Mastering TensorFlow 1.x :: advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras /
Build, scale, and deploy deep neural network models using the star libraries in Python About This Book Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras Build, deploy, and scale end-to-end deep neural network models in a production environment Learn to deplo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2018.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Build, scale, and deploy deep neural network models using the star libraries in Python About This Book Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras Build, deploy, and scale end-to-end deep neural network models in a production environment Learn to deploy TensorFlow on mobile, and distributed TensorFlow on GPU, Clusters, and Kubernetes Who This Book Is For This book is for data scientists, machine learning engineers, artificial intelligence engineers, and for all TensorFlow users who wish to upgrade their TensorFlow knowledge and work on various machine learning and deep learning problems. If you are looking for an easy-to-follow guide that underlines the intricacies and complex use cases of machine learning, you will find this book extremely useful. Some basic understanding of TensorFlow is required to get the most out of the book. What You Will Learn Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow Scale and deploy production models with distributed and high-performance computing on GPU and clusters Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters In Detail TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow ... |
Beschreibung: | 1 online resource (1 volume) : illustrations |
ISBN: | 9781788297004 1788297008 1788292065 9781788292061 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1023657952 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 180220s2018 enka o 000 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d STF |d OCLCF |d TOH |d YDX |d CEF |d KSU |d N$T |d DEBBG |d TEFOD |d G3B |d S9I |d UAB |d AU@ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d NZAUC |d OCLCQ |d PSYSI |d OCLCQ |d OCLCO |d OCLCL |d DXU |d OCLCQ | ||
019 | |a 1022205200 | ||
020 | |a 9781788297004 |q (electronic bk.) | ||
020 | |a 1788297008 |q (electronic bk.) | ||
020 | |a 1788292065 | ||
020 | |a 9781788292061 | ||
020 | |z 9781788292061 | ||
035 | |a (OCoLC)1023657952 |z (OCoLC)1022205200 | ||
037 | |a CL0500000940 |b Safari Books Online | ||
037 | |a C84C19F5-915E-415F-B1AD-D09A715D0C84 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a Q325.5 | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Fandango, Armando, |e author. | |
245 | 1 | 0 | |a Mastering TensorFlow 1.x : |b advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / |c Armando Fandango. |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2018. | |
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed September 12, 2018) | |
505 | 0 | |a Cover -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: TensorFlow 101 -- What is TensorFlow? -- TensorFlow core -- Code warm-up -- Hello TensorFlow -- Tensors -- Constants -- Operations -- Placeholders -- Creating tensors from Python objects -- Variables -- Tensors generated from library functions -- Populating tensor elements with the same values -- Populating tensor elements with sequences -- Populating tensor elements with a random distribution -- Getting Variables with tf.get_variable() -- Data flow graph or computation graph -- Order of execution and lazy loading -- Executing graphs across compute devices -- CPU and GPGPU -- Placing graph nodes on specific compute devices -- Simple placement -- Dynamic placement -- Soft placement -- GPU memory handling -- Multiple graphs -- TensorBoard -- A TensorBoard minimal example -- TensorBoard details -- Summary -- Chapter 2: High-Level Libraries for TensorFlow -- TF Estimator -- previously TF Learn -- TF Slim -- TFLearn -- Creating the TFLearn Layers -- TFLearn core layers -- TFLearn convolutional layers -- TFLearn recurrent layers -- TFLearn normalization layers -- TFLearn embedding layers -- TFLearn merge layers -- TFLearn estimator layers -- Creating the TFLearn Model -- Types of TFLearn models -- Training the TFLearn Model -- Using the TFLearn Model -- PrettyTensor -- Sonnet -- Summary -- Chapter 3: Keras 101 -- Installing Keras -- Neural Network Models in Keras -- Workflow for building models in Keras -- Creating the Keras model -- Sequential API for creating the Keras model -- Functional API for creating the Keras model -- Keras Layers -- Keras core layers -- Keras convolutional layers -- Keras pooling layers -- Keras locally-connected layers -- Keras recurrent layers -- Keras embedding layers -- Keras merge layers. | |
