Hands-on machine learning with IBM Watson :: leverage IBM Watson to implement machine learning techniques and algorithms using Python /
A practical guide on Machine learning with IBM cloud to act as a solid yet concise reference for the readers. You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A practical guide on Machine learning with IBM cloud to act as a solid yet concise reference for the readers. You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to develop real-world machine learning solutions. |
Beschreibung: | 1 online resource : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 1789616271 9781789616279 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1100643335 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 190509s2019 enka ob 000 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d TEFOD |d EBLCP |d UKAHL |d MERUC |d UKMGB |d OCLCF |d YDX |d OCLCQ |d N$T |d OCLCO |d OCLCQ |d OCLCO |d NZAUC |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBB995007 |2 bnb | ||
016 | 7 | |a 019365469 |2 Uk | |
019 | |a 1091661449 |a 1096535319 | ||
020 | |a 1789616271 | ||
020 | |a 9781789616279 |q (electronic bk.) | ||
020 | |z 9781789611854 | ||
035 | |a (OCoLC)1100643335 |z (OCoLC)1091661449 |z (OCoLC)1096535319 | ||
037 | |a CL0501000047 |b Safari Books Online | ||
050 | 4 | |a QA76.73.P98 | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Miller, James D. |c (Software consultant), |e author. |0 http://id.loc.gov/authorities/names/nb2016005442 | |
245 | 1 | 0 | |a Hands-on machine learning with IBM Watson : |b leverage IBM Watson to implement machine learning techniques and algorithms using Python / |c James D. Miller. |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2019. | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Online resource; title from title page (Safari, viewed May 8, 2019). | |
505 | 0 | |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: Introduction and Foundation; Chapter 1: Introduction to IBM Cloud; Understanding IBM Cloud; Prerequisites ; Accessing the IBM Cloud ; Cloud resources ; The IBM Cloud and Watson Machine Learning services; Setting up the environment; Watson Studio Cloud ; Watson Studio architecture and layout ; Establishing context ; Setting up a new project ; Data visualization tutorial ; Summary ; Chapter 2: Feature Extraction -- A Bag of Tricks; Preprocessing; The data refinery; Data | |
505 | 8 | |a Adding the refineryRefining data by using commands; Dimensional reduction; Data fusion; Catalog setup; Recommended assets; A bag of tricks; Summary; Chapter 3: Supervised Machine Learning Models for Your Data; Model selection; IBM Watson Studio Model Builder; Using the model builder; Training data; Guessing which technique to use; Deployment; Model builder deployment steps; Testing the model; Continuous learning and model evaluation; Classification; Binary classification; Multiclass classification; Regression; Testing the predictive capability; Summary | |
505 | 8 | |a Chapter 4: Implementing Unsupervised AlgorithmsUnsupervised learning; Watson Studio, machine learning flows, and KMeans; Getting started; Creating an SPSS modeler flow; Additional node work; Training and testing; SPSS flow and K-means; Exporting model results; Semi-supervised learning; Anomaly detection; Machine learning based approaches; Online or batch learning; Summary; Section 2: Tools and Ingredients for Machine Learning in IBM Cloud; Chapter 5: Machine Learning Workouts on IBM Cloud; Watson Studio and Python; Setting up the environment; Try it out; Data cleansing and preparation | |
505 | 8 | |a K-means clustering using PythonThe Python code; Observing the results; Implementing in Watson; Saving your work; K-nearest neighbors; The Python code; Implementing in Watson; Exploring Markdown text; Time series prediction example; Time series analysis; Setup; Data preprocessing; Indexing for visualization; Visualizations; Forecasting sales; Validation; Summary; Chapter 6: Using Spark with IBM Watson Studio; Introduction to Apache Spark; Watson Studio and Spark; Creating a Spark-enabled notebook; Creating a Spark pipeline in Watson Studio; What is a pipeline?; Pipeline objectives | |
505 | 8 | |a Breaking down a pipeline exampleData preparation; The pipeline; A data analysis and visualization example; Setup; Getting the data; Loading the data; Exploration; Extraction; Plotting; Saving; Downloading your notebook; Summary; Chapter 7: Deep Learning Using TensorFlow on the IBM Cloud; Introduction to deep learning ; TensorFlow basics ; Neural networks and TensorFlow ; An example ; Creating the new project; Notebook asset type; Running the imported notebook; Reviewing the notebook; TensorFlow and image classifications; Adding the service; Required modules; Using the API key in code | |
520 | |a A practical guide on Machine learning with IBM cloud to act as a solid yet concise reference for the readers. You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to develop real-world machine learning solutions. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 0 | |a Watson (Computer) |0 http://id.loc.gov/authorities/subjects/sh2011000204 | |
650 | 0 | |a Computer algorithms. |0 http://id.loc.gov/authorities/subjects/sh91000149 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Watson (Ordinateur) | |
