Lie group machine learning /:
This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advan...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
Walter de Gruyter, GmbH,
2018.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artificial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. |
Beschreibung: | 1 online resource (xvi, 517 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110499506 3110499509 9783110498073 3110498073 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1066182573 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr bn||||||||| | ||
008 | 181117t20182019gw a ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e rda |e pn |c EBLCP |d DEGRU |d N$T |d OCLCO |d YDX |d OCLCQ |d OCLCF |d CUS |d UBY |d IUL |d OCLCQ |d UKAHL |d OCLCQ |d NHM |d LUN |d BRF |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
019 | |a 1065736699 |a 1170190556 |a 1171196581 | ||
020 | |a 9783110499506 |q (electronic bk. ; |q PDF) | ||
020 | |a 3110499509 |q (electronic bk. ; |q PDF) | ||
020 | |a 9783110498073 |q (electronic bk. ; |q ePub) | ||
020 | |a 3110498073 |q (electronic bk. ; |q ePub) | ||
020 | |z 9783110500684 |q (hardcover) | ||
020 | |z 311050068X |q (hardcover) | ||
024 | 7 | |a 10.1515/9783110499506. |2 doi | |
035 | |a (OCoLC)1066182573 |z (OCoLC)1065736699 |z (OCoLC)1170190556 |z (OCoLC)1171196581 | ||
050 | 4 | |a Q325.5 | |
050 | 4 | |a Q325.5 |b .L52 2018e | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
082 | 7 | |a 006.3/1 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Li, Fanzhang, |e author. |0 http://id.loc.gov/authorities/names/n2006065630 | |
245 | 1 | 0 | |a Lie group machine learning / |c Li Fanzhang, Zhang Li, Zhang Zhao. |
264 | 1 | |a Berlin ; |a Boston : |b Walter de Gruyter, GmbH, |c 2018. | |
264 | 4 | |c ©2019 | |
300 | |a 1 online resource (xvi, 517 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Online resource; title from digital title page (De Gruyter, viewed July 17, 2020). | |
520 | |a This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artificial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. | ||
505 | 0 | |a Lie group machine learning model -- Lie group subspace orbit generation learning -- Symplectic group learning -- Quantum group learning -- Lie group fibre bundle learning -- Lie group covering learning -- Lie group deep structure learning -- Lie group semi-supervised learning -- Lie group kernel learning -- Tensor learning -- Frame bundle connection learning -- Spectral estimation learning -- Finsler geometric learning -- Homology boundary learning -- Category representation learning -- Neuromorphic synergy learning. | |
545 | |a Li Zhang (M'08) received the degree of B.Sc. in1997 and the degree of Ph.D. in 2002 in electronic engineering from Xidian University, Xi'an, China. She is now a professor at the School of Computer Science and Technology, Soochow University, Suzhou, China. | ||
546 | |a In English. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Lie groups. |0 http://id.loc.gov/authorities/subjects/sh85076786 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Groupes de Lie. | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a Lie groups |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
655 | 4 | |a Electronic book. | |
700 | 1 | |a Zhang, Li, |e author. |u School of Computer Science and Technology, Soochow University, China | |
700 | 1 | |a Zhang, Zhao |c (Computer scientist), |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjtK9VC9dMx69XcPmgK7h3 |0 http://id.loc.gov/authorities/names/nb2015000018 | |
758 | |i has work: |a Lie group machine learning (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG4hXcmGry3dMtJygmv6Td |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Li, Fanzhang. |t Lie group machine learning. |d Berlin ; Boston : Walter de Gruyter, GmbH, [2019] |z 9783110500684 |w (DLC) 2018951019 |w (OCoLC)1044854219 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1927020 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1927020 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH34810491 | ||
938 | |a Askews and Holts Library Services |b ASKH |n BDZ0039995572 | ||
938 | |a De Gruyter |b DEGR |n 9783110499506 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL5574847 | ||
938 | |a EBSCOhost |b EBSC |n 1927020 | ||
938 | |a YBP Library Services |b YANK |n 15837430 | ||
938 | |a YBP Library Services |b YANK |n 13204025 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1066182573 |
---|---|
_version_ | 1813901634163441664 |
adam_text | |
any_adam_object | |
author | Li, Fanzhang Zhang, Li Zhang, Zhao (Computer scientist) |
author_GND | http://id.loc.gov/authorities/names/n2006065630 http://id.loc.gov/authorities/names/nb2015000018 |
author_facet | Li, Fanzhang Zhang, Li Zhang, Zhao (Computer scientist) |
author_role | aut aut aut |
author_sort | Li, Fanzhang |