505 | 8 | |a Keras advanced activation layers -- Keras normalization layers -- Keras noise layers -- Adding Layers to the Keras Model -- Sequential API to add layers to the Keras model -- Functional API to add layers to the Keras Model -- Compiling the Keras model -- Training the Keras model -- Predicting with the Keras model -- Additional modules in Keras -- Keras sequential model example for MNIST dataset -- Summary -- Chapter 4: Classical Machine Learning with TensorFlow -- Simple linear regression -- Data preparation -- Building a simple regression model -- Defining the inputs, parameters, and other variables -- Defining the model -- Defining the loss function -- Defining the optimizer function -- Training the model -- Using the trained model to predict -- Multi-regression -- Regularized regression -- Lasso regularization -- Ridge regularization -- ElasticNet regularization -- Classification using logistic regression -- Logistic regression for binary classification -- Logistic regression for multiclass classification -- Binary classification -- Multiclass classification -- Summary -- Chapter 5: Neural Networks and MLP with TensorFlow and Keras -- The perceptron -- MultiLayer Perceptron -- MLP for image classification -- TensorFlow-based MLP for MNIST classification -- Keras-based MLP for MNIST classification -- TFLearn-based MLP for MNIST classification -- Summary of MLP with TensorFlow, Keras, and TFLearn -- MLP for time series regression -- Summary -- Chapter 6: RNN with TensorFlow and Keras -- Simple Recurrent Neural Network -- RNN variants -- LSTM network -- GRU network -- TensorFlow for RNN -- TensorFlow RNN Cell Classes -- TensorFlow RNN Model Construction Classes -- TensorFlow RNN Cell Wrapper Classes -- Keras for RNN -- Application areas of RNNs -- RNN in Keras for MNIST data -- Summary -- Chapter 7: RNN for Time Series Data with TensorFlow and Keras. | |
505 | 8 | |a Airline Passengers dataset -- Loading the airpass dataset -- Visualizing the airpass dataset -- Preprocessing the dataset for RNN models with TensorFlow -- Simple RNN in TensorFlow -- LSTM in TensorFlow -- GRU in TensorFlow -- Preprocessing the dataset for RNN models with Keras -- Simple RNN with Keras -- LSTM with Keras -- GRU with Keras -- Summary -- Chapter 8: RNN for Text Data with TensorFlow and Keras -- Word vector representations -- Preparing the data for word2vec models -- Loading and preparing the PTB dataset -- Loading and preparing the text8 dataset -- Preparing the small validation set -- skip-gram model with TensorFlow -- Visualize the word embeddings using t-SNE -- skip-gram model with Keras -- Text generation with RNN models in TensorFlow and Keras -- Text generation LSTM in TensorFlow -- Text generation LSTM in Keras -- Summary -- Chapter 9: CNN with TensorFlow and Keras -- Understanding convolution -- Understanding pooling -- CNN architecture pattern -- LeNet -- LeNet for MNIST data -- LeNet CNN for MNIST with TensorFlow -- LeNet CNN for MNIST with Keras -- LeNet for CIFAR10 Data -- ConvNets for CIFAR10 with TensorFlow -- ConvNets for CIFAR10 with Keras -- Summary -- Chapter 10: Autoencoder with TensorFlow and Keras -- Autoencoder types -- Stacked autoencoder in TensorFlow -- Stacked autoencoder in Keras -- Denoising autoencoder in TensorFlow -- Denoising autoencoder in Keras -- Variational autoencoder in TensorFlow -- Variational autoencoder in Keras -- Summary -- Chapter 11: TensorFlow Models in Production with TF Serving -- Saving and Restoring models in TensorFlow -- Saving and restoring all graph variables with the saver class -- Saving and restoring selected variables with the saver class -- Saving and restoring Keras models -- TensorFlow Serving -- Installing TF Serving -- Saving models for TF Serving. | |
505 | 8 | |a Serving models with TF Serving -- TF Serving in the Docker containers -- Installing Docker -- Building a Docker image for TF serving -- Serving the model in the Docker container -- TensorFlow Serving on Kubernetes -- Installing Kubernetes -- Uploading the Docker image to the dockerhub -- Deploying in Kubernetes -- Summary -- Chapter 12: Transfer Learning and Pre-Trained Models -- ImageNet dataset -- Retraining or fine-tuning models -- COCO animals dataset and pre-processing images -- VGG16 in TensorFlow -- Image classification using pre-trained VGG16 in TensorFlow -- Image preprocessing in TensorFlow for pre-trained VGG16 -- Image classification using retrained VGG16 in TensorFlow -- VGG16 in Keras -- Image classification using pre-trained VGG16 in Keras -- Image classification using retrained VGG16 in Keras -- Inception v3 in