650 | 6 | |a Algorithmes. | |
650 | 7 | |a algorithms. |2 aat | |
650 | 7 | |a Computer algorithms |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
650 | 7 | |a Watson (Computer) |2 fast | |
758 | |i has work: |a Hands-on machine learning with IBM Watson (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGgyhP9kw94M4FQkBwwJwC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a D. Miller, James. |t Hands-On Machine Learning with IBM Watson : Leverage IBM Watson to Implement Machine Learning Techniques and Algorithms Using Python. |d Birmingham : Packt Publishing Ltd, ©2019 |z 9781789611854 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094776 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH36147905 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5744471 | ||
938 | |a EBSCOhost |b EBSC |n 2094776 | ||
938 | |a YBP Library Services |b YANK |n 16142482 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1100643335 |
---|---|
_version_ | 1816882492671524866 |
adam_text | |
any_adam_object | |
author | Miller, James D. (Software consultant) |
author_GND | http://id.loc.gov/authorities/names/nb2016005442 |
author_facet | Miller, James D. (Software consultant) |
author_role | aut |
author_sort | Miller, James D. (Software consultant) |
author_variant | j d m jd jdm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 |
callnumber-search | QA76.73.P98 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: Introduction and Foundation; Chapter 1: Introduction to IBM Cloud; Understanding IBM Cloud; Prerequisites ; Accessing the IBM Cloud ; Cloud resources ; The IBM Cloud and Watson Machine Learning services; Setting up the environment; Watson Studio Cloud ; Watson Studio architecture and layout ; Establishing context ; Setting up a new project ; Data visualization tutorial ; Summary ; Chapter 2: Feature Extraction -- A Bag of Tricks; Preprocessing; The data refinery; Data Adding the refineryRefining data by using commands; Dimensional reduction; Data fusion; Catalog setup; Recommended assets; A bag of tricks; Summary; Chapter 3: Supervised Machine Learning Models for Your Data; Model selection; IBM Watson Studio Model Builder; Using the model builder; Training data; Guessing which technique to use; Deployment; Model builder deployment steps; Testing the model; Continuous learning and model evaluation; Classification; Binary classification; Multiclass classification; Regression; Testing the predictive capability; Summary Chapter 4: Implementing Unsupervised AlgorithmsUnsupervised learning; Watson Studio, machine learning flows, and KMeans; Getting started; Creating an SPSS modeler flow; Additional node work; Training and testing; SPSS flow and K-means; Exporting model results; Semi-supervised learning; Anomaly detection; Machine learning based approaches; Online or batch learning; Summary; Section 2: Tools and Ingredients for Machine Learning in IBM Cloud; Chapter 5: Machine Learning Workouts on IBM Cloud; Watson Studio and Python; Setting up the environment; Try it out; Data cleansing and preparation K-means clustering using PythonThe Python code; Observing the results; Implementing in Watson; Saving your work; K-nearest neighbors; The Python code; Implementing in Watson; Exploring Markdown text; Time series prediction example; Time series analysis; Setup; Data preprocessing; Indexing for visualization; Visualizations; Forecasting sales; Validation; Summary; Chapter 6: Using Spark with IBM Watson Studio; Introduction to Apache Spark; Watson Studio and Spark; Creating a Spark-enabled notebook; Creating a Spark pipeline in Watson Studio; What is a pipeline?; Pipeline objectives Breaking down a pipeline exampleData preparation; The pipeline; A data analysis and visualization example; Setup; Getting the data; Loading the data; Exploration; Extraction; Plotting; Saving; Downloading your notebook; Summary; Chapter 7: Deep Learning Using TensorFlow on the IBM Cloud; Introduction to deep learning ; TensorFlow basics ; Neural networks and TensorFlow ; An example ; Creating the new project; Notebook asset type; Running the imported notebook; Reviewing the notebook; TensorFlow and image classifications; Adding the service; Required modules; Using the API key in code |
ctrlnum | (OCoLC)1100643335 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06276cam a2200673 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1100643335</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">190509s2019 enka ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">TEFOD</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UKAHL</subfield><subfield code="d">MERUC</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NZAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB995007</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019365469</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1091661449</subfield><subfield code="a">1096535319</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789616271</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789616279</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781789611854</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1100643335</subfield><subfield code="z">(OCoLC)1091661449</subfield><subfield code="z">(OCoLC)1096535319</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0501000047</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, James D.