Hands-On Artificial Intelligence for Beginners :: an Introduction to AI Concepts, Algorithms, and Their Implementation.
This book will empower you to apply Artificial Intelligence techniques to design applications for natural language processing, robotics, and other real-world use-cases. You will be able to develop, debug, deploy and optimize intelligent AI systems for self-driving cars, game playing, and much more.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing Ltd,
2018.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book will empower you to apply Artificial Intelligence techniques to design applications for natural language processing, robotics, and other real-world use-cases. You will be able to develop, debug, deploy and optimize intelligent AI systems for self-driving cars, game playing, and much more. |
Beschreibung: | Neural machine translation |
Beschreibung: | 1 online resource (349 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 1788992261 9781788992268 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1078554004 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 181208s2018 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d MERUC |d YDX |d OCLCQ |d RDF |d OCLCO |d N$T |d OCLCF |d OCLCQ |d LOY |d NLW |d OCLCO |d UKMGB |d OCLCO |d K6U |d OCLCQ |d OCLCO |d TMA |d OCLCL |d OCLCQ |d SXB |d OCLCQ |d OCLCO |d UEJ |d OCLCQ | ||
015 | |a GBC209304 |2 bnb | ||
016 | 7 | |a 019121416 |2 Uk | |
019 | |a 1078431097 | ||
020 | |a 1788992261 | ||
020 | |a 9781788992268 |q (electronic bk.) | ||
020 | |z 9781788991063 |q print | ||
035 | |a (OCoLC)1078554004 |z (OCoLC)1078431097 | ||
037 | |a 9781788992268 |b Packt Publishing | ||
050 | 4 | |a Q335 |b .P387 2018eb | |
082 | 7 | |a 006.3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Smith, Patrick D., |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjCcvVgw7Bj9p8XDdMjWtC |0 http://id.loc.gov/authorities/names/no00052368 | |
245 | 1 | 0 | |a Hands-On Artificial Intelligence for Beginners : |b an Introduction to AI Concepts, Algorithms, and Their Implementation. |
260 | |a Birmingham : |b Packt Publishing Ltd, |c 2018. | ||
300 | |a 1 online resource (349 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: The History of AI; The beginnings of AI -1950-1974; Rebirth -1980-1987; The modern era takes hold -- 1997-2005; Deep learning and the future -- 2012-Present; Summary; Chapter 2: Machine Learning Basics; Technical requirements; Applied math basics; The building blocks -- scalars, vectors, matrices, and tensors; Scalars; Vectors; Matrices; Tensors; Matrix math; Scalar operations; Element-wise operations; Basic statistics and probability theory; The probability space and general theory | |
505 | 8 | |a Probability distributionsProbability mass functions ; Probability density functions ; Conditional and joint probability; Chain rule for joint probability; Bayes' rule for conditional probability; Constructing basic machine learning algorithms; Supervised learning algorithms; Random forests; Unsupervised learning algorithms; Basic tuning; Overfitting and underfitting; K-fold cross-validation; Hyperparameter optimization; Summary; Chapter 3: Platforms and Other Essentials; Technical requirements; TensorFlow, PyTorch, and Keras; TensorFlow; Basic building blocks; The TensorFlow graph; PyTorch | |
505 | 8 | |a Basic building blocksThe PyTorch graph; Keras; Basic building blocks; Wrapping up; Cloud computing essentials; AWS basics; EC2 and virtual machines; S3 Storage ; AWS Sagemaker; Google Cloud Platform basics; GCP cloud storage; GCP Cloud ML Engine; CPUs, GPUs, and other compute frameworks; Installing GPU libraries and drivers; With Linux (Ubuntu); With Windows; Basic GPU operations; The future -- TPUs and more; Summary; Chapter 4: Your First Artificial Neural Networks; Technical requirements; Network building blocks; Network layers; Naming and sizing neural networks | |
505 | 8 | |a Setting up network parameters in our MNIST exampleActivation functions; Historically popular activation functions; Modern approaches to activation functions; Weights and bias factors; Utilizing weights and biases in our MNIST example; Loss functions; Using a loss function for simple regression; Using cross-entropy for binary classification problems; Defining a loss function in our MNIST example; Stochastic gradient descent; Learning rates; Utilizing the Adam optimizer in our MNIST example; Regularization; The training process; Putting it all together; Forward propagation; Backpropagation | |
