Spectral Theory of Canonical Systems /:
Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schrödinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. 'Spectral Th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
[2018]
|
Schriftenreihe: | De Gruyter studies in mathematics ;
70. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schrödinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. 'Spectral Theory of Canonical Systems' offers a selfcontained and detailed introduction to this theory. Techniques to construct self-adjoint realizations in suitable Hilbert spaces, a modern treatment of de Branges spaces, and direct and inverse spectral problems are discussed. Contents Basic definitions Symmetric and self-adjoint relations Spectral representation Transfer matrices and de Branges spaces Inverse spectral theory Some applications The absolutely continuous spectrum. |
Beschreibung: | 1 online resource (x, 194 pages) |
ISBN: | 9783110563238 3110563231 9783110562286 3110562286 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1049622171 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 180821t20182018gw fod z000 0 eng d | ||
040 | |a DEGRU |b eng |e rda |e pn |c DEGRU |d EBLCP |d YDX |d N$T |d OCLCF |d WYU |d CUS |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d DEGRU |d OCLCL | ||
019 | |a 1053571144 |a 1060539653 |a 1162430187 | ||
020 | |a 9783110563238 | ||
020 | |a 3110563231 | ||
020 | |a 9783110562286 | ||
020 | |a 3110562286 | ||
020 | |z 3110562022 | ||
020 | |z 9783110562026 | ||
024 | 7 | |a 10.1515/9783110563238 |2 doi | |
035 | |a (OCoLC)1049622171 |z (OCoLC)1053571144 |z (OCoLC)1060539653 |z (OCoLC)1162430187 | ||
050 | 4 | |a QA320 |b .R46 2018eb | |
072 | 7 | |a MAT007000 |2 bisacsh | |
072 | 7 | |a MAT034000 |2 bisacsh | |
072 | 7 | |a SCI040000 |2 bisacsh | |
082 | 7 | |a 515/.7242 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Remling, Christian, |e author. | |
245 | 1 | 0 | |a Spectral Theory of Canonical Systems / |c Christian Remling. |
264 | 1 | |a Berlin ; |a Boston : |b De Gruyter, |c [2018] | |
264 | 4 | |c ©2018 | |
300 | |a 1 online resource (x, 194 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a De Gruyter studies in mathematics ; |v volume 70 | |
505 | 0 | 0 | |t Frontmatter -- |t Contents -- |t Preface -- |t 1. Basic Definitions -- |t 2. Symmetric and Self-Adjoint Relations -- |t 3. Spectral Representation -- |t 4. Transfer matrices and de Branges spaces -- |t 5. Inverse spectral theory -- |t 6. Some applications -- |t 7. The absolutely continuous spectrum -- |t Bibliography -- |t Index |
546 | |a In English. | ||
588 | 0 | |a Online resource; title from PDF title page (publisher's Web site, viewed 21. Aug 2018). | |
520 | |a Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schrödinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. 'Spectral Theory of Canonical Systems' offers a selfcontained and detailed introduction to this theory. Techniques to construct self-adjoint realizations in suitable Hilbert spaces, a modern treatment of de Branges spaces, and direct and inverse spectral problems are discussed. Contents Basic definitions Symmetric and self-adjoint relations Spectral representation Transfer matrices and de Branges spaces Inverse spectral theory Some applications The absolutely continuous spectrum. | ||
650 | 0 | |a Spectral theory (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85126408 | |
650 | 6 | |a Spectre (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Spectral theory (Mathematics) |2 fast | |
758 | |i has work: |a Spectral theory of canonical systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGGHCQTP7YT7HffTRP87VC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | |c EPUB |z 9783110562286 | |
776 | 0 | |c print |z 9783110562026 | |
830 | 0 | |a De Gruyter studies in mathematics ; |v 70. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893622 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH33530527 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH36184538 | ||
938 | |a De Gruyter |b DEGR |n 9783110563238 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5159490 | ||
938 | |a EBSCOhost |b EBSC |n 1893622 | ||
938 | |a YBP Library Services |b YANK |n 15703454 | ||
938 | |a YBP Library Services |b YANK |n 14551068 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1049622171 |
---|---|
_version_ | 1816882469057593344 |
adam_text | |
any_adam_object | |
author | Remling, Christian |
author_facet | Remling, Christian |
author_role | aut |
author_sort | Remling, Christian |
author_variant | c r cr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA320 |
callnumber-raw | QA320 .R46 2018eb |
callnumber-search | QA320 .R46 2018eb |
callnumber-sort | QA 3320 R46 42018EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Contents -- Preface -- 1. Basic Definitions -- 2. Symmetric and Self-Adjoint Relations -- 3. Spectral Representation -- 4. Transfer matrices and de Branges spaces -- 5. Inverse spectral theory -- 6. Some applications -- 7. The absolutely continuous spectrum -- Bibliography -- Index |
ctrlnum | (OCoLC)1049622171 |
dewey-full | 515/.7242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7242 |
dewey-search | 515/.7242 |
dewey-sort | 3515 47242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03733cam a2200673Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-on1049622171</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">180821t20182018gw fod z000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DEGRU</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">DEGRU</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">WYU</subfield><subfield code="d">CUS</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEGRU</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1053571144</subfield><subfield code="a">1060539653</subfield><subfield code="a">1162430187</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110563238</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110563231</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110562286</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110562286</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110562022</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110562026</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110563238</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1049622171</subfield><subfield code="z">(OCoLC)1053571144</subfield><subfield code="z">(OCoLC)1060539653</subfield><subfield code="z">(OCoLC)1162430187</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA320</subfield><subfield code="b">.R46 2018eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT007000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.7242</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Remling, Christian,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral Theory of Canonical Systems /</subfield><subfield code="c">Christian Remling.