</subfield><subfield code="c">(Software consultant),</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2016005442</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-on machine learning with IBM Watson :</subfield><subfield code="b">leverage IBM Watson to implement machine learning techniques and algorithms using Python /</subfield><subfield code="c">James D. Miller.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from title page (Safari, viewed May 8, 2019).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: Introduction and Foundation; Chapter 1: Introduction to IBM Cloud; Understanding IBM Cloud; Prerequisites ; Accessing the IBM Cloud ; Cloud resources ; The IBM Cloud and Watson Machine Learning services; Setting up the environment; Watson Studio Cloud ; Watson Studio architecture and layout ; Establishing context ; Setting up a new project ; Data visualization tutorial ; Summary ; Chapter 2: Feature Extraction -- A Bag of Tricks; Preprocessing; The data refinery; Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Adding the refineryRefining data by using commands; Dimensional reduction; Data fusion; Catalog setup; Recommended assets; A bag of tricks; Summary; Chapter 3: Supervised Machine Learning Models for Your Data; Model selection; IBM Watson Studio Model Builder; Using the model builder; Training data; Guessing which technique to use; Deployment; Model builder deployment steps; Testing the model; Continuous learning and model evaluation; Classification; Binary classification; Multiclass classification; Regression; Testing the predictive capability; Summary</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 4: Implementing Unsupervised AlgorithmsUnsupervised learning; Watson Studio, machine learning flows, and KMeans; Getting started; Creating an SPSS modeler flow; Additional node work; Training and testing; SPSS flow and K-means; Exporting model results; Semi-supervised learning; Anomaly detection; Machine learning based approaches; Online or batch learning; Summary; Section 2: Tools and Ingredients for Machine Learning in IBM Cloud; Chapter 5: Machine Learning Workouts on IBM Cloud; Watson Studio and Python; Setting up the environment; Try it out; Data cleansing and preparation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">K-means clustering using PythonThe Python code; Observing the results; Implementing in Watson; Saving your work; K-nearest neighbors; The Python code; Implementing in Watson; Exploring Markdown text; Time series prediction example; Time series analysis; Setup; Data preprocessing; Indexing for visualization; Visualizations; Forecasting sales; Validation; Summary; Chapter 6: Using Spark with IBM Watson Studio; Introduction to Apache Spark; Watson Studio and Spark; Creating a Spark-enabled notebook; Creating a Spark pipeline in Watson Studio; What is a pipeline?; Pipeline objectives</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Breaking down a pipeline exampleData preparation; The pipeline; A data analysis and visualization example; Setup; Getting the data; Loading the data; Exploration; Extraction; Plotting; Saving; Downloading your notebook; Summary; Chapter 7: Deep Learning Using TensorFlow on the IBM Cloud; Introduction to deep learning ; TensorFlow basics ; Neural networks and TensorFlow ; An example ; Creating the new project; Notebook asset type; Running the imported notebook; Reviewing the notebook; TensorFlow and image classifications; Adding the service; Required modules; Using the API key in code</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A practical guide on Machine learning with IBM cloud to act as a solid yet concise reference for the readers. You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to develop real-world machine learning solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Watson (Computer)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2011000204</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer algorithms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91000149</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Watson (Ordinateur)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algorithmes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithms.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Watson (Computer)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hands-on machine learning with IBM Watson (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGgyhP9kw94M4FQkBwwJwC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">D. Miller, James.</subfield><subfield code="t">Hands-On Machine Learning with IBM Watson : Leverage IBM Watson to Implement Machine Learning Techniques and Algorithms Using Python.</subfield><subfield code="d">Birmingham : Packt Publishing Ltd, ©2019</subfield><subfield code="z">9781789611854</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094776</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36147905</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5744471</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2094776</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">16142482</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1100643335 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:29:28Z |
