analysis -- 3.5.10. Molecular structure -- 3.5.11. Infrared spectrum -- 3.5.12. Shortcomings -- 3.5.13. Some of the advantages of FTIR are -- 3.6. Mass spectrometry -- 3.6.1. Instrumentation -- 3.6.2. Mass spectrometry and polymers -- 3.6.3. Pyrolysis-mass spectrometry -- 3.6.4. Secondary ion mass spectrometry -- 3.6.5. Electrospray ionization -- 3.6.6. Field desorption mass spectrometry 43 3.6.7. matrix-assisted laser desorption ionization time-of-flight 43 3.6.8. shortcomings -- 3.6.9. Advantages -- 3.7. Nuclear magnetic resonance spectroscopy -- 3.7.1. Basics -- 3.7.2. NMR spectrum -- 3.7.3. Solvents -- 3.7.4. Proton 1H NMR spectrum -- 3.7.5. Carbon 13C NMR spectrum -- 3.7.6. Fluorine 19F NMR spectrum -- 3.7.7. Shortcomings -- 3.7.8. Advantages -- 3.8. Raman spectroscopy -- 3.8.1. Importance of the raman spectrum -- 3.8.2. Shortcomings -- 3.8.3. Advantages 4. Chromatographic techniques -- 4.1. High-performance liquid chromatography -- 4.1.1. Instrumentation -- 4.1.2. Reverse phase HPLC -- 4.1.3. Mobile phase -- 4.1.4. Stationary phase -- 4.1.5. Elution -- 4.1.6. Column -- 4.1.7. Mechanism of retention -- 4.1.8. Chromatogram -- 4.1.9. Advantages -- 4.1.10. Shortcomings -- 4.2. Size exclusion chromatography -- 4.2.1. Instrumentation -- 4.2.2. Detectors -- 4.2.3 Effects on column packing -- 4.2.4. Effects on velocity -- 4.2.5. Solvents effect -- 4.2.6. Calibration -- 4.2.7. Plate count -- 4.2.8. Role of SEC -- 4.2.9. Shortcomings -- 4.2.10. Advantages -- 4.3. Gas chromatography -- 4.3.1. Thermal fragmentation -- 4.3.2. Instrumentation -- 4.3.3. Analyte separation and quantitative determination -- 4.3.4. Shortcomings -- 4.3.5. Advantages 5. Thermal analysis -- 5.1. Thermogravimetric analysis (TGA) -- 5.1.1. Importance of thermal analysis -- 5.1.2. Instrumentation -- 5.1.3. Essentials of thermogravimetric instrument -- 5.1.4. Advantages -- 5.2. Differential scanning calorimetry (DSC) -- 5.2.1. Basics -- 5.2.2. Instrumentation -- 5.2.3. Advantages 6. Other essential instrumental methods of analysis -- 6.1. Heat stability test -- 6.2. Gel content determination -- 6.3. Microscopy -- 6.4. Scanning electron microscopy -- 6.5. Transmission electron microscopy (TEM) -- 6.6. Atomic force microscopy (AFM) -- 6.7. Small-angle x-ray scattering (SAXS) -- 6.8. Viscometric determination of molecular weight -- 6.9. Ultracentrifugation -- 6.10. Light scattering technique -- 6.11. Supercritical fluid extraction (SFE) -- 6.11.1. Advantages 7. Future trends -- 7.1. Role of polymer testing -- 7.2. Quality control -- 7.3. Developments in polymer testing -- 7.4. Driving forces -- 7.5. Requirements and challenges About the author -- Index. |
ctrlnum | (OCoLC)1100941609 |
dewey-full | 620.192 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.192 |
dewey-search | 620.192 |
dewey-sort | 3620.192 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06281cam a2200457Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1100941609</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">190304s2019 enk go 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UKAHL</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S2H</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1949449025</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781949449020</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1100941609</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA455.P58</subfield><subfield code="b">M8732 2019</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">620.192</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muralisrinivasan, Subramanian,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basics of Polymers, Volume II :</subfield><subfield code="b">Instrumental Methods of Testing /</subfield><subfield code="c">Subramanian Muralisrinivasan.