Modeling nanowire and double-gate junctionless field-effect transistors /:
A detailed introduction to the design, modeling, and operation of junctionless field effect transistors (FETs), including advantages and limitations.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA :
Cambridge University Press,
2018.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A detailed introduction to the design, modeling, and operation of junctionless field effect transistors (FETs), including advantages and limitations. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781108557535 1108557538 9781316676899 1316676897 9781107162044 1107162041 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1026492449 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 180302s2018 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d NOC |d EBLCP |d YDX |d CNCGM |d COO |d OCLCF |d UAB |d OCLCQ |d U3W |d OTZ |d CEF |d OCLCQ |d LVT |d OCLCQ |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d SFB |d OCLCQ | ||
019 | |a 1027816923 |a 1028027419 |a 1028068229 | ||
020 | |a 9781108557535 |q (electronic bk.) | ||
020 | |a 1108557538 |q (electronic bk.) | ||
020 | |a 9781316676899 |q (electronic bk.) | ||
020 | |a 1316676897 |q (electronic bk.) | ||
020 | |a 9781107162044 |q (electronic bk.) | ||
020 | |a 1107162041 |q (electronic bk.) | ||
020 | |z 1107162041 | ||
035 | |a (OCoLC)1026492449 |z (OCoLC)1027816923 |z (OCoLC)1028027419 |z (OCoLC)1028068229 | ||
050 | 4 | |a TK7871.95 |b .J39 2018eb | |
072 | 7 | |a TEC |x 009070 |2 bisacsh | |
082 | 7 | |a 621.3815/284 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Jazaeri, Farzan, |e author. |0 http://id.loc.gov/authorities/names/n2018005200 | |
245 | 1 | 0 | |a Modeling nanowire and double-gate junctionless field-effect transistors / |c Farzan Jazaeri, École Polytechnique Fédérale de Lausanne, Jean-Michel Sallese, École Polytechnique Fédérale de Lausanne. |
264 | 1 | |a Cambridge, United Kingdom ; |a New York, NY, USA : |b Cambridge University Press, |c 2018. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed March 2, 2018). | |
505 | 0 | |a Cover; Half Title; Title page; Imprints page; Contents; Foreword; Preface; List of Abbreviations; List of Symbols; 1 Introduction; 1.1 The Birth of the Transistor; 1.2 The Metal-Oxideâ#x80;#x93;Semiconductor Field-Effect Transistor; 1.3 Moore's Law, Limits of CMOS Scaling, and Alternative MOSFET Structures; 1.3.1 Scaling in Bulk MOSFETs; 1.3.2 Silicon-on-Insulator MOSFETs; 1.4 The Junctionless Concept; 1.4.1 Working Principle of Junctionless MOSFETs; 1.4.2 Diversity in Junctionless Architectures; 1.5 Short-Channel Effects in Junctionless FETs; 1.6 Mobility in Junctionless FETs. | |
505 | 8 | |a 1.7 The Critical Aspect of Random Dopant Fluctuation1.7.1 Random Dopant Fluctuations in Junctionless FETs; 1.8 Summary; 2 Review on Modeling Junctionless FETs; 2.1 Modeling Junctionless Double-Gate MOSFETs; 2.1.1 Full Depletion Approximation; 2.1.2 Enhanced Depletion Approximation; 2.1.3 Surface Potential-based Approach; 2.1.4 Simplified Current Model Involving Pinch-Off; 2.1.5 Semiempirical Charge-based Approach; 2.1.6 Analytical Approach based on Conventional Inversion-Mode MOSFETs; 2.1.7 Parabolic Approximation and Full-Range Drain Current. | |
505 | 8 | |a 2.1.8 Gaussian Distribution of Mobile Charge Density2.1.9 Simple Model to Estimate Junctionless FET Performances; 2.1.10 Explicit Drain Current Model Relying on Charge-based Approach; 2.1.11 Modeling of Quantum Mechanical Effects; 2.1.12 Short-Channel Effects in Subthreshold; 2.1.13 Transcapacitance Modeling; 2.1.14 Modeling Asymmetry in Junctionless Double-Gate MOSFETs; 2.2 Modeling Junctionless Nanowire MOSFETs; 2.2.1 Short-Channel Effects in the Subthreshold; 2.2.2 Transcapacitance Modeling in Junctionless Nanowire FETs; 2.2.3 Quantum Mechanical Effects in Junctionless Nanowire FETs. | |