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 194 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">volume 70</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Preface --</subfield><subfield code="t">1. Basic Definitions --</subfield><subfield code="t">2. Symmetric and Self-Adjoint Relations --</subfield><subfield code="t">3. Spectral Representation --</subfield><subfield code="t">4. Transfer matrices and de Branges spaces --</subfield><subfield code="t">5. Inverse spectral theory --</subfield><subfield code="t">6. Some applications --</subfield><subfield code="t">7. The absolutely continuous spectrum --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (publisher's Web site, viewed 21. Aug 2018).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schrödinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. 'Spectral Theory of Canonical Systems' offers a selfcontained and detailed introduction to this theory. Techniques to construct self-adjoint realizations in suitable Hilbert spaces, a modern treatment of de Branges spaces, and direct and inverse spectral problems are discussed. Contents Basic definitions Symmetric and self-adjoint relations Spectral representation Transfer matrices and de Branges spaces Inverse spectral theory Some applications The absolutely continuous spectrum.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Spectral theory (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85126408</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Spectre (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectral theory (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Spectral theory of canonical systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGGHCQTP7YT7HffTRP87VC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">EPUB</subfield><subfield code="z">9783110562286</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="c">print</subfield><subfield code="z">9783110562026</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">70.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893622</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33530527</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH36184538</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110563238</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5159490</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1893622</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15703454</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14551068</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1049622171 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:29:06Z |
institution | BVB |
isbn | 9783110563238 3110563231 9783110562286 3110562286 |
language | English |
oclc_num | 1049622171 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 194 pages) |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter studies in mathematics ; |
spelling | Remling, Christian, author. Spectral Theory of Canonical Systems / Christian Remling. Berlin ; Boston : De Gruyter, [2018] ©2018 1 online resource (x, 194 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda De Gruyter studies in mathematics ; volume 70 Frontmatter -- Contents -- Preface -- 1. Basic Definitions -- 2. Symmetric and Self-Adjoint Relations -- 3. Spectral Representation -- 4. Transfer matrices and de Branges spaces -- 5. Inverse spectral theory -- 6. Some applications -- 7. The absolutely continuous spectrum -- Bibliography -- Index In English. Online resource; title from PDF title page (publisher's Web site, viewed 21. Aug 2018). Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schrödinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. 'Spectral Theory of Canonical Systems' offers a selfcontained and detailed introduction to this theory. Techniques to construct self-adjoint realizations in suitable Hilbert spaces, a modern treatment of de Branges spaces, and direct and inverse spectral problems are discussed. Contents Basic definitions Symmetric and self-adjoint relations Spectral representation Transfer matrices and de Branges spaces Inverse spectral theory Some applications The absolutely continuous spectrum. Spectral theory (Mathematics) http://id.loc.gov/authorities/subjects/sh85126408 Spectre (Mathématiques) MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Spectral theory (Mathematics) fast has work: Spectral theory of canonical systems (Text) https://id.oclc.org/worldcat/entity/E39PCGGHCQTP7YT7HffTRP87VC https://id.oclc.org/worldcat/ontology/hasWork EPUB 9783110562286 print 9783110562026 De Gruyter studies in mathematics ; 70. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893622 Volltext |
spellingShingle | Remling, Christian Spectral Theory of Canonical Systems / De Gruyter studies in mathematics ; Frontmatter -- Contents -- Preface -- 1. Basic Definitions -- 2. Symmetric and Self-Adjoint Relations -- 3. Spectral Representation -- 4. Transfer matrices and de Branges spaces -- 5. Inverse spectral theory -- 6. Some applications -- 7. The absolutely continuous spectrum -- Bibliography -- Index Spectral theory (Mathematics) http://id.loc.gov/authorities/subjects/sh85126408 Spectre (Mathématiques) MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Spectral theory (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85126408 |
title | Spectral Theory of Canonical Systems / |
title_alt | Frontmatter -- Contents -- Preface -- 1. Basic Definitions -- 2. Symmetric and Self-Adjoint Relations -- 3. Spectral Representation -- 4. Transfer matrices and de Branges spaces -- 5. Inverse spectral theory -- 6. Some applications -- 7. The absolutely continuous spectrum -- Bibliography -- Index |
title_auth | Spectral Theory of Canonical Systems / |
title_exact_search | Spectral Theory of Canonical Systems / |
title_full | Spectral Theory of Canonical Systems / Christian Remling. |
title_fullStr | Spectral Theory of Canonical Systems / Christian Remling. |
title_full_unstemmed | Spectral Theory of Canonical Systems / Christian Remling. |
title_short | Spectral Theory of Canonical Systems / |
title_sort | spectral theory of canonical systems |
topic | Spectral theory (Mathematics) http://id.loc.gov/authorities/subjects/sh85126408 Spectre (Mathématiques) MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Spectral theory (Mathematics) fast |
topic_facet | Spectral theory (Mathematics) Spectre (Mathématiques) MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893622 |
work_keys_str_mv | AT remlingchristian spectraltheoryofcanonicalsystems |