author_variant | f l fl l z lz z z zz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 Q325.5 .L52 2018e |
callnumber-search | Q325.5 Q325.5 .L52 2018e |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Lie group machine learning model -- Lie group subspace orbit generation learning -- Symplectic group learning -- Quantum group learning -- Lie group fibre bundle learning -- Lie group covering learning -- Lie group deep structure learning -- Lie group semi-supervised learning -- Lie group kernel learning -- Tensor learning -- Frame bundle connection learning -- Spectral estimation learning -- Finsler geometric learning -- Homology boundary learning -- Category representation learning -- Neuromorphic synergy learning. |
ctrlnum | (OCoLC)1066182573 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04978cam a2200697 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1066182573</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr bn|||||||||</controlfield><controlfield tag="008">181117t20182019gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">DEGRU</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CUS</subfield><subfield code="d">UBY</subfield><subfield code="d">IUL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NHM</subfield><subfield code="d">LUN</subfield><subfield code="d">BRF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1065736699</subfield><subfield code="a">1170190556</subfield><subfield code="a">1171196581</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110499506</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">PDF)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110499509</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">PDF)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110498073</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">ePub)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110498073</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">ePub)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110500684</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">311050068X</subfield><subfield code="q">(hardcover)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110499506.</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1066182573</subfield><subfield code="z">(OCoLC)1065736699</subfield><subfield code="z">(OCoLC)1170190556</subfield><subfield code="z">(OCoLC)1171196581</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.L52 2018e</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Fanzhang,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2006065630</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie group machine learning /</subfield><subfield code="c">Li Fanzhang, Zhang Li, Zhang Zhao.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">Walter de Gruyter, GmbH,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 517 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (De Gruyter, viewed July 17, 2020).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artificial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Lie group machine learning model -- Lie group subspace orbit generation learning -- Symplectic group learning -- Quantum group learning -- Lie group fibre bundle learning -- Lie group covering learning -- Lie group deep structure learning -- Lie group semi-supervised learning -- Lie group kernel learning -- Tensor learning -- Frame bundle connection learning -- Spectral estimation learning -- Finsler geometric learning -- Homology boundary learning -- Category representation learning -- Neuromorphic synergy learning.</subfield></datafield><datafield tag="545" ind1=" " ind2=" "><subfield code="a">Li Zhang (M'08) received the degree of B.Sc. in1997 and the degree of Ph.D. in 2002 in electronic engineering from Xidian University, Xi'an, China. She is now a professor at the School of Computer Science and Technology, Soochow University, Suzhou, China.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076786</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Li,</subfield><subfield code="e">author.</subfield><subfield code="u">School of Computer Science and Technology, Soochow University, China</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhao</subfield><subfield code="c">(Computer scientist),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjtK9VC9dMx69XcPmgK7h3</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2015000018</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Lie group machine learning (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG4hXcmGry3dMtJygmv6Td</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Li, Fanzhang.</subfield><subfield code="t">Lie group machine learning.</subfield><subfield code="d">Berlin ; Boston : Walter de Gruyter, GmbH, [2019]</subfield><subfield code="z">9783110500684</subfield><subfield code="w">(DLC) 2018951019</subfield><subfield code="w">(OCoLC)1044854219</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1927020</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1927020</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34810491</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">BDZ0039995572</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110499506</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5574847</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1927020</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15837430</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13204025</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-on1066182573 |