505 | 8 | |a 2.3 Summary3 The EPFL Charge-based Model of Junctionless Field-Effect Transistors; 3.1 Charge-based Modeling of Junctionless Double-Gate Field-Effect Transistors; 3.1.1 Recalling Basics of Semiconductor Statistics; 3.1.2 Approximate Solution of the Poissonâ#x80;#x93;Boltzmann Equation in Junctionless Double-Gate MOSFET; 3.1.3 Introduction of Symmetric Gate Capacitances; 3.1.4 Derivation of Explicit Voltageâ#x80;#x93;Charge Relationships; 3.1.5 Analytical versus Numerical Simulations; 3.1.6 Threshold Voltage in Junctionless FETs; 3.1.7 Derivation of the Channel Current; 3.1.8 Evaluation of the Charge Integral. | |
505 | 8 | |a 3.1.9 General Treatment of the Current in Junctionless Double-Gate MOSFETs3.1.10 Simulation Results; 3.2 A Common Core Model for Junctionless Nanowires and Symmetric DG FETs; 3.2.1 Analysis of Electrostatics in Junctionless Nanowire FETs; 3.2.2 Derivation of the Current in a Junctionless Nanowire; 3.2.3 Simulations; 3.3 Explicit Model for Long-Channel Gate-All-Around Junctionless MOSFETs; 3.3.1 Approximated Solution in Depletion; 3.3.2 Approximated Solution in Accumulation Mode; 3.3.3 Approximated Solution in Weak Accumulation Mode; 3.4 Summary. | |
520 | |a A detailed introduction to the design, modeling, and operation of junctionless field effect transistors (FETs), including advantages and limitations. | ||
650 | 0 | |a Metal semiconductor field-effect transistors. |0 http://id.loc.gov/authorities/subjects/sh85084082 | |
650 | 0 | |a Nanowires. |0 http://id.loc.gov/authorities/subjects/sh97004111 | |
650 | 6 | |a Transistors MESFET. | |
650 | 6 | |a Nanofils. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Mechanical. |2 bisacsh | |
650 | 7 | |a Metal semiconductor field-effect transistors |2 fast | |
650 | 7 | |a Nanowires |2 fast | |
700 | 1 | |a Sallese, Jean-Michel, |e author. |0 http://id.loc.gov/authorities/names/n2018005201 | |
758 | |i has work: |a Modeling nanowire and double-gate junctionless field-effect transistors (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH7jtWw4QVHr8hWP6YvW6q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9781107162044 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1694370 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34211043 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL5312926 | ||
938 | |a EBSCOhost |b EBSC |n 1694370 | ||
938 | |a YBP Library Services |b YANK |n 15219275 | ||
938 | |a YBP Library Services |b YANK |n 15188073 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1026492449 |
---|---|
_version_ | 1816882414616576000 |
adam_text | |
any_adam_object | |
author | Jazaeri, Farzan Sallese, Jean-Michel |
author_GND | http://id.loc.gov/authorities/names/n2018005200 http://id.loc.gov/authorities/names/n2018005201 |
author_facet | Jazaeri, Farzan Sallese, Jean-Michel |
author_role | aut aut |
author_sort | Jazaeri, Farzan |
author_variant | f j fj j m s jms |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK7871 |
callnumber-raw | TK7871.95 .J39 2018eb |
callnumber-search | TK7871.95 .J39 2018eb |
callnumber-sort | TK 47871.95 J39 42018EB |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | Cover; Half Title; Title page; Imprints page; Contents; Foreword; Preface; List of Abbreviations; List of Symbols; 1 Introduction; 1.1 The Birth of the Transistor; 1.2 The Metal-Oxideâ#x80;#x93;Semiconductor Field-Effect Transistor; 1.3 Moore's Law, Limits of CMOS Scaling, and Alternative MOSFET Structures; 1.3.1 Scaling in Bulk MOSFETs; 1.3.2 Silicon-on-Insulator MOSFETs; 1.4 The Junctionless Concept; 1.4.1 Working Principle of Junctionless MOSFETs; 1.4.2 Diversity in Junctionless Architectures; 1.5 Short-Channel Effects in Junctionless FETs; 1.6 Mobility in Junctionless FETs. 1.7 The Critical Aspect of Random Dopant Fluctuation1.7.1 Random Dopant Fluctuations in Junctionless FETs; 1.8 Summary; 2 Review on Modeling Junctionless FETs; 2.1 Modeling Junctionless Double-Gate MOSFETs; 2.1.1 Full Depletion Approximation; 2.1.2 Enhanced Depletion Approximation; 2.1.3 Surface Potential-based Approach; 2.1.4 Simplified Current Model Involving Pinch-Off; 2.1.5 Semiempirical Charge-based Approach; 2.1.6 Analytical Approach based on Conventional Inversion-Mode MOSFETs; 2.1.7 Parabolic Approximation and Full-Range Drain Current. 