Beginning data analysis with Python and Jupyter :: use powerful industry-standard tools to unlock new, actionable insight from your existing data /
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. About This Book Get up and running with the Jupyter ecosystem and some example datasets Learn abou...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2018.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. About This Book Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Who This Book Is For This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start. What You Will Learn Identify potential areas of investigation and perform exploratory data analysis Plan a machine learning classification strategy and train classification models Use validation curves and dimensionality reduction to tune and enhance your models Scrape tabular data from web pages and transform it into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings In Detail Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. Style and approach This book covers every aspect of the standard data-workflow process within a day, along with theory, practical hands-on coding, and relatable illustrations. |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource (1 volume) : illustrations |
ISBN: | 9781789534658 1789534658 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1045429050 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 180723s2018 enka o 001 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d STF |d OCLCF |d TOH |d DEBBG |d TEFOD |d CEF |d G3B |d S9I |d TEFOD |d N$T |d UAB |d CZL |d OCLCQ |d OCLCO |d NZAUC |d OCLCQ |d OCLCO |d DXU |d HOPLA | ||
020 | |a 9781789534658 |q (electronic bk.) | ||
020 | |a 1789534658 |q (electronic bk.) | ||
020 | |z 9781789532029 | ||
020 | |z 1789532027 | ||
035 | |a (OCoLC)1045429050 | ||
037 | |a CL0500000980 |b Safari Books Online | ||
037 | |a 7CD25672-E8AE-4808-815E-C8B79E7890E5 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.73.P98 | |
072 | 7 | |a COM |x 089000 |2 bisacsh | |
072 | 7 | |a COM |x 051360 |2 bisacsh | |
082 | 7 | |a 005.133 | |
049 | |a MAIN | ||
100 | 1 | |a Galea, Alex, |e author. | |
245 | 1 | 0 | |a Beginning data analysis with Python and Jupyter : |b use powerful industry-standard tools to unlock new, actionable insight from your existing data / |c by Alex Galea. |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2018. | |
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
588 | 0 | |a Online resource; title from cover (Safari, viewed July 18, 2018). | |
500 | |a Includes index. | ||
520 | |a Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. About This Book Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Who This Book Is For This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start. What You Will Learn Identify potential areas of investigation and perform exploratory data analysis Plan a machine learning classification strategy and train classification models Use validation curves and dimensionality reduction to tune and enhance your models Scrape tabular data from web pages and transform it into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings In Detail Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. Style and approach This book covers every aspect of the standard data-workflow process within a day, along with theory, practical hands-on coding, and relatable illustrations. | ||
505 | 0 | |a Intro -- Preface -- Jupyter Fundamentals -- Basic Functionality and Features -- Subtopic A: What is a Jupyter Notebook and Why is it Useful? -- Subtopic B: Navigating the Platform -- Introducing Jupyter Notebooks -- Subtopic C: Jupyter Features -- Explore some of Jupyter's most useful features -- Converting a Jupyter Notebook to a Python Script -- Subtopic D: Python Libraries -- Import the external libraries and set up the plotting environment -- Our First Analysis -- The Boston Housing Dataset -- Subtopic A: Loading the Data into Jupyter Using a Pandas DataFrame -- Load the Boston housing dataset -- Subtopic B: Data Exploration -- Explore the Boston housing dataset -- Subtopic C: Introduction to Predictive Analytics with Jupyter Notebooks -- Linear models with Seaborn and scikit-learn -- Activity B: Building a Third-Order Polynomial Model -- Subtopic D: Using Categorical Features for Segmentation Analysis -- Create categorical fields from continuous variables and make segmented visualizations -- Summary -- Data Cleaning and Advanced Machine Learning -- Preparing to Train a Predictive Model -- Subtopic A: Determining a Plan for Predictive Analytics -- Subtopic B: Preprocessing Data for Machine Learning -- Explore data preprocessing tools and methods -- Activity A: Preparing to Train a Predictive Model for the Employee-Retention Problem -- Training Classification Models -- Subtopic A: Introduction to Classification Algorithms -- Training two-feature classification models with scikit-learn -- The plot_decision_regions Function -- Training k-nearest neighbors for our model -- Training a Random Forest -- Subtopic B: Assessing Models with k-Fold Cross-Validation and Validation Curves -- Using k-fold cross validation and validation curves in Python with scikit-learn -- Subtopic C: Dimensionality Reduction Techniques. | |