505 | 8 | |a Forwardprop and backprop with MNISTManaging a TensorFlow model; Saving model checkpoints; Summary; Chapter 5: Convolutional Neural Networks; Overview of CNNs; Convolutional layers; Layer parameters and structure; Pooling layers; Fully connected layers; The training process; CNNs for image tagging; Summary; Chapter 6: Recurrent Neural Networks; Technical requirements; The building blocks of RNNs; Basic structure; Vanilla recurrent neural networks; One-to-many; Many-to-one; Many-to-many; Backpropagation through time; Memory units -- LSTMs and GRUs; LSTM; GRUs; Sequence processing with RNNs | |
500 | |a Neural machine translation | ||
520 | |a This book will empower you to apply Artificial Intelligence techniques to design applications for natural language processing, robotics, and other real-world use-cases. You will be able to develop, debug, deploy and optimize intelligent AI systems for self-driving cars, game playing, and much more. | ||
504 | |a Includes bibliographical references. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 2 | |a Artificial Intelligence |0 https://id.nlm.nih.gov/mesh/D001185 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Intelligence artificielle. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a Natural language & machine translation. |2 bicssc | |
650 | 7 | |a Neural networks & fuzzy systems. |2 bicssc | |
650 | 7 | |a Artificial intelligence. |2 bicssc | |
650 | 7 | |a Computers |x Natural Language Processing. |2 bisacsh | |
650 | 7 | |a Computers |x Neural Networks. |2 bisacsh | |
650 | 7 | |a Computers |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
758 | |i has work: |a Hands-On Artificial Intelligence for Beginners (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGYPdWXCV4wmgDcwG8PTgX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a D. Smith, Patrick. |t Hands-On Artificial Intelligence for Beginners : An Introduction to AI Concepts, Algorithms, and Their Implementation. |d Birmingham : Packt Publishing Ltd, ©2018 |z 9781788991063 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1947196 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL5607070 | ||
938 | |a EBSCOhost |b EBSC |n 1947196 | ||
938 | |a YBP Library Services |b YANK |n 15873699 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1078554004 |
---|---|
_version_ | 1816882479230877696 |
adam_text | |
any_adam_object | |
author | Smith, Patrick D. |
author_GND | http://id.loc.gov/authorities/names/no00052368 |
author_facet | Smith, Patrick D. |
author_role | aut |
author_sort | Smith, Patrick D. |
author_variant | p d s pd pds |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q335 |
callnumber-raw | Q335 .P387 2018eb |
callnumber-search | Q335 .P387 2018eb |
callnumber-sort | Q 3335 P387 42018EB |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: The History of AI; The beginnings of AI -1950-1974; Rebirth -1980-1987; The modern era takes hold -- 1997-2005; Deep learning and the future -- 2012-Present; Summary; Chapter 2: Machine Learning Basics; Technical requirements; Applied math basics; The building blocks -- scalars, vectors, matrices, and tensors; Scalars; Vectors; Matrices; Tensors; Matrix math; Scalar operations; Element-wise operations; Basic statistics and probability theory; The probability space and general theory Probability distributionsProbability mass functions ; Probability density functions ; Conditional and joint probability; Chain rule for joint probability; Bayes' rule for conditional probability; Constructing basic machine learning algorithms; Supervised learning algorithms; Random forests; Unsupervised learning algorithms; Basic tuning; Overfitting and underfitting; K-fold cross-validation; Hyperparameter optimization; Summary; Chapter 3: Platforms and Other Essentials; Technical requirements; TensorFlow, PyTorch, and Keras; TensorFlow; Basic building blocks; The TensorFlow graph; PyTorch Basic building blocksThe PyTorch graph; Keras; Basic building blocks; Wrapping up; Cloud computing essentials; AWS basics; EC2 and virtual machines; S3 Storage ; AWS Sagemaker; Google Cloud Platform basics; GCP cloud storage; GCP Cloud ML Engine; CPUs, GPUs, and other compute frameworks; Installing GPU libraries and drivers; With Linux (Ubuntu); With Windows; Basic GPU operations; The future -- TPUs and more; Summary; Chapter 4: Your First Artificial Neural Networks; Technical requirements; Network building blocks; Network