2.1.8 Gaussian Distribution of Mobile Charge Density2.1.9 Simple Model to Estimate Junctionless FET Performances; 2.1.10 Explicit Drain Current Model Relying on Charge-based Approach; 2.1.11 Modeling of Quantum Mechanical Effects; 2.1.12 Short-Channel Effects in Subthreshold; 2.1.13 Transcapacitance Modeling; 2.1.14 Modeling Asymmetry in Junctionless Double-Gate MOSFETs; 2.2 Modeling Junctionless Nanowire MOSFETs; 2.2.1 Short-Channel Effects in the Subthreshold; 2.2.2 Transcapacitance Modeling in Junctionless Nanowire FETs; 2.2.3 Quantum Mechanical Effects in Junctionless Nanowire FETs. 2.3 Summary3 The EPFL Charge-based Model of Junctionless Field-Effect Transistors; 3.1 Charge-based Modeling of Junctionless Double-Gate Field-Effect Transistors; 3.1.1 Recalling Basics of Semiconductor Statistics; 3.1.2 Approximate Solution of the Poissonâ#x80;#x93;Boltzmann Equation in Junctionless Double-Gate MOSFET; 3.1.3 Introduction of Symmetric Gate Capacitances; 3.1.4 Derivation of Explicit Voltageâ#x80;#x93;Charge Relationships; 3.1.5 Analytical versus Numerical Simulations; 3.1.6 Threshold Voltage in Junctionless FETs; 3.1.7 Derivation of the Channel Current; 3.1.8 Evaluation of the Charge Integral. 3.1.9 General Treatment of the Current in Junctionless Double-Gate MOSFETs3.1.10 Simulation Results; 3.2 A Common Core Model for Junctionless Nanowires and Symmetric DG FETs; 3.2.1 Analysis of Electrostatics in Junctionless Nanowire FETs; 3.2.2 Derivation of the Current in a Junctionless Nanowire; 3.2.3 Simulations; 3.3 Explicit Model for Long-Channel Gate-All-Around Junctionless MOSFETs; 3.3.1 Approximated Solution in Depletion; 3.3.2 Approximated Solution in Accumulation Mode; 3.3.3 Approximated Solution in Weak Accumulation Mode; 3.4 Summary. |
ctrlnum | (OCoLC)1026492449 |
dewey-full | 621.3815/284 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815/284 |
dewey-search | 621.3815/284 |
dewey-sort | 3621.3815 3284 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06012cam a2200649 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1026492449</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">180302s2018 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">NOC</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">CNCGM</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">OTZ</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1027816923</subfield><subfield code="a">1028027419</subfield><subfield code="a">1028068229</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108557535</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108557538</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316676899</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316676897</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107162044</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107162041</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107162041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1026492449</subfield><subfield code="z">(OCoLC)1027816923</subfield><subfield code="z">(OCoLC)1028027419</subfield><subfield code="z">(OCoLC)1028068229</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK7871.95</subfield><subfield code="b">.J39 2018eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009070</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.3815/284</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jazaeri, Farzan,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2018005200</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling nanowire and double-gate junctionless field-effect transistors /</subfield><subfield code="c">Farzan Jazaeri, École Polytechnique Fédérale de Lausanne, Jean-Michel Sallese, École Polytechnique Fédérale de Lausanne.