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified] :</subfield><subfield code="b">Momentum Press,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction -- 1.1. Objective: polymer testing -- 1.2. Necessity of instrumental methods -- 1.3. Specialization</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Importance of polymer testing -- 2.1. Polymers -- 2.1.1. Chemical aspects -- 2.1.2. Architectural aspects -- 2.2. Polymer properties -- 2.3. Functionality type distribution -- 2.4. Chemical composition distribution -- 2.5. Physical properties -- 2.6. Chemical properties -- 2.7. Thermal properties -- 2.8. Rheological properties -- 2.9. Additives -- 2.10. Testing of additives -- 2.11. Instrumental methods and their role -- 2.12. Spectroscopy -- 2.13. Chromatography -- 2.14. Thermal analysis -- 2.15. Rheological measurements -- 2.16. Other measurements -- 2.17. Chemical methods versus instrumental methods -- 2.18. Importance of instrumental methods</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Spectroscopic techniques -- 3.1. Spectrophotometric analysis -- 3.2. Fourier transform -- 3.3. Ultraviolet and visible absorption spectroscopy -- 3.4. Near-infrared (NIR) spectroscopy -- 3.4.1. Industrial applications -- 3.4.2. Advantages -- 3.4.3. Disadvantage -- 3.5. Infrared spectroscopy -- 3.5.1. Basics -- 3.5.2. Fourier transform infrared spectrophotometer -- 3.5.3. Instrumentation -- 3.5.4. Interferometry -- 3.5.5. Attenuated total reflectance -- 3.5.6. Importance of infrared spectroscopy -- 3.5.7. Identification of unknown compounds -- 3.5.8. Elemental analysis -- 3.5.9. Quantitative analysis -- 3.5.10. Molecular structure -- 3.5.11. Infrared spectrum -- 3.5.12. Shortcomings -- 3.5.13. Some of the advantages of FTIR are -- 3.6. Mass spectrometry -- 3.6.1. Instrumentation -- 3.6.2. Mass spectrometry and polymers -- 3.6.3. Pyrolysis-mass spectrometry -- 3.6.4. Secondary ion mass spectrometry -- 3.6.5. Electrospray ionization -- 3.6.6. Field desorption mass spectrometry 43 3.6.7. matrix-assisted laser desorption ionization time-of-flight 43 3.6.8. shortcomings -- 3.6.9. Advantages -- 3.7. Nuclear magnetic resonance spectroscopy -- 3.7.1. Basics -- 3.7.2. NMR spectrum -- 3.7.3. Solvents -- 3.7.4. Proton 1H NMR spectrum -- 3.7.5. Carbon 13C NMR spectrum -- 3.7.6. Fluorine 19F NMR spectrum -- 3.7.7. Shortcomings -- 3.7.8. Advantages -- 3.8. Raman spectroscopy -- 3.8.1. Importance of the raman spectrum -- 3.8.2. Shortcomings -- 3.8.3. Advantages</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Chromatographic techniques -- 4.1. High-performance liquid chromatography -- 4.1.1. Instrumentation -- 4.1.2. Reverse phase HPLC -- 4.1.3. Mobile phase -- 4.1.4. Stationary phase -- 4.1.5. Elution -- 4.1.6. Column -- 4.1.7. Mechanism of retention -- 4.1.8. Chromatogram -- 4.1.9. Advantages -- 4.1.10. Shortcomings -- 4.2. Size exclusion chromatography -- 4.2.1. Instrumentation -- 4.2.2. Detectors -- 4.2.3 Effects on column packing -- 4.2.4. Effects on velocity -- 4.2.5. Solvents effect -- 4.2.6. Calibration -- 4.2.7. Plate count -- 4.2.8. Role of SEC -- 4.2.9. Shortcomings -- 4.2.10. Advantages -- 4.3. Gas chromatography -- 4.3.1. Thermal fragmentation -- 4.3.2. Instrumentation -- 4.3.3. Analyte separation and quantitative determination -- 4.3.4. Shortcomings -- 4.3.5. Advantages</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Thermal analysis -- 5.1. Thermogravimetric analysis (TGA) -- 5.1.1. Importance of thermal analysis -- 5.1.2. Instrumentation -- 5.1.3. Essentials of thermogravimetric instrument -- 5.1.4. Advantages -- 5.2. Differential scanning calorimetry (DSC) -- 5.2.1. Basics -- 5.2.2. Instrumentation -- 5.2.3. Advantages</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Other essential instrumental methods of analysis -- 6.1. Heat stability test -- 6.2. Gel content determination -- 6.3. Microscopy -- 6.4. Scanning electron microscopy -- 6.5. Transmission electron microscopy (TEM) -- 6.6. Atomic force microscopy (AFM) -- 6.7. Small-angle x-ray scattering (SAXS) -- 6.8. Viscometric determination of molecular weight -- 6.9. Ultracentrifugation -- 6.10. Light scattering technique -- 6.11. Supercritical fluid extraction (SFE) -- 6.11.1. Advantages</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Future trends -- 7.1. Role of polymer testing -- 7.2. Quality control -- 7.3. Developments in polymer testing -- 7.4. Driving forces -- 7.5. Requirements and challenges</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">About the author -- Index.