layers; Naming and sizing neural networks Setting up network parameters in our MNIST exampleActivation functions; Historically popular activation functions; Modern approaches to activation functions; Weights and bias factors; Utilizing weights and biases in our MNIST example; Loss functions; Using a loss function for simple regression; Using cross-entropy for binary classification problems; Defining a loss function in our MNIST example; Stochastic gradient descent; Learning rates; Utilizing the Adam optimizer in our MNIST example; Regularization; The training process; Putting it all together; Forward propagation; Backpropagation Forwardprop and backprop with MNISTManaging a TensorFlow model; Saving model checkpoints; Summary; Chapter 5: Convolutional Neural Networks; Overview of CNNs; Convolutional layers; Layer parameters and structure; Pooling layers; Fully connected layers; The training process; CNNs for image tagging; Summary; Chapter 6: Recurrent Neural Networks; Technical requirements; The building blocks of RNNs; Basic structure; Vanilla recurrent neural networks; One-to-many; Many-to-one; Many-to-many; Backpropagation through time; Memory units -- LSTMs and GRUs; LSTM; GRUs; Sequence processing with RNNs |
ctrlnum | (OCoLC)1078554004 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06382cam a2200697Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1078554004</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">181208s2018 enk o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOY</subfield><subfield code="d">NLW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC209304</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019121416</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1078431097</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1788992261</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788992268</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781788991063</subfield><subfield code="q">print</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1078554004</subfield><subfield code="z">(OCoLC)1078431097</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781788992268</subfield><subfield code="b">Packt Publishing</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q335</subfield><subfield code="b">.P387 2018eb</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Patrick D.,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCcvVgw7Bj9p8XDdMjWtC</subfield><subfield code="0">http://id.loc.gov/authorities/names/no00052368</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-On Artificial Intelligence for Beginners :</subfield><subfield code="b">an Introduction to AI Concepts, Algorithms, and Their Implementation.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing Ltd,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (349 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: The History of AI; The beginnings of AI -1950-1974; Rebirth -1980-1987; The modern era takes hold -- 1997-2005; Deep learning and the future -- 2012-Present; Summary; Chapter 2: Machine Learning Basics; Technical requirements; Applied math basics; The building blocks -- scalars, vectors, matrices, and tensors; Scalars; Vectors; Matrices; Tensors; Matrix math; Scalar operations; Element-wise operations; Basic statistics and probability theory; The probability space and general theory</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Probability distributionsProbability mass functions ; Probability density functions ; Conditional and joint probability; Chain rule for joint probability; Bayes' rule for conditional probability; Constructing basic machine learning algorithms; Supervised learning algorithms; Random forests; Unsupervised learning algorithms; Basic tuning; Overfitting and underfitting; K-fold cross-validation; Hyperparameter optimization; Summary; Chapter 3: Platforms and Other Essentials; Technical requirements; TensorFlow, PyTorch, and Keras; TensorFlow; Basic building blocks; The TensorFlow graph; PyTorch</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Basic building blocksThe PyTorch graph; Keras; Basic building blocks; Wrapping up; Cloud computing essentials; AWS basics; EC2 and virtual machines; S3 Storage ; AWS Sagemaker; Google Cloud Platform basics; GCP cloud storage; GCP Cloud ML Engine; CPUs, GPUs, and other compute frameworks; Installing GPU libraries and drivers; With Linux (Ubuntu); With Windows; Basic GPU operations; The future -- TPUs and more; Summary; Chapter 