505 | 8 | |a Training a predictive model for the employee retention problem -- Summary -- Web Scraping and Interactive Visualizations -- Scraping Web Page Data -- Subtopic A: Introduction to HTTP Requests -- Subtopic B: Making HTTP Requests in the Jupyter Notebook -- Handling HTTP requests with Python in a Jupyter Notebook -- Subtopic C: Parsing HTML in the Jupyter Notebook -- Parsing HTML with Python in a Jupyter Notebook -- Activity A: Web Scraping with Jupyter Notebooks -- Interactive Visualizations -- Subtopic A: Building a DataFrame to Store and Organize Data -- Building and merging Pandas DataFrames -- Subtopic B: Introduction to Bokeh -- Introduction to interactive visualizations with Bokeh -- Activity B: Exploring Data with Interactive Visualizations -- Summary -- Index. | |
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 0 | |a Information visualization. |0 http://id.loc.gov/authorities/subjects/sh2002000243 | |
650 | 0 | |a Electronic data processing. |0 http://id.loc.gov/authorities/subjects/sh85042288 | |
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073 | |
650 | 2 | |a Data Mining |0 https://id.nlm.nih.gov/mesh/D057225 | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Visualisation de l'information. | |
650 | 6 | |a Exploration de données (Informatique) | |
650 | 7 | |a COMPUTERS |x Data Visualization. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Programming Languages |x Python. |2 bisacsh | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a Electronic data processing |2 fast | |
650 | 7 | |a Information visualization |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1827494 |3 Volltext |
938 | |a hoopla Digital |b HOPL |n MWT13580325 | ||
938 | |a EBSCOhost |b EBSC |n 1827494 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1045429050 |
---|---|
_version_ | 1816882466116337664 |
adam_text | |
any_adam_object | |
author | Galea, Alex |
author_facet | Galea, Alex |
author_role | aut |
author_sort | Galea, Alex |
author_variant | a g ag |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 |
callnumber-search | QA76.73.P98 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Intro -- Preface -- Jupyter Fundamentals -- Basic Functionality and Features -- Subtopic A: What is a Jupyter Notebook and Why is it Useful? -- Subtopic B: Navigating the Platform -- Introducing Jupyter Notebooks -- Subtopic C: Jupyter Features -- Explore some of Jupyter's most useful features -- Converting a Jupyter Notebook to a Python Script -- Subtopic D: Python Libraries -- Import the external libraries and set up the plotting environment -- Our First Analysis -- The Boston Housing Dataset -- Subtopic A: Loading the Data into Jupyter Using a Pandas DataFrame -- Load the Boston housing dataset -- Subtopic B: Data Exploration -- Explore the Boston housing dataset -- Subtopic C: Introduction to Predictive Analytics with Jupyter Notebooks -- Linear models with Seaborn and scikit-learn -- Activity B: Building a Third-Order Polynomial Model -- Subtopic D: Using Categorical Features for Segmentation Analysis -- Create categorical fields from continuous variables and make segmented visualizations -- Summary -- Data Cleaning and Advanced Machine Learning -- Preparing to Train a Predictive Model -- Subtopic A: Determining a Plan for Predictive Analytics -- Subtopic B: Preprocessing Data for Machine Learning -- Explore data preprocessing tools and methods -- Activity A: Preparing to Train a Predictive Model for the Employee-Retention Problem -- Training Classification Models -- Subtopic A: Introduction to Classification Algorithms -- Training two-feature classification models with scikit-learn -- The plot_decision_regions Function -- Training k-nearest neighbors for our model -- Training a Random Forest -- Subtopic B: Assessing Models with k-Fold Cross-Validation and Validation Curves -- Using k-fold cross validation and validation curves in Python with scikit-learn -- Subtopic C: Dimensionality Reduction Techniques. Training a predictive model for the employee retention problem -- Summary -- Web Scraping and Interactive Visualizations -- Scraping Web Page Data -- Subtopic A: Introduction to HTTP Requests -- Subtopic B: Making HTTP Requests in the Jupyter Notebook -- Handling HTTP requests with Python in a Jupyter Notebook -- Subtopic C: Parsing HTML in the Jupyter Notebook -- Parsing HTML with Python in a Jupyter Notebook -- Activity A: Web Scraping with Jupyter Notebooks -- Interactive Visualizations -- Subtopic A: Building a DataFrame to Store and Organize Data -- Building and merging Pandas DataFrames -- Subtopic B: Introduction to Bokeh -- Introduction to interactive visualizations with Bokeh -- Activity B: Exploring Data with Interactive Visualizations -- Summary -- Index. |
ctrlnum | (OCoLC)1045429050 |
dewey-full | 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.133 |
dewey-search | 005.133 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07145cam a2200625 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1045429050</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">180723s2018 enka o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCF</subfield><subfield code="d">TOH</subfield><subfield code="d">DEBBG</subfield><subfield code="d">TEFOD</subfield><subfield code="d">CEF</subfield><subfield code="d">G3B</subfield><subfield code="d">S9I</subfield><subfield code="d">TEFOD</subfield><subfield code="d">N$T</subfield><subfield code="d">UAB</subfield><subfield code="d">CZL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NZAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DXU</subfield><subfield