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Wide-range polymer materials require polymer testing, which is associated with public and economic factors. Perhaps in no other aspect of the materials is there a great need for a dispassionate and rigorous analysis because of the characteristics of a polymer. Polymer testing with instrumental methods are reliable with respect to technological options and economics of the operations. Polymer testing is long established and highly successful. However, the variations in the raw materials and additives, yet not without particular problems such as variations in molecular weight, result in quality problems in the product.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Polymers</subfield><subfield code="x">Testing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85104674</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymers</subfield><subfield code="x">Testing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Instrumental methods of testing Volume II Basics of polymers (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGfG4xpRMCt3v78Cwv7MWC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2027933</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">BDZ0039756482</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2027933</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1100941609 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:28Z |
institution | BVB |
isbn | 1949449025 9781949449020 |
language | English |
oclc_num | 1100941609 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Momentum Press, |
record_format | marc |
spelling | Muralisrinivasan, Subramanian, author. Basics of Polymers, Volume II : Instrumental Methods of Testing / Subramanian Muralisrinivasan. [Place of publication not identified] : Momentum Press, 2019. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier 1. Introduction -- 1.1. Objective: polymer testing -- 1.2. Necessity of instrumental methods -- 1.3. Specialization 2. Importance of polymer testing -- 2.1. Polymers -- 2.1.1. Chemical aspects -- 2.1.2. Architectural aspects -- 2.2. Polymer properties -- 2.3. Functionality type distribution -- 2.4. Chemical composition distribution -- 2.5. Physical properties -- 2.6. Chemical properties -- 2.7. Thermal properties -- 2.8. Rheological properties -- 2.9. Additives -- 2.10. Testing of additives -- 2.11. Instrumental methods and their role -- 2.12. Spectroscopy -- 2.13. Chromatography -- 2.14. Thermal analysis -- 2.15. Rheological measurements -- 2.16. Other measurements -- 2.17. Chemical methods versus instrumental methods -- 2.18. Importance of instrumental methods 3. Spectroscopic techniques -- 3.1. Spectrophotometric analysis -- 3.2. Fourier transform -- 3.3. Ultraviolet and visible absorption spectroscopy -- 3.4. Near-infrared (NIR) spectroscopy -- 3.4.1. Industrial applications -- 3.4.2. Advantages -- 3.4.3. Disadvantage -- 3.5. Infrared spectroscopy -- 3.5.1. Basics -- 3.5.2. Fourier transform infrared spectrophotometer -- 3.5.3. Instrumentation -- 3.5.4. Interferometry -- 3.5.5. Attenuated total reflectance -- 3.5.6. Importance of infrared spectroscopy -- 3.5.7. Identification of unknown compounds -- 3.5.8. Elemental analysis -- 3.5.9. Quantitative analysis -- 3.5.10. Molecular structure -- 3.5.11. Infrared spectrum -- 3.5.12. Shortcomings -- 3.5.13. Some of the advantages of FTIR are -- 3.6. Mass spectrometry -- 3.6.1. Instrumentation -- 3.6.2. Mass spectrometry and polymers -- 3.6.3. Pyrolysis-mass spectrometry -- 3.6.4. Secondary ion mass spectrometry -- 3.6.5. Electrospray ionization -- 3.6.6. Field desorption mass spectrometry 43 3.6.7. matrix-assisted laser desorption ionization time-of-flight 43 3.6.8. shortcomings -- 3.6.9. Advantages -- 3.7. Nuclear magnetic resonance spectroscopy -- 3.7.1. Basics -- 3.7.2. NMR spectrum -- 3.7.3. Solvents -- 3.7.4. Proton 1H NMR spectrum -- 3.7.5. Carbon 13C NMR spectrum -- 3.7.6. Fluorine 19F NMR spectrum -- 3.7.7. Shortcomings -- 3.7.8. Advantages -- 