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ;</subfield><subfield code="a">New York, NY, USA :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed March 2, 2018).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half Title; Title page; Imprints page; Contents; Foreword; Preface; List of Abbreviations; List of Symbols; 1 Introduction; 1.1 The Birth of the Transistor; 1.2 The Metal-Oxideâ#x80;#x93;Semiconductor Field-Effect Transistor; 1.3 Moore's Law, Limits of CMOS Scaling, and Alternative MOSFET Structures; 1.3.1 Scaling in Bulk MOSFETs; 1.3.2 Silicon-on-Insulator MOSFETs; 1.4 The Junctionless Concept; 1.4.1 Working Principle of Junctionless MOSFETs; 1.4.2 Diversity in Junctionless Architectures; 1.5 Short-Channel Effects in Junctionless FETs; 1.6 Mobility in Junctionless FETs.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.7 The Critical Aspect of Random Dopant Fluctuation1.7.1 Random Dopant Fluctuations in Junctionless FETs; 1.8 Summary; 2 Review on Modeling Junctionless FETs; 2.1 Modeling Junctionless Double-Gate MOSFETs; 2.1.1 Full Depletion Approximation; 2.1.2 Enhanced Depletion Approximation; 2.1.3 Surface Potential-based Approach; 2.1.4 Simplified Current Model Involving Pinch-Off; 2.1.5 Semiempirical Charge-based Approach; 2.1.6 Analytical Approach based on Conventional Inversion-Mode MOSFETs; 2.1.7 Parabolic Approximation and Full-Range Drain Current.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.8 Gaussian Distribution of Mobile Charge Density2.1.9 Simple Model to Estimate Junctionless FET Performances; 2.1.10 Explicit Drain Current Model Relying on Charge-based Approach; 2.1.11 Modeling of Quantum Mechanical Effects; 2.1.12 Short-Channel Effects in Subthreshold; 2.1.13 Transcapacitance Modeling; 2.1.14 Modeling Asymmetry in Junctionless Double-Gate MOSFETs; 2.2 Modeling Junctionless Nanowire MOSFETs; 2.2.1 Short-Channel Effects in the Subthreshold; 2.2.2 Transcapacitance Modeling in Junctionless Nanowire FETs; 2.2.3 Quantum Mechanical Effects in Junctionless Nanowire FETs.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Summary3 The EPFL Charge-based Model of Junctionless Field-Effect Transistors; 3.1 Charge-based Modeling of Junctionless Double-Gate Field-Effect Transistors; 3.1.1 Recalling Basics of Semiconductor Statistics; 3.1.2 Approximate Solution of the Poissonâ#x80;#x93;Boltzmann Equation in Junctionless Double-Gate MOSFET; 3.1.3 Introduction of Symmetric Gate Capacitances; 3.1.4 Derivation of Explicit Voltageâ#x80;#x93;Charge Relationships; 3.1.5 Analytical versus Numerical Simulations; 3.1.6 Threshold Voltage in Junctionless FETs; 3.1.7 Derivation of the Channel Current; 3.1.8 Evaluation of the Charge Integral.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1.9 General Treatment of the Current in Junctionless Double-Gate MOSFETs3.1.10 Simulation Results; 3.2 A Common Core Model for Junctionless Nanowires and Symmetric DG FETs; 3.2.1 Analysis of Electrostatics in Junctionless Nanowire FETs; 3.2.2 Derivation of the Current in a Junctionless Nanowire; 3.2.3 Simulations; 3.3 Explicit Model for Long-Channel Gate-All-Around Junctionless MOSFETs; 3.3.1 Approximated Solution in Depletion; 3.3.2 Approximated Solution in Accumulation Mode; 3.3.3 Approximated Solution in Weak Accumulation Mode; 3.4 Summary.