code="d">HOPLA</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789534658</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1789534658</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781789532029</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1789532027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1045429050</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000980</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">7CD25672-E8AE-4808-815E-C8B79E7890E5</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">089000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">051360</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.133</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Galea, Alex,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beginning data analysis with Python and Jupyter :</subfield><subfield code="b">use powerful industry-standard tools to unlock new, actionable insight from your existing data /</subfield><subfield code="c">by Alex Galea.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from cover (Safari, viewed July 18, 2018).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. About This Book Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Who This Book Is For This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start. What You Will Learn Identify potential areas of investigation and perform exploratory data analysis Plan a machine learning classification strategy and train classification models Use validation curves and dimensionality reduction to tune and enhance your models Scrape tabular data from web pages and transform it into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings In Detail Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. Style and approach This book covers every aspect of the standard data-workflow process within a day, along with theory, practical hands-on coding, and relatable illustrations.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Jupyter Fundamentals -- Basic Functionality and Features -- Subtopic A: What is a Jupyter Notebook and Why is it Useful? -- Subtopic B: Navigating the Platform -- Introducing Jupyter Notebooks -- Subtopic C: Jupyter Features -- Explore some of Jupyter's most useful features -- Converting a Jupyter Notebook to a Python Script -- Subtopic D: Python Libraries -- Import the external libraries and set up the plotting environment -- Our First Analysis -- The Boston Housing Dataset -- Subtopic A: Loading the Data into Jupyter Using a Pandas DataFrame -- Load the Boston housing dataset -- Subtopic B: Data Exploration -- Explore the Boston housing dataset -- Subtopic C: Introduction to Predictive Analytics with Jupyter Notebooks -- Linear models with Seaborn and scikit-learn -- Activity B: Building a Third-Order Polynomial Model -- Subtopic D: Using Categorical Features for Segmentation Analysis -- Create categorical fields from continuous variables and make segmented visualizations -- Summary -- Data Cleaning and Advanced Machine Learning -- Preparing to Train a Predictive Model -- Subtopic A: Determining a Plan for Predictive Analytics -- Subtopic B: Preprocessing Data for Machine Learning -- Explore data preprocessing tools and methods -- Activity A: Preparing to Train a Predictive Model for the Employee-Retention Problem -- Training Classification Models -- Subtopic A: Introduction to Classification Algorithms -- Training two-feature classification models with scikit-learn -- The plot_decision_regions Function -- Training k-nearest neighbors for our model -- Training a Random Forest -- Subtopic B: Assessing Models with k-Fold Cross-Validation and Validation Curves -- Using k-fold cross validation and validation curves in Python with scikit-learn -- Subtopic C: Dimensionality Reduction Techniques.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Training a predictive model for the employee retention problem -- Summary -- Web Scraping and Interactive Visualizations -- Scraping Web Page Data -- Subtopic A: Introduction to HTTP Requests -- Subtopic B: Making HTTP Requests in the Jupyter Notebook -- Handling HTTP requests with Python in a Jupyter Notebook -- Subtopic C: Parsing HTML in the Jupyter Notebook -- Parsing HTML with Python in a Jupyter Notebook -- Activity A: Web Scraping with Jupyter Notebooks -- Interactive Visualizations -- Subtopic A: Building a DataFrame to Store and Organize Data -- Building and merging Pandas DataFrames -- Subtopic B: Introduction to Bokeh -- Introduction to interactive visualizations with Bokeh -- Activity B: Exploring Data with Interactive Visualizations -- Summary -- Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information visualization.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002000243</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85042288</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97002073</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D057225</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Visualisation de l'information.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Data Visualization.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Programming Languages</subfield><subfield code="x">Python.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electronic data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information visualization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1827494</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">hoopla Digital</subfield><subfield code="b">HOPL</subfield><subfield code="n">MWT13580325</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1827494</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1045429050 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:29:03Z |