3.8. Raman spectroscopy -- 3.8.1. Importance of the raman spectrum -- 3.8.2. Shortcomings -- 3.8.3. Advantages 4. Chromatographic techniques -- 4.1. High-performance liquid chromatography -- 4.1.1. Instrumentation -- 4.1.2. Reverse phase HPLC -- 4.1.3. Mobile phase -- 4.1.4. Stationary phase -- 4.1.5. Elution -- 4.1.6. Column -- 4.1.7. Mechanism of retention -- 4.1.8. Chromatogram -- 4.1.9. Advantages -- 4.1.10. Shortcomings -- 4.2. Size exclusion chromatography -- 4.2.1. Instrumentation -- 4.2.2. Detectors -- 4.2.3 Effects on column packing -- 4.2.4. Effects on velocity -- 4.2.5. Solvents effect -- 4.2.6. Calibration -- 4.2.7. Plate count -- 4.2.8. Role of SEC -- 4.2.9. Shortcomings -- 4.2.10. Advantages -- 4.3. Gas chromatography -- 4.3.1. Thermal fragmentation -- 4.3.2. Instrumentation -- 4.3.3. Analyte separation and quantitative determination -- 4.3.4. Shortcomings -- 4.3.5. Advantages 5. Thermal analysis -- 5.1. Thermogravimetric analysis (TGA) -- 5.1.1. Importance of thermal analysis -- 5.1.2. Instrumentation -- 5.1.3. Essentials of thermogravimetric instrument -- 5.1.4. Advantages -- 5.2. Differential scanning calorimetry (DSC) -- 5.2.1. Basics -- 5.2.2. Instrumentation -- 5.2.3. Advantages 6. Other essential instrumental methods of analysis -- 6.1. Heat stability test -- 6.2. Gel content determination -- 6.3. Microscopy -- 6.4. Scanning electron microscopy -- 6.5. Transmission electron microscopy (TEM) -- 6.6. Atomic force microscopy (AFM) -- 6.7. Small-angle x-ray scattering (SAXS) -- 6.8. Viscometric determination of molecular weight -- 6.9. Ultracentrifugation -- 6.10. Light scattering technique -- 6.11. Supercritical fluid extraction (SFE) -- 6.11.1. Advantages 7. Future trends -- 7.1. Role of polymer testing -- 7.2. Quality control -- 7.3. Developments in polymer testing -- 7.4. Driving forces -- 7.5. Requirements and challenges About the author -- Index. Wide-range polymer materials require polymer testing, which is associated with public and economic factors. Perhaps in no other aspect of the materials is there a great need for a dispassionate and rigorous analysis because of the characteristics of a polymer. Polymer testing with instrumental methods are reliable with respect to technological options and economics of the operations. Polymer testing is long established and highly successful. However, the variations in the raw materials and additives, yet not without particular problems such as variations in molecular weight, result in quality problems in the product. Polymers Testing. http://id.loc.gov/authorities/subjects/sh85104674 Polymers Testing fast has work: Instrumental methods of testing Volume II Basics of polymers (Text) https://id.oclc.org/worldcat/entity/E39PCGfG4xpRMCt3v78Cwv7MWC https://id.oclc.org/worldcat/ontology/hasWork FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2027933 Volltext |
spellingShingle | Muralisrinivasan, Subramanian Basics of Polymers, Volume II : Instrumental Methods of Testing / 1. Introduction -- 1.1. Objective: polymer testing -- 1.2. Necessity of instrumental methods -- 1.3. Specialization 2. Importance of polymer testing -- 2.1. Polymers -- 2.1.1. Chemical aspects -- 2.1.2. Architectural aspects -- 2.2. Polymer properties -- 2.3. Functionality type distribution -- 2.4. Chemical composition distribution -- 2.5. Physical properties -- 2.6. Chemical properties -- 2.7. Thermal properties -- 2.8. Rheological properties -- 2.9. Additives -- 2.10. Testing of additives -- 2.11. Instrumental methods and their role -- 2.12. Spectroscopy -- 2.13. Chromatography -- 2.14. Thermal analysis -- 2.15. Rheological measurements -- 2.16. Other measurements -- 2.17. Chemical methods versus instrumental methods -- 2.18. Importance of instrumental methods 3. Spectroscopic techniques -- 3.1. Spectrophotometric analysis -- 3.2. Fourier transform -- 3.3. Ultraviolet and visible absorption spectroscopy -- 3.4. Near-infrared (NIR) spectroscopy -- 3.4.1. Industrial applications -- 3.4.2. Advantages -- 3.4.3. Disadvantage -- 3.5. Infrared spectroscopy -- 3.5.1. Basics -- 3.5.2. Fourier transform infrared spectrophotometer -- 3.5.3. Instrumentation -- 3.5.4. Interferometry -- 3.5.5. Attenuated total reflectance -- 3.5.6. Importance of infrared spectroscopy -- 3.5.7. Identification of unknown compounds -- 3.5.8. Elemental analysis -- 3.5.9. Quantitative analysis -- 3.5.10. Molecular structure -- 3.5.11. Infrared spectrum -- 3.5.12. Shortcomings -- 3.5.13. Some of the advantages of FTIR are -- 3.6. Mass spectrometry -- 3.6.1. Instrumentation -- 3.6.2. Mass spectrometry and polymers -- 3.6.3. Pyrolysis-mass spectrometry -- 3.6.4. Secondary ion mass spectrometry -- 3.6.5. Electrospray ionization -- 3.6.6. Field desorption mass spectrometry 43 3.6.7. matrix-assisted laser desorption ionization time-of-flight 43 3.6.8. shortcomings -- 3.6.9. Advantages -- 3.7. Nuclear magnetic resonance spectroscopy -- 3.7.1. Basics -- 3.7.2. NMR spectrum -- 3.7.3. Solvents -- 3.7.4. Proton 1H NMR spectrum -- 3.7.5. Carbon 13C NMR spectrum -- 3.7.6. Fluorine 19F NMR spectrum -- 3.7.7. Shortcomings -- 3.7.8. Advantages -- 3.8. Raman spectroscopy -- 3.8.1. Importance of the raman spectrum -- 3.8.2. Shortcomings -- 3.8.3. Advantages 4. Chromatographic techniques -- 4.1. High-performance liquid chromatography -- 4.1.1. Instrumentation -- 4.1.2. Reverse phase HPLC -- 4.1.3. Mobile phase -- 4.1.4. Stationary phase -- 4.1.5. Elution -- 4.1.6. Column -- 4.1.7. Mechanism of retention -- 4.1.8. Chromatogram -- 4.1.9. Advantages -- 4.1.10. Shortcomings -- 4.2. Size exclusion chromatography -- 4.2.1. Instrumentation -- 4.2.2. Detectors -- 4.2.3 Effects on column packing -- 4.2.4. Effects on velocity -- 4.2.5. Solvents effect -- 4.2.6. Calibration -- 4.2.7. Plate count -- 4.2.8. Role of SEC -- 4.2.9. Shortcomings -- 4.2.10. Advantages -- 4.3. Gas chromatography -- 4.3.1. Thermal fragmentation -- 4.3.2. Instrumentation -- 4.3.3. Analyte separation and quantitative determination -- 4.3.4. Shortcomings -- 4.3.5. Advantages 5. Thermal analysis -- 5.1. Thermogravimetric analysis (TGA) -- 5.1.1. Importance of thermal analysis -- 5.1.2. Instrumentation -- 5.1.3. Essentials of thermogravimetric instrument -- 5.1.4. Advantages -- 5.2. Differential scanning calorimetry (DSC) -- 5.2.1. Basics -- 5.2.2. Instrumentation -- 5.2.3. Advantages 6. Other essential instrumental methods of analysis -- 6.1. Heat stability test -- 6.2. Gel content determination -- 6.3. Microscopy -- 6.4. Scanning electron microscopy -- 6.5. Transmission electron microscopy (TEM) -- 6.6. Atomic force microscopy (AFM) -- 6.7. Small-angle x-ray scattering (SAXS) -- 6.8. Viscometric determination of molecular weight -- 6.9. Ultracentrifugation -- 6.10. Light scattering technique -- 6.11. Supercritical fluid extraction (SFE) -- 6.11.1. Advantages 7. Future trends -- 7.1. Role of polymer testing -- 7.2. Quality control -- 7.3. Developments in polymer testing -- 7.4. Driving forces -- 7.5. Requirements and challenges About the author -- Index. Polymers Testing. http://id.loc.gov/authorities/subjects/sh85104674 Polymers Testing fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85104674 |
title | Basics of Polymers, Volume II : Instrumental Methods of Testing / |
title_auth | Basics of Polymers, Volume II : Instrumental Methods of Testing / |
title_exact_search | Basics of Polymers, Volume II : Instrumental Methods of Testing / |
title_full | Basics of Polymers, Volume II : Instrumental Methods of Testing / Subramanian Muralisrinivasan. |
title_fullStr | Basics of Polymers, Volume II : Instrumental Methods of Testing / Subramanian Muralisrinivasan. |
title_full_unstemmed | Basics of Polymers, Volume II : Instrumental Methods of Testing / Subramanian Muralisrinivasan. |
title_short | Basics of Polymers, Volume II : |
title_sort | basics of polymers volume ii instrumental methods of testing |
title_sub | Instrumental Methods of Testing / |
topic | Polymers Testing. http://id.loc.gov/authorities/subjects/sh85104674 Polymers Testing fast |
topic_facet | Polymers Testing. Polymers Testing |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2027933 |
work_keys_str_mv | AT muralisrinivasansubramanian basicsofpolymersvolumeiiinstrumentalmethodsoftesting |