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A detailed introduction to the design, modeling, and operation of junctionless field effect transistors (FETs), including advantages and limitations.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Metal semiconductor field-effect transistors.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85084082</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanowires.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97004111</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transistors MESFET.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanofils.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Mechanical.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metal semiconductor field-effect transistors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanowires</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sallese, Jean-Michel,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2018005201</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Modeling nanowire and double-gate junctionless field-effect transistors (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH7jtWw4QVHr8hWP6YvW6q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9781107162044</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1694370</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34211043</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5312926</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1694370</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15219275</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15188073</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1026492449 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:28:14Z |
institution | BVB |
isbn | 9781108557535 1108557538 9781316676899 1316676897 9781107162044 1107162041 |
language | English |
oclc_num | 1026492449 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Jazaeri, Farzan, author. http://id.loc.gov/authorities/names/n2018005200 Modeling nanowire and double-gate junctionless field-effect transistors / Farzan Jazaeri, École Polytechnique Fédérale de Lausanne, Jean-Michel Sallese, École Polytechnique Fédérale de Lausanne. Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2018. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Online resource; title from PDF title page (EBSCO, viewed March 2, 2018). Cover; Half Title; Title page; Imprints page; Contents; Foreword; Preface; List of Abbreviations; List of Symbols; 1 Introduction; 1.1 The Birth of the Transistor; 1.2 The Metal-Oxideâ#x80;#x93;Semiconductor Field-Effect Transistor; 1.3 Moore's Law, Limits of CMOS Scaling, and Alternative MOSFET Structures; 1.3.1 Scaling in Bulk MOSFETs; 1.3.2 Silicon-on-Insulator MOSFETs; 1.4 The Junctionless Concept; 1.4.1 Working Principle of Junctionless MOSFETs; 1.4.2 Diversity in Junctionless Architectures; 1.5 Short-Channel Effects in Junctionless FETs; 1.6 Mobility in Junctionless FETs. 1.7 The Critical Aspect of Random Dopant Fluctuation1.7.1 Random Dopant Fluctuations in Junctionless FETs; 1.8 Summary; 2 Review on Modeling Junctionless FETs; 2.1 Modeling Junctionless Double-Gate MOSFETs; 2.1.1 Full Depletion Approximation; 2.1.2 Enhanced Depletion Approximation; 2.1.3 Surface Potential-based Approach; 2.1.4 Simplified Current Model Involving Pinch-Off; 2.1.5 Semiempirical Charge-based Approach; 2.1.6 Analytical Approach based on Conventional Inversion-Mode MOSFETs; 2.1.7 Parabolic Approximation and Full-Range Drain Current. 