TensorFlow -- Image classification using Inception v3 in TensorFlow -- Image classification using retrained Inception v3 in TensorFlow -- Summary -- Chapter 13: Deep Reinforcement Learning -- OpenAI Gym 101 -- Applying simple policies to a cartpole game -- Reinforcement learning 101 -- Q function (learning to optimize when the model is not available) -- Exploration and exploitation in the RL algorithms -- V function (learning to optimize when the model is available) -- Reinforcement learning techniques -- Naive Neural Network policy for Reinforcement Learning -- Implementing Q-Learning -- Initializing and discretizing for Q-Learning -- Q-Learning with Q-Table -- Q-Learning with Q-Network or Deep Q Network (DQN) -- Summary -- Chapter 14: Generative Adversarial Networks -- Generative Adversarial Networks 101 -- Best practices for building and training GANs -- Simple GAN with TensorFlow -- Simple GAN with Keras -- Deep Convolutional GAN with TensorFlow and Keras -- Summary. | |
505 | 8 | |a Chapter 15: Distributed Models with TensorFlow Clusters -- Strategies for distributed execution -- TensorFlow clusters -- Defining cluster specification -- Create the server instances -- Define the parameter and operations across servers and devices -- Define and train the graph for asynchronous updates -- Define and train the graph for synchronous updates -- Summary -- Chapter 16: TensorFlow Models on Mobile and Embedded Platforms -- TensorFlow on mobile platforms -- TF Mobile in Android apps -- TF Mobile demo on Android -- TF Mobile in iOS apps -- TF Mobile demo on iOS -- TensorFlow Lite -- TF Lite Demo on Android -- TF Lite demo on iOS -- Summary -- Chapter 17: TensorFlow and Keras in R -- Installing TensorFlow and Keras packages in R -- TF core API in R -- TF estimator API in R -- Keras API in R -- TensorBoard in R -- The tfruns package in R -- Summary -- Chapter 18: Debugging TensorFlow Models -- Fetching tensor values with tf.Session.run() -- Printing tensor values with tf.Print() -- Asserting on conditions with tf.Assert() -- Debugging with the TensorFlow debugger (tfdbg) -- Summary -- Appendix: Tensor Processing Units -- Other Books You May Enjoy -- Index. | |
520 | |a Build, scale, and deploy deep neural network models using the star libraries in Python About This Book Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras Build, deploy, and scale end-to-end deep neural network models in a production environment Learn to deploy TensorFlow on mobile, and distributed TensorFlow on GPU, Clusters, and Kubernetes Who This Book Is For This book is for data scientists, machine learning engineers, artificial intelligence engineers, and for all TensorFlow users who wish to upgrade their TensorFlow knowledge and work on various machine learning and deep learning problems. If you are looking for an easy-to-follow guide that underlines the intricacies and complex use cases of machine learning, you will find this book extremely useful. Some basic understanding of TensorFlow is required to get the most out of the book. What You Will Learn Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow Scale and deploy production models with distributed and high-performance computing on GPU and clusters Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters In Detail TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow ... | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 2 | |a Artificial Intelligence |0 https://id.nlm.nih.gov/mesh/D001185 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Intelligence artificielle. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a Artificial intelligence. |2 bicssc | |
650 | 7 | |a Neural networks & fuzzy systems. |2 bicssc | |
650 | 7 | |a Data mining. |2 bicssc | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1699208 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 1699208 | ||
938 | |a YBP Library Services |b YANK |n 15132129 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1023657952 |
---|---|
_version_ | 1816882413763035136 |
adam_text | |
any_adam_object | |
author | Fandango, Armando |
author_facet | Fandango, Armando |
author_role | aut |
author_sort | Fandango, Armando |