4: Your First Artificial Neural Networks; Technical requirements; Network building blocks; Network layers; Naming and sizing neural networks</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Setting up network parameters in our MNIST exampleActivation functions; Historically popular activation functions; Modern approaches to activation functions; Weights and bias factors; Utilizing weights and biases in our MNIST example; Loss functions; Using a loss function for simple regression; Using cross-entropy for binary classification problems; Defining a loss function in our MNIST example; Stochastic gradient descent; Learning rates; Utilizing the Adam optimizer in our MNIST example; Regularization; The training process; Putting it all together; Forward propagation; Backpropagation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Forwardprop and backprop with MNISTManaging a TensorFlow model; Saving model checkpoints; Summary; Chapter 5: Convolutional Neural Networks; Overview of CNNs; Convolutional layers; Layer parameters and structure; Pooling layers; Fully connected layers; The training process; CNNs for image tagging; Summary; Chapter 6: Recurrent Neural Networks; Technical requirements; The building blocks of RNNs; Basic structure; Vanilla recurrent neural networks; One-to-many; Many-to-one; Many-to-many; Backpropagation through time; Memory units -- LSTMs and GRUs; LSTM; GRUs; Sequence processing with RNNs</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Neural machine translation</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book will empower you to apply Artificial Intelligence techniques to design applications for natural language processing, robotics, and other real-world use-cases. You will be able to develop, debug, deploy and optimize intelligent AI systems for self-driving cars, game playing, and much more.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D001185</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natural language & machine translation.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks & fuzzy systems.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Natural Language Processing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Neural Networks.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computers</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hands-On Artificial Intelligence for Beginners (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGYPdWXCV4wmgDcwG8PTgX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">D. Smith, Patrick.</subfield><subfield code="t">Hands-On Artificial Intelligence for Beginners : An Introduction to AI Concepts, Algorithms, and Their Implementation.</subfield><subfield code="d">Birmingham : Packt Publishing Ltd, ©2018</subfield><subfield code="z">9781788991063</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1947196</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5607070</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1947196</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15873699</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1078554004 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:16Z |
institution | BVB |
isbn | 1788992261 9781788992268 |
language | English |
oclc_num | 1078554004 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (349 pages) |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt Publishing Ltd, |
record_format | marc |
spelling | Smith, Patrick D., author. https://id.oclc.org/worldcat/entity/E39PCjCcvVgw7Bj9p8XDdMjWtC http://id.loc.gov/authorities/names/no00052368 Hands-On Artificial Intelligence for Beginners : an Introduction to AI Concepts, Algorithms, and Their Implementation. Birmingham : Packt Publishing Ltd, 2018. 1 online resource (349 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: The History of AI; The beginnings of AI -1950-1974; Rebirth -1980-1987; The modern era takes hold -- 1997-2005; Deep learning and the future -- 2012-Present; Summary; Chapter 2: Machine Learning Basics; Technical requirements; Applied math basics; The building blocks -- scalars, vectors, matrices, and tensors; Scalars; Vectors; Matrices; Tensors; Matrix math; Scalar operations; Element-wise operations; Basic statistics and probability theory; The probability space and general theory Probability distributionsProbability mass functions ; Probability density functions ; Conditional and joint probability; Chain rule for joint probability; Bayes' rule for