2.1.8 Gaussian Distribution of Mobile Charge Density2.1.9 Simple Model to Estimate Junctionless FET Performances; 2.1.10 Explicit Drain Current Model Relying on Charge-based Approach; 2.1.11 Modeling of Quantum Mechanical Effects; 2.1.12 Short-Channel Effects in Subthreshold; 2.1.13 Transcapacitance Modeling; 2.1.14 Modeling Asymmetry in Junctionless Double-Gate MOSFETs; 2.2 Modeling Junctionless Nanowire MOSFETs; 2.2.1 Short-Channel Effects in the Subthreshold; 2.2.2 Transcapacitance Modeling in Junctionless Nanowire FETs; 2.2.3 Quantum Mechanical Effects in Junctionless Nanowire FETs. 2.3 Summary3 The EPFL Charge-based Model of Junctionless Field-Effect Transistors; 3.1 Charge-based Modeling of Junctionless Double-Gate Field-Effect Transistors; 3.1.1 Recalling Basics of Semiconductor Statistics; 3.1.2 Approximate Solution of the Poissonâ#x80;#x93;Boltzmann Equation in Junctionless Double-Gate MOSFET; 3.1.3 Introduction of Symmetric Gate Capacitances; 3.1.4 Derivation of Explicit Voltageâ#x80;#x93;Charge Relationships; 3.1.5 Analytical versus Numerical Simulations; 3.1.6 Threshold Voltage in Junctionless FETs; 3.1.7 Derivation of the Channel Current; 3.1.8 Evaluation of the Charge Integral. 3.1.9 General Treatment of the Current in Junctionless Double-Gate MOSFETs3.1.10 Simulation Results; 3.2 A Common Core Model for Junctionless Nanowires and Symmetric DG FETs; 3.2.1 Analysis of Electrostatics in Junctionless Nanowire FETs; 3.2.2 Derivation of the Current in a Junctionless Nanowire; 3.2.3 Simulations; 3.3 Explicit Model for Long-Channel Gate-All-Around Junctionless MOSFETs; 3.3.1 Approximated Solution in Depletion; 3.3.2 Approximated Solution in Accumulation Mode; 3.3.3 Approximated Solution in Weak Accumulation Mode; 3.4 Summary. A detailed introduction to the design, modeling, and operation of junctionless field effect transistors (FETs), including advantages and limitations. Metal semiconductor field-effect transistors. http://id.loc.gov/authorities/subjects/sh85084082 Nanowires. http://id.loc.gov/authorities/subjects/sh97004111 Transistors MESFET. Nanofils. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Metal semiconductor field-effect transistors fast Nanowires fast Sallese, Jean-Michel, author. http://id.loc.gov/authorities/names/n2018005201 has work: Modeling nanowire and double-gate junctionless field-effect transistors (Text) https://id.oclc.org/worldcat/entity/E39PCH7jtWw4QVHr8hWP6YvW6q https://id.oclc.org/worldcat/ontology/hasWork Print version: 9781107162044 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1694370 Volltext |
spellingShingle | Jazaeri, Farzan Sallese, Jean-Michel Modeling nanowire and double-gate junctionless field-effect transistors / Cover; Half Title; Title page; Imprints page; Contents; Foreword; Preface; List of Abbreviations; List of Symbols; 1 Introduction; 1.1 The Birth of the Transistor; 1.2 The Metal-Oxideâ#x80;#x93;Semiconductor Field-Effect Transistor; 1.3 Moore's Law, Limits of CMOS Scaling, and Alternative MOSFET Structures; 1.3.1 Scaling in Bulk MOSFETs; 1.3.2 Silicon-on-Insulator MOSFETs; 1.4 The Junctionless Concept; 1.4.1 Working Principle of Junctionless MOSFETs; 1.4.2 Diversity in Junctionless Architectures; 1.5 Short-Channel Effects in Junctionless FETs; 1.6 Mobility in Junctionless FETs. 1.7 The Critical Aspect of Random Dopant Fluctuation1.7.1 Random Dopant Fluctuations in Junctionless FETs; 1.8 Summary; 2 Review on Modeling Junctionless FETs; 2.1 Modeling Junctionless Double-Gate MOSFETs; 2.1.1 Full Depletion Approximation; 2.1.2 Enhanced Depletion Approximation; 2.1.3 Surface Potential-based Approach; 2.1.4 Simplified Current Model Involving Pinch-Off; 2.1.5 Semiempirical Charge-based Approach; 2.1.6 Analytical Approach based on Conventional Inversion-Mode MOSFETs; 2.1.7 Parabolic Approximation and Full-Range Drain Current. 