illustrated | Illustrated |
indexdate | 2024-10-25T15:50:00Z |
institution | BVB |
isbn | 9783110499506 3110499509 9783110498073 3110498073 |
language | English |
oclc_num | 1066182573 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xvi, 517 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Walter de Gruyter, GmbH, |
record_format | marc |
spelling | Li, Fanzhang, author. http://id.loc.gov/authorities/names/n2006065630 Lie group machine learning / Li Fanzhang, Zhang Li, Zhang Zhao. Berlin ; Boston : Walter de Gruyter, GmbH, 2018. ©2019 1 online resource (xvi, 517 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Online resource; title from digital title page (De Gruyter, viewed July 17, 2020). This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artificial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. Lie group machine learning model -- Lie group subspace orbit generation learning -- Symplectic group learning -- Quantum group learning -- Lie group fibre bundle learning -- Lie group covering learning -- Lie group deep structure learning -- Lie group semi-supervised learning -- Lie group kernel learning -- Tensor learning -- Frame bundle connection learning -- Spectral estimation learning -- Finsler geometric learning -- Homology boundary learning -- Category representation learning -- Neuromorphic synergy learning. Li Zhang (M'08) received the degree of B.Sc. in1997 and the degree of Ph.D. in 2002 in electronic engineering from Xidian University, Xi'an, China. She is now a professor at the School of Computer Science and Technology, Soochow University, Suzhou, China. In English. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Apprentissage automatique. Groupes de Lie. COMPUTERS General. bisacsh Lie groups fast Machine learning fast Electronic book. Zhang, Li, author. School of Computer Science and Technology, Soochow University, China Zhang, Zhao (Computer scientist), author. https://id.oclc.org/worldcat/entity/E39PCjtK9VC9dMx69XcPmgK7h3 http://id.loc.gov/authorities/names/nb2015000018 has work: Lie group machine learning (Text) https://id.oclc.org/worldcat/entity/E39PCG4hXcmGry3dMtJygmv6Td https://id.oclc.org/worldcat/ontology/hasWork Print version: Li, Fanzhang. Lie group machine learning. Berlin ; Boston : Walter de Gruyter, GmbH, [2019] 9783110500684 (DLC) 2018951019 (OCoLC)1044854219 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1927020 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1927020 Volltext |
spellingShingle | Li, Fanzhang Zhang, Li Zhang, Zhao (Computer scientist) Lie group machine learning / Lie group machine learning model -- Lie group subspace orbit generation learning -- Symplectic group learning -- Quantum group learning -- Lie group fibre bundle learning -- Lie group covering learning -- Lie group deep structure learning -- Lie group semi-supervised learning -- Lie group kernel learning -- Tensor learning -- Frame bundle connection learning -- Spectral estimation learning -- Finsler geometric learning -- Homology boundary learning -- Category representation learning -- Neuromorphic synergy learning. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Apprentissage automatique. Groupes de Lie. COMPUTERS General. bisacsh Lie groups fast Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh85076786 |
title | Lie group machine learning / |
title_auth | Lie group machine learning / |
title_exact_search | Lie group machine learning / |
title_full | Lie group machine learning / Li Fanzhang, Zhang Li, Zhang Zhao. |
title_fullStr | Lie group machine learning / Li Fanzhang, Zhang Li, Zhang Zhao. |
title_full_unstemmed | Lie group machine learning / Li Fanzhang, Zhang Li, Zhang Zhao. |
title_short | Lie group machine learning / |
title_sort | lie group machine learning |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Apprentissage automatique. Groupes de Lie. COMPUTERS General. bisacsh Lie groups fast Machine learning fast |
topic_facet | Machine learning. Lie groups. Apprentissage automatique. Groupes de Lie. COMPUTERS General. Lie groups Machine learning Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1927020 |
work_keys_str_mv | AT lifanzhang liegroupmachinelearning AT zhangli liegroupmachinelearning AT zhangzhao liegroupmachinelearning |