institution | BVB |
isbn | 9781789534658 1789534658 |
language | English |
oclc_num | 1045429050 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Galea, Alex, author. Beginning data analysis with Python and Jupyter : use powerful industry-standard tools to unlock new, actionable insight from your existing data / by Alex Galea. Birmingham, UK : Packt Publishing, 2018. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Online resource; title from cover (Safari, viewed July 18, 2018). Includes index. Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. About This Book Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Who This Book Is For This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start. What You Will Learn Identify potential areas of investigation and perform exploratory data analysis Plan a machine learning classification strategy and train classification models Use validation curves and dimensionality reduction to tune and enhance your models Scrape tabular data from web pages and transform it into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings In Detail Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. Style and approach This book covers every aspect of the standard data-workflow process within a day, along with theory, practical hands-on coding, and relatable illustrations. Intro -- Preface -- Jupyter Fundamentals -- Basic Functionality and Features -- Subtopic A: What is a Jupyter Notebook and Why is it Useful? -- Subtopic B: Navigating the Platform -- Introducing Jupyter Notebooks -- Subtopic C: Jupyter Features -- Explore some of Jupyter's most useful features -- Converting a Jupyter Notebook to a Python Script -- Subtopic D: Python Libraries -- Import the external libraries and set up the plotting environment -- Our First Analysis -- The Boston Housing Dataset -- Subtopic A: Loading the Data into Jupyter Using a Pandas DataFrame -- Load the Boston housing dataset -- Subtopic B: Data Exploration -- Explore the Boston housing dataset -- Subtopic C: Introduction to Predictive Analytics with Jupyter Notebooks -- Linear models with Seaborn and scikit-learn -- Activity B: Building a Third-Order Polynomial Model -- Subtopic D: Using Categorical Features for Segmentation Analysis -- Create categorical fields from continuous variables and make segmented visualizations -- Summary -- Data Cleaning and Advanced Machine Learning -- Preparing to Train a Predictive Model -- Subtopic A: Determining a Plan for Predictive Analytics -- Subtopic B: Preprocessing Data for Machine Learning -- Explore data preprocessing tools and methods -- Activity A: Preparing to Train a Predictive Model for the Employee-Retention Problem -- Training Classification Models -- Subtopic A: Introduction to Classification Algorithms -- Training two-feature classification models with scikit-learn -- The plot_decision_regions Function -- Training k-nearest neighbors for our model -- Training a Random Forest -- Subtopic B: Assessing Models with k-Fold Cross-Validation and Validation Curves -- Using k-fold cross validation and validation curves in Python with scikit-learn -- Subtopic C: Dimensionality Reduction Techniques. Training a predictive model for the employee retention problem -- Summary -- Web Scraping and Interactive Visualizations -- Scraping Web Page Data -- Subtopic A: Introduction to HTTP Requests -- Subtopic B: Making HTTP Requests in the Jupyter Notebook -- Handling HTTP requests with Python in a Jupyter Notebook -- Subtopic C: Parsing HTML in the Jupyter Notebook -- Parsing HTML with Python in a Jupyter Notebook -- Activity A: Web Scraping with Jupyter Notebooks -- Interactive Visualizations -- Subtopic A: Building a DataFrame to Store and Organize Data -- Building and merging Pandas DataFrames -- Subtopic B: Introduction to Bokeh -- Introduction to interactive visualizations with Bokeh -- Activity B: Exploring Data with Interactive Visualizations -- Summary -- Index. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Information visualization. http://id.loc.gov/authorities/subjects/sh2002000243 Electronic data processing. http://id.loc.gov/authorities/subjects/sh85042288 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Data Mining https://id.nlm.nih.gov/mesh/D057225 Python (Langage de programmation) Visualisation de l'information. Exploration de données (Informatique) COMPUTERS Data Visualization. bisacsh COMPUTERS Programming Languages Python. bisacsh Data mining fast Electronic data processing fast Information visualization fast Python (Computer program language) fast FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1827494 Volltext |