2.1.8 Gaussian Distribution of Mobile Charge Density2.1.9 Simple Model to Estimate Junctionless FET Performances; 2.1.10 Explicit Drain Current Model Relying on Charge-based Approach; 2.1.11 Modeling of Quantum Mechanical Effects; 2.1.12 Short-Channel Effects in Subthreshold; 2.1.13 Transcapacitance Modeling; 2.1.14 Modeling Asymmetry in Junctionless Double-Gate MOSFETs; 2.2 Modeling Junctionless Nanowire MOSFETs; 2.2.1 Short-Channel Effects in the Subthreshold; 2.2.2 Transcapacitance Modeling in Junctionless Nanowire FETs; 2.2.3 Quantum Mechanical Effects in Junctionless Nanowire FETs. 2.3 Summary3 The EPFL Charge-based Model of Junctionless Field-Effect Transistors; 3.1 Charge-based Modeling of Junctionless Double-Gate Field-Effect Transistors; 3.1.1 Recalling Basics of Semiconductor Statistics; 3.1.2 Approximate Solution of the Poissonâ#x80;#x93;Boltzmann Equation in Junctionless Double-Gate MOSFET; 3.1.3 Introduction of Symmetric Gate Capacitances; 3.1.4 Derivation of Explicit Voltageâ#x80;#x93;Charge Relationships; 3.1.5 Analytical versus Numerical Simulations; 3.1.6 Threshold Voltage in Junctionless FETs; 3.1.7 Derivation of the Channel Current; 3.1.8 Evaluation of the Charge Integral. 3.1.9 General Treatment of the Current in Junctionless Double-Gate MOSFETs3.1.10 Simulation Results; 3.2 A Common Core Model for Junctionless Nanowires and Symmetric DG FETs; 3.2.1 Analysis of Electrostatics in Junctionless Nanowire FETs; 3.2.2 Derivation of the Current in a Junctionless Nanowire; 3.2.3 Simulations; 3.3 Explicit Model for Long-Channel Gate-All-Around Junctionless MOSFETs; 3.3.1 Approximated Solution in Depletion; 3.3.2 Approximated Solution in Accumulation Mode; 3.3.3 Approximated Solution in Weak Accumulation Mode; 3.4 Summary. Metal semiconductor field-effect transistors. http://id.loc.gov/authorities/subjects/sh85084082 Nanowires. http://id.loc.gov/authorities/subjects/sh97004111 Transistors MESFET. Nanofils. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Metal semiconductor field-effect transistors fast Nanowires fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85084082 http://id.loc.gov/authorities/subjects/sh97004111 |
title | Modeling nanowire and double-gate junctionless field-effect transistors / |
title_auth | Modeling nanowire and double-gate junctionless field-effect transistors / |
title_exact_search | Modeling nanowire and double-gate junctionless field-effect transistors / |
title_full | Modeling nanowire and double-gate junctionless field-effect transistors / Farzan Jazaeri, École Polytechnique Fédérale de Lausanne, Jean-Michel Sallese, École Polytechnique Fédérale de Lausanne. |
title_fullStr | Modeling nanowire and double-gate junctionless field-effect transistors / Farzan Jazaeri, École Polytechnique Fédérale de Lausanne, Jean-Michel Sallese, École Polytechnique Fédérale de Lausanne. |
title_full_unstemmed | Modeling nanowire and double-gate junctionless field-effect transistors / Farzan Jazaeri, École Polytechnique Fédérale de Lausanne, Jean-Michel Sallese, École Polytechnique Fédérale de Lausanne. |
title_short | Modeling nanowire and double-gate junctionless field-effect transistors / |
title_sort | modeling nanowire and double gate junctionless field effect transistors |
topic | Metal semiconductor field-effect transistors. http://id.loc.gov/authorities/subjects/sh85084082 Nanowires. http://id.loc.gov/authorities/subjects/sh97004111 Transistors MESFET. Nanofils. TECHNOLOGY & ENGINEERING Mechanical. bisacsh Metal semiconductor field-effect transistors fast Nanowires fast |
topic_facet | Metal semiconductor field-effect transistors. Nanowires. Transistors MESFET. Nanofils. TECHNOLOGY & ENGINEERING Mechanical. Metal semiconductor field-effect transistors Nanowires |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1694370 |
work_keys_str_mv | AT jazaerifarzan modelingnanowireanddoublegatejunctionlessfieldeffecttransistors AT sallesejeanmichel modelingnanowireanddoublegatejunctionlessfieldeffecttransistors |