conditional probability; Constructing basic machine learning algorithms; Supervised learning algorithms; Random forests; Unsupervised learning algorithms; Basic tuning; Overfitting and underfitting; K-fold cross-validation; Hyperparameter optimization; Summary; Chapter 3: Platforms and Other Essentials; Technical requirements; TensorFlow, PyTorch, and Keras; TensorFlow; Basic building blocks; The TensorFlow graph; PyTorch Basic building blocksThe PyTorch graph; Keras; Basic building blocks; Wrapping up; Cloud computing essentials; AWS basics; EC2 and virtual machines; S3 Storage ; AWS Sagemaker; Google Cloud Platform basics; GCP cloud storage; GCP Cloud ML Engine; CPUs, GPUs, and other compute frameworks; Installing GPU libraries and drivers; With Linux (Ubuntu); With Windows; Basic GPU operations; The future -- TPUs and more; Summary; Chapter 4: Your First Artificial Neural Networks; Technical requirements; Network building blocks; Network layers; Naming and sizing neural networks Setting up network parameters in our MNIST exampleActivation functions; Historically popular activation functions; Modern approaches to activation functions; Weights and bias factors; Utilizing weights and biases in our MNIST example; Loss functions; Using a loss function for simple regression; Using cross-entropy for binary classification problems; Defining a loss function in our MNIST example; Stochastic gradient descent; Learning rates; Utilizing the Adam optimizer in our MNIST example; Regularization; The training process; Putting it all together; Forward propagation; Backpropagation Forwardprop and backprop with MNISTManaging a TensorFlow model; Saving model checkpoints; Summary; Chapter 5: Convolutional Neural Networks; Overview of CNNs; Convolutional layers; Layer parameters and structure; Pooling layers; Fully connected layers; The training process; CNNs for image tagging; Summary; Chapter 6: Recurrent Neural Networks; Technical requirements; The building blocks of RNNs; Basic structure; Vanilla recurrent neural networks; One-to-many; Many-to-one; Many-to-many; Backpropagation through time; Memory units -- LSTMs and GRUs; LSTM; GRUs; Sequence processing with RNNs Neural machine translation This book will empower you to apply Artificial Intelligence techniques to design applications for natural language processing, robotics, and other real-world use-cases. You will be able to develop, debug, deploy and optimize intelligent AI systems for self-driving cars, game playing, and much more. Includes bibliographical references. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. artificial intelligence. aat Natural language & machine translation. bicssc Neural networks & fuzzy systems. bicssc Artificial intelligence. bicssc Computers Natural Language Processing. bisacsh Computers Neural Networks. bisacsh Computers Intelligence (AI) & Semantics. bisacsh Artificial intelligence fast Machine learning fast has work: Hands-On Artificial Intelligence for Beginners (Text) https://id.oclc.org/worldcat/entity/E39PCGYPdWXCV4wmgDcwG8PTgX https://id.oclc.org/worldcat/ontology/hasWork Print version: D. Smith, Patrick. Hands-On Artificial Intelligence for Beginners : An Introduction to AI Concepts, Algorithms, and Their Implementation. Birmingham : Packt Publishing Ltd, ©2018 9781788991063 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1947196 Volltext |
spellingShingle | Smith, Patrick D. Hands-On Artificial Intelligence for Beginners : an Introduction to AI Concepts, Algorithms, and Their Implementation. Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: The History of AI; The beginnings of AI -1950-1974; Rebirth -1980-1987; The modern era takes hold -- 1997-2005; Deep learning and the future -- 2012-Present; Summary; Chapter 2: Machine Learning Basics; Technical requirements; Applied math basics; The building blocks -- scalars, vectors, matrices, and tensors; Scalars; Vectors; Matrices; Tensors; Matrix math; Scalar operations; Element-wise operations; Basic statistics and probability theory; The probability space and general theory Probability distributionsProbability mass functions ; Probability density functions ; Conditional and joint probability; Chain rule for joint probability; Bayes' rule for conditional probability; Constructing basic machine learning algorithms; Supervised learning algorithms; Random forests; Unsupervised learning algorithms; Basic tuning; Overfitting and underfitting; K-fold cross-validation; Hyperparameter