spellingShingle | Galea, Alex Beginning data analysis with Python and Jupyter : use powerful industry-standard tools to unlock new, actionable insight from your existing data / Intro -- Preface -- Jupyter Fundamentals -- Basic Functionality and Features -- Subtopic A: What is a Jupyter Notebook and Why is it Useful? -- Subtopic B: Navigating the Platform -- Introducing Jupyter Notebooks -- Subtopic C: Jupyter Features -- Explore some of Jupyter's most useful features -- Converting a Jupyter Notebook to a Python Script -- Subtopic D: Python Libraries -- Import the external libraries and set up the plotting environment -- Our First Analysis -- The Boston Housing Dataset -- Subtopic A: Loading the Data into Jupyter Using a Pandas DataFrame -- Load the Boston housing dataset -- Subtopic B: Data Exploration -- Explore the Boston housing dataset -- Subtopic C: Introduction to Predictive Analytics with Jupyter Notebooks -- Linear models with Seaborn and scikit-learn -- Activity B: Building a Third-Order Polynomial Model -- Subtopic D: Using Categorical Features for Segmentation Analysis -- Create categorical fields from continuous variables and make segmented visualizations -- Summary -- Data Cleaning and Advanced Machine Learning -- Preparing to Train a Predictive Model -- Subtopic A: Determining a Plan for Predictive Analytics -- Subtopic B: Preprocessing Data for Machine Learning -- Explore data preprocessing tools and methods -- Activity A: Preparing to Train a Predictive Model for the Employee-Retention Problem -- Training Classification Models -- Subtopic A: Introduction to Classification Algorithms -- Training two-feature classification models with scikit-learn -- The plot_decision_regions Function -- Training k-nearest neighbors for our model -- Training a Random Forest -- Subtopic B: Assessing Models with k-Fold Cross-Validation and Validation Curves -- Using k-fold cross validation and validation curves in Python with scikit-learn -- Subtopic C: Dimensionality Reduction Techniques. Training a predictive model for the employee retention problem -- Summary -- Web Scraping and Interactive Visualizations -- Scraping Web Page Data -- Subtopic A: Introduction to HTTP Requests -- Subtopic B: Making HTTP Requests in the Jupyter Notebook -- Handling HTTP requests with Python in a Jupyter Notebook -- Subtopic C: Parsing HTML in the Jupyter Notebook -- Parsing HTML with Python in a Jupyter Notebook -- Activity A: Web Scraping with Jupyter Notebooks -- Interactive Visualizations -- Subtopic A: Building a DataFrame to Store and Organize Data -- Building and merging Pandas DataFrames -- Subtopic B: Introduction to Bokeh -- Introduction to interactive visualizations with Bokeh -- Activity B: Exploring Data with Interactive Visualizations -- Summary -- Index. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Information visualization. http://id.loc.gov/authorities/subjects/sh2002000243 Electronic data processing. http://id.loc.gov/authorities/subjects/sh85042288 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Data Mining https://id.nlm.nih.gov/mesh/D057225 Python (Langage de programmation) Visualisation de l'information. Exploration de données (Informatique) COMPUTERS Data Visualization. bisacsh COMPUTERS Programming Languages Python. bisacsh Data mining fast Electronic data processing fast Information visualization fast Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh96008834 http://id.loc.gov/authorities/subjects/sh2002000243 http://id.loc.gov/authorities/subjects/sh85042288 http://id.loc.gov/authorities/subjects/sh97002073 https://id.nlm.nih.gov/mesh/D057225 |
title | Beginning data analysis with Python and Jupyter : use powerful industry-standard tools to unlock new, actionable insight from your existing data / |
title_auth | Beginning data analysis with Python and Jupyter : use powerful industry-standard tools to unlock new, actionable insight from your existing data / |
title_exact_search | Beginning data analysis with Python and Jupyter : use powerful industry-standard tools to unlock new, actionable insight from your existing data / |
title_full | Beginning data analysis with Python and Jupyter : use powerful industry-standard tools to unlock new, actionable insight from your existing data / by Alex Galea. |
title_fullStr | Beginning data analysis with Python and Jupyter : use powerful industry-standard tools to unlock new, actionable insight from your existing data / by Alex Galea. |
title_full_unstemmed | Beginning data analysis with Python and Jupyter : use powerful industry-standard tools to unlock new, actionable insight from your existing data / by Alex Galea. |
title_short | Beginning data analysis with Python and Jupyter : |
title_sort | beginning data analysis with python and jupyter use powerful industry standard tools to unlock new actionable insight from your existing data |
title_sub | use powerful industry-standard tools to unlock new, actionable insight from your existing data / |
topic | Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Information visualization. http://id.loc.gov/authorities/subjects/sh2002000243 Electronic data processing. http://id.loc.gov/authorities/subjects/sh85042288 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Data Mining https://id.nlm.nih.gov/mesh/D057225 Python (Langage de programmation) Visualisation de l'information. Exploration de données (Informatique) COMPUTERS Data Visualization. bisacsh COMPUTERS Programming Languages Python. bisacsh Data mining fast Electronic data processing fast Information visualization fast Python (Computer program language) fast |
topic_facet | Python (Computer program language) Information visualization. Electronic data processing. Data mining. Data Mining Python (Langage de programmation) Visualisation de l'information. Exploration de données (Informatique) COMPUTERS Data Visualization. COMPUTERS Programming Languages Python. Data mining Electronic data processing Information visualization |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1827494 |
work_keys_str_mv | AT galeaalex beginningdataanalysiswithpythonandjupyterusepowerfulindustrystandardtoolstounlocknewactionableinsightfromyourexistingdata |