institution | BVB |
isbn | 1789616271 9781789616279 |
language | English |
oclc_num | 1100643335 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Miller, James D. (Software consultant), author. http://id.loc.gov/authorities/names/nb2016005442 Hands-on machine learning with IBM Watson : leverage IBM Watson to implement machine learning techniques and algorithms using Python / James D. Miller. Birmingham, UK : Packt Publishing, 2019. 1 online resource : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references. Online resource; title from title page (Safari, viewed May 8, 2019). Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: Introduction and Foundation; Chapter 1: Introduction to IBM Cloud; Understanding IBM Cloud; Prerequisites ; Accessing the IBM Cloud ; Cloud resources ; The IBM Cloud and Watson Machine Learning services; Setting up the environment; Watson Studio Cloud ; Watson Studio architecture and layout ; Establishing context ; Setting up a new project ; Data visualization tutorial ; Summary ; Chapter 2: Feature Extraction -- A Bag of Tricks; Preprocessing; The data refinery; Data Adding the refineryRefining data by using commands; Dimensional reduction; Data fusion; Catalog setup; Recommended assets; A bag of tricks; Summary; Chapter 3: Supervised Machine Learning Models for Your Data; Model selection; IBM Watson Studio Model Builder; Using the model builder; Training data; Guessing which technique to use; Deployment; Model builder deployment steps; Testing the model; Continuous learning and model evaluation; Classification; Binary classification; Multiclass classification; Regression; Testing the predictive capability; Summary Chapter 4: Implementing Unsupervised AlgorithmsUnsupervised learning; Watson Studio, machine learning flows, and KMeans; Getting started; Creating an SPSS modeler flow; Additional node work; Training and testing; SPSS flow and K-means; Exporting model results; Semi-supervised learning; Anomaly detection; Machine learning based approaches; Online or batch learning; Summary; Section 2: Tools and Ingredients for Machine Learning in IBM Cloud; Chapter 5: Machine Learning Workouts on IBM Cloud; Watson Studio and Python; Setting up the environment; Try it out; Data cleansing and preparation K-means clustering using PythonThe Python code; Observing the results; Implementing in Watson; Saving your work; K-nearest neighbors; The Python code; Implementing in Watson; Exploring Markdown text; Time series prediction example; Time series analysis; Setup; Data preprocessing; Indexing for visualization; Visualizations; Forecasting sales; Validation; Summary; Chapter 6: Using Spark with IBM Watson Studio; Introduction to Apache Spark; Watson Studio and Spark; Creating a Spark-enabled notebook; Creating a Spark pipeline in Watson Studio; What is a pipeline?; Pipeline objectives Breaking down a pipeline exampleData preparation; The pipeline; A data analysis and visualization example; Setup; Getting the data; Loading the data; Exploration; Extraction; Plotting; Saving; Downloading your notebook; Summary; Chapter 7: Deep Learning Using TensorFlow on the IBM Cloud; Introduction to deep learning ; TensorFlow basics ; Neural networks and TensorFlow ; An example ; Creating the new project; Notebook asset type; Running the imported notebook; Reviewing the notebook; TensorFlow and image classifications; Adding the service; Required modules; Using the API key in code A practical guide on Machine learning with IBM cloud to act as a solid yet concise reference for the readers. You will learn about the role of data representation and feature extraction in machine learning. This book will help you learn how to use the IBM Cloud and Watson Machine learning service to develop real-world machine learning solutions. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Watson (Computer) http://id.loc.gov/authorities/subjects/sh2011000204 Computer algorithms. http://id.loc.gov/authorities/subjects/sh91000149 Apprentissage automatique. Python (Langage de programmation) Watson (Ordinateur) Algorithmes. algorithms. aat Computer algorithms fast Machine learning fast Python (Computer program language) fast Watson (Computer) fast has work: Hands-on machine learning with IBM Watson (Text) https://id.oclc.org/worldcat/entity/E39PCGgyhP9kw94M4FQkBwwJwC https://id.oclc.org/worldcat/ontology/hasWork Print version: D. Miller, James. Hands-On Machine Learning with IBM Watson : Leverage IBM Watson to Implement Machine Learning Techniques and Algorithms Using Python. Birmingham : Packt Publishing Ltd, ©2019 9781789611854 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094776 Volltext |