optimization; Summary; Chapter 3: Platforms and Other Essentials; Technical requirements; TensorFlow, PyTorch, and Keras; TensorFlow; Basic building blocks; The TensorFlow graph; PyTorch Basic building blocksThe PyTorch graph; Keras; Basic building blocks; Wrapping up; Cloud computing essentials; AWS basics; EC2 and virtual machines; S3 Storage ; AWS Sagemaker; Google Cloud Platform basics; GCP cloud storage; GCP Cloud ML Engine; CPUs, GPUs, and other compute frameworks; Installing GPU libraries and drivers; With Linux (Ubuntu); With Windows; Basic GPU operations; The future -- TPUs and more; Summary; Chapter 4: Your First Artificial Neural Networks; Technical requirements; Network building blocks; Network layers; Naming and sizing neural networks Setting up network parameters in our MNIST exampleActivation functions; Historically popular activation functions; Modern approaches to activation functions; Weights and bias factors; Utilizing weights and biases in our MNIST example; Loss functions; Using a loss function for simple regression; Using cross-entropy for binary classification problems; Defining a loss function in our MNIST example; Stochastic gradient descent; Learning rates; Utilizing the Adam optimizer in our MNIST example; Regularization; The training process; Putting it all together; Forward propagation; Backpropagation Forwardprop and backprop with MNISTManaging a TensorFlow model; Saving model checkpoints; Summary; Chapter 5: Convolutional Neural Networks; Overview of CNNs; Convolutional layers; Layer parameters and structure; Pooling layers; Fully connected layers; The training process; CNNs for image tagging; Summary; Chapter 6: Recurrent Neural Networks; Technical requirements; The building blocks of RNNs; Basic structure; Vanilla recurrent neural networks; One-to-many; Many-to-one; Many-to-many; Backpropagation through time; Memory units -- LSTMs and GRUs; LSTM; GRUs; Sequence processing with RNNs Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. artificial intelligence. aat Natural language & machine translation. bicssc Neural networks & fuzzy systems. bicssc Artificial intelligence. bicssc Computers Natural Language Processing. bisacsh Computers Neural Networks. bisacsh Computers Intelligence (AI) & Semantics. bisacsh Artificial intelligence fast Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh85008180 https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D000069550 |
title | Hands-On Artificial Intelligence for Beginners : an Introduction to AI Concepts, Algorithms, and Their Implementation. |
title_auth | Hands-On Artificial Intelligence for Beginners : an Introduction to AI Concepts, Algorithms, and Their Implementation. |
title_exact_search | Hands-On Artificial Intelligence for Beginners : an Introduction to AI Concepts, Algorithms, and Their Implementation. |
title_full | Hands-On Artificial Intelligence for Beginners : an Introduction to AI Concepts, Algorithms, and Their Implementation. |
title_fullStr | Hands-On Artificial Intelligence for Beginners : an Introduction to AI Concepts, Algorithms, and Their Implementation. |
title_full_unstemmed | Hands-On Artificial Intelligence for Beginners : an Introduction to AI Concepts, Algorithms, and Their Implementation. |
title_short | Hands-On Artificial Intelligence for Beginners : |
title_sort | hands on artificial intelligence for beginners an introduction to ai concepts algorithms and their implementation |
title_sub | an Introduction to AI Concepts, Algorithms, and Their Implementation. |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. artificial intelligence. aat Natural language & machine translation. bicssc Neural networks & fuzzy systems. bicssc Artificial intelligence. bicssc Computers Natural Language Processing. bisacsh Computers Neural Networks. bisacsh Computers Intelligence (AI) & Semantics. bisacsh Artificial intelligence fast Machine learning fast |
topic_facet | Machine learning. Artificial intelligence. Artificial Intelligence Machine Learning Apprentissage automatique. Intelligence artificielle. artificial intelligence. Natural language & machine translation. Neural networks & fuzzy systems. Computers Natural Language Processing. Computers Neural Networks. Computers Intelligence (AI) & Semantics. Artificial intelligence Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1947196 |
work_keys_str_mv | AT smithpatrickd handsonartificialintelligenceforbeginnersanintroductiontoaiconceptsalgorithmsandtheirimplementation |