spellingShingle | Miller, James D. (Software consultant) Hands-on machine learning with IBM Watson : leverage IBM Watson to implement machine learning techniques and algorithms using Python / Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Section 1: Introduction and Foundation; Chapter 1: Introduction to IBM Cloud; Understanding IBM Cloud; Prerequisites ; Accessing the IBM Cloud ; Cloud resources ; The IBM Cloud and Watson Machine Learning services; Setting up the environment; Watson Studio Cloud ; Watson Studio architecture and layout ; Establishing context ; Setting up a new project ; Data visualization tutorial ; Summary ; Chapter 2: Feature Extraction -- A Bag of Tricks; Preprocessing; The data refinery; Data Adding the refineryRefining data by using commands; Dimensional reduction; Data fusion; Catalog setup; Recommended assets; A bag of tricks; Summary; Chapter 3: Supervised Machine Learning Models for Your Data; Model selection; IBM Watson Studio Model Builder; Using the model builder; Training data; Guessing which technique to use; Deployment; Model builder deployment steps; Testing the model; Continuous learning and model evaluation; Classification; Binary classification; Multiclass classification; Regression; Testing the predictive capability; Summary Chapter 4: Implementing Unsupervised AlgorithmsUnsupervised learning; Watson Studio, machine learning flows, and KMeans; Getting started; Creating an SPSS modeler flow; Additional node work; Training and testing; SPSS flow and K-means; Exporting model results; Semi-supervised learning; Anomaly detection; Machine learning based approaches; Online or batch learning; Summary; Section 2: Tools and Ingredients for Machine Learning in IBM Cloud; Chapter 5: Machine Learning Workouts on IBM Cloud; Watson Studio and Python; Setting up the environment; Try it out; Data cleansing and preparation K-means clustering using PythonThe Python code; Observing the results; Implementing in Watson; Saving your work; K-nearest neighbors; The Python code; Implementing in Watson; Exploring Markdown text; Time series prediction example; Time series analysis; Setup; Data preprocessing; Indexing for visualization; Visualizations; Forecasting sales; Validation; Summary; Chapter 6: Using Spark with IBM Watson Studio; Introduction to Apache Spark; Watson Studio and Spark; Creating a Spark-enabled notebook; Creating a Spark pipeline in Watson Studio; What is a pipeline?; Pipeline objectives Breaking down a pipeline exampleData preparation; The pipeline; A data analysis and visualization example; Setup; Getting the data; Loading the data; Exploration; Extraction; Plotting; Saving; Downloading your notebook; Summary; Chapter 7: Deep Learning Using TensorFlow on the IBM Cloud; Introduction to deep learning ; TensorFlow basics ; Neural networks and TensorFlow ; An example ; Creating the new project; Notebook asset type; Running the imported notebook; Reviewing the notebook; TensorFlow and image classifications; Adding the service; Required modules; Using the API key in code Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Watson (Computer) http://id.loc.gov/authorities/subjects/sh2011000204 Computer algorithms. http://id.loc.gov/authorities/subjects/sh91000149 Apprentissage automatique. Python (Langage de programmation) Watson (Ordinateur) Algorithmes. algorithms. aat Computer algorithms fast Machine learning fast Python (Computer program language) fast Watson (Computer) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh96008834 http://id.loc.gov/authorities/subjects/sh2011000204 http://id.loc.gov/authorities/subjects/sh91000149 |
title | Hands-on machine learning with IBM Watson : leverage IBM Watson to implement machine learning techniques and algorithms using Python / |
title_auth | Hands-on machine learning with IBM Watson : leverage IBM Watson to implement machine learning techniques and algorithms using Python / |
title_exact_search | Hands-on machine learning with IBM Watson : leverage IBM Watson to implement machine learning techniques and algorithms using Python / |
title_full | Hands-on machine learning with IBM Watson : leverage IBM Watson to implement machine learning techniques and algorithms using Python / James D. Miller. |
title_fullStr | Hands-on machine learning with IBM Watson : leverage IBM Watson to implement machine learning techniques and algorithms using Python / James D. Miller. |
title_full_unstemmed | Hands-on machine learning with IBM Watson : leverage IBM Watson to implement machine learning techniques and algorithms using Python / James D. Miller. |
title_short | Hands-on machine learning with IBM Watson : |
title_sort | hands on machine learning with ibm watson leverage ibm watson to implement machine learning techniques and algorithms using python |
title_sub | leverage IBM Watson to implement machine learning techniques and algorithms using Python / |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Watson (Computer) http://id.loc.gov/authorities/subjects/sh2011000204 Computer algorithms. http://id.loc.gov/authorities/subjects/sh91000149 Apprentissage automatique. Python (Langage de programmation) Watson (Ordinateur) Algorithmes. algorithms. aat Computer algorithms fast Machine learning fast Python (Computer program language) fast Watson (Computer) fast |
topic_facet | Machine learning. Python (Computer program language) Watson (Computer) Computer algorithms. Apprentissage automatique. Python (Langage de programmation) Watson (Ordinateur) Algorithmes. algorithms. Computer algorithms Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094776 |
work_keys_str_mv | AT millerjamesd handsonmachinelearningwithibmwatsonleverageibmwatsontoimplementmachinelearningtechniquesandalgorithmsusingpython |