author_variant | a f af |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: TensorFlow 101 -- What is TensorFlow? -- TensorFlow core -- Code warm-up -- Hello TensorFlow -- Tensors -- Constants -- Operations -- Placeholders -- Creating tensors from Python objects -- Variables -- Tensors generated from library functions -- Populating tensor elements with the same values -- Populating tensor elements with sequences -- Populating tensor elements with a random distribution -- Getting Variables with tf.get_variable() -- Data flow graph or computation graph -- Order of execution and lazy loading -- Executing graphs across compute devices -- CPU and GPGPU -- Placing graph nodes on specific compute devices -- Simple placement -- Dynamic placement -- Soft placement -- GPU memory handling -- Multiple graphs -- TensorBoard -- A TensorBoard minimal example -- TensorBoard details -- Summary -- Chapter 2: High-Level Libraries for TensorFlow -- TF Estimator -- previously TF Learn -- TF Slim -- TFLearn -- Creating the TFLearn Layers -- TFLearn core layers -- TFLearn convolutional layers -- TFLearn recurrent layers -- TFLearn normalization layers -- TFLearn embedding layers -- TFLearn merge layers -- TFLearn estimator layers -- Creating the TFLearn Model -- Types of TFLearn models -- Training the TFLearn Model -- Using the TFLearn Model -- PrettyTensor -- Sonnet -- Summary -- Chapter 3: Keras 101 -- Installing Keras -- Neural Network Models in Keras -- Workflow for building models in Keras -- Creating the Keras model -- Sequential API for creating the Keras model -- Functional API for creating the Keras model -- Keras Layers -- Keras core layers -- Keras convolutional layers -- Keras pooling layers -- Keras locally-connected layers -- Keras recurrent layers -- Keras embedding layers -- Keras merge layers. Keras advanced activation layers -- Keras normalization layers -- Keras noise layers -- Adding Layers to the Keras Model -- Sequential API to add layers to the Keras model -- Functional API to add layers to the Keras Model -- Compiling the Keras model -- Training the Keras model -- Predicting with the Keras model -- Additional modules in Keras -- Keras sequential model example for MNIST dataset -- Summary -- Chapter 4: Classical Machine Learning with TensorFlow -- Simple linear regression -- Data preparation -- Building a simple regression model -- Defining the inputs, parameters, and other variables -- Defining the model -- Defining the loss function -- Defining the optimizer function -- Training the model -- Using the trained model to predict -- Multi-regression -- Regularized regression -- Lasso regularization -- Ridge regularization -- ElasticNet regularization -- Classification using logistic regression -- Logistic regression for binary classification -- Logistic regression for multiclass classification -- Binary classification -- Multiclass classification -- Summary -- Chapter 5: Neural Networks and MLP with TensorFlow and Keras -- The perceptron -- MultiLayer Perceptron -- MLP for image classification -- TensorFlow-based MLP for MNIST classification -- Keras-based MLP for MNIST classification -- TFLearn-based MLP for MNIST classification -- Summary of MLP with TensorFlow, Keras, and TFLearn -- MLP for time series regression -- Summary -- Chapter 6: RNN with TensorFlow and Keras -- Simple Recurrent Neural Network -- RNN variants -- LSTM network -- GRU network -- TensorFlow for RNN -- TensorFlow RNN Cell Classes -- TensorFlow RNN Model Construction Classes -- TensorFlow RNN Cell Wrapper Classes -- Keras for RNN -- Application areas of RNNs -- RNN in Keras for MNIST data -- Summary -- Chapter 7: RNN for Time Series Data with TensorFlow and Keras. Airline Passengers dataset -- Loading the airpass dataset -- Visualizing the airpass dataset -- Preprocessing the dataset for RNN models with TensorFlow -- Simple RNN in TensorFlow -- LSTM in TensorFlow -- GRU in TensorFlow -- Preprocessing the dataset for RNN models with Keras -- Simple RNN with Keras -- LSTM with Keras -- GRU with Keras -- Summary -- Chapter 8: RNN for Text Data with TensorFlow and Keras -- Word vector representations -- Preparing the data for word2vec models -- Loading and preparing the PTB dataset -- Loading and preparing the text8 dataset -- Preparing the small validation set -- skip-gram model with TensorFlow -- Visualize the word embeddings using t-SNE -- skip-gram model with Keras -- Text generation with RNN models in TensorFlow and Keras -- Text generation LSTM in TensorFlow -- Text generation LSTM in Keras -- Summary -- Chapter 9: CNN with TensorFlow and Keras -- Understanding convolution -- Understanding pooling -- CNN architecture pattern -- LeNet -- LeNet for MNIST data -- LeNet CNN for MNIST with TensorFlow -- LeNet CNN for MNIST with Keras -- LeNet for CIFAR10 Data -- ConvNets for CIFAR10 with TensorFlow -- ConvNets for CIFAR10 with Keras -- Summary -- Chapter 10: Autoencoder with TensorFlow and Keras -- Autoencoder types -- Stacked autoencoder in TensorFlow -- Stacked autoencoder in Keras -- Denoising autoencoder in TensorFlow -- Denoising autoencoder in Keras -- Variational autoencoder in TensorFlow -- Variational autoencoder in Keras -- Summary -- Chapter 11: TensorFlow Models in Production with TF Serving -- Saving and Restoring models in TensorFlow -- Saving and restoring all graph variables with the saver class -- Saving and restoring selected variables with the saver class -- Saving and restoring Keras models -- TensorFlow Serving -- Installing TF Serving -- Saving models for TF Serving. Serving models with TF Serving -- TF Serving in the Docker containers -- Installing Docker -- Building a Docker image for TF serving -- Serving the model in the Docker container -- TensorFlow Serving on Kubernetes -- Installing Kubernetes -- Uploading the Docker image to the dockerhub -- Deploying in Kubernetes -- Summary -- Chapter 12: Transfer Learning and Pre-Trained Models -- ImageNet dataset -- Retraining or fine-tuning models -- COCO animals dataset and pre-processing images -- VGG16 in TensorFlow -- Image classification using pre-trained VGG16 in TensorFlow -- Image preprocessing in TensorFlow for pre-trained VGG16 -- Image classification using retrained VGG16 in TensorFlow -- VGG16 in Keras -- Image classification using pre-trained VGG16 in Keras -- Image classification using retrained VGG16 in Keras -- Inception v3 in TensorFlow -- Image classification using Inception v3 in TensorFlow -- Image classification using retrained Inception v3 in TensorFlow -- Summary -- Chapter 13: Deep Reinforcement Learning -- OpenAI Gym 101 -- Applying simple policies to a cartpole game -- Reinforcement learning 101 -- Q function (learning to optimize when the model is not available) -- Exploration and exploitation in the RL algorithms -- V function (learning to optimize when the model is available) -- Reinforcement learning techniques -- Naive Neural Network policy for Reinforcement Learning -- Implementing Q-Learning -- Initializing and discretizing for Q-Learning -- Q-Learning with Q-Table -- Q-Learning with Q-Network or Deep Q Network (DQN) -- Summary -- Chapter 14: Generative Adversarial Networks -- Generative Adversarial Networks 101 -- Best practices for building and training GANs -- Simple GAN with TensorFlow -- Simple GAN with Keras -- Deep Convolutional GAN with TensorFlow and Keras -- Summary. Chapter 15: Distributed Models with TensorFlow Clusters -- Strategies for distributed execution -- TensorFlow clusters -- Defining cluster specification -- Create the server instances -- Define the parameter and operations across servers and devices -- Define and train the graph for asynchronous updates -- Define and train the graph for synchronous updates -- Summary -- Chapter 16: TensorFlow Models on Mobile and Embedded Platforms -- TensorFlow on mobile platforms -- TF Mobile in Android apps -- TF Mobile demo on Android -- TF Mobile in iOS apps -- TF Mobile demo on iOS -- TensorFlow Lite -- TF Lite Demo on Android -- TF Lite demo on iOS -- Summary -- Chapter 17: TensorFlow and Keras in R -- Installing TensorFlow and Keras packages in R -- TF core API in R -- TF estimator API in R -- Keras API in R -- TensorBoard in R -- The tfruns package in R -- Summary -- Chapter 18: Debugging TensorFlow Models -- Fetching tensor values with tf.Session.run() -- Printing tensor values with tf.Print() -- Asserting on conditions with tf.Assert() -- Debugging with the TensorFlow debugger (tfdbg) -- Summary -- Appendix: Tensor Processing Units -- Other Books You May Enjoy -- Index. |
ctrlnum | (OCoLC)1023657952 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>13625cam a2200649 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1023657952</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">180220s2018 enka o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCF</subfield><subfield code="d">TOH</subfield><subfield code="d">YDX</subfield><subfield code="d">CEF</subfield><subfield code="d">KSU</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBBG</subfield><subfield code="d">TEFOD</subfield><subfield code="d">G3B</subfield><subfield code="d">S9I</subfield><subfield code="d">UAB</subfield><subfield code="d">AU@</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NZAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PSYSI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">DXU</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1022205200</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788297004</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1788297008</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1788292065</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788292061</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781788292061</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1023657952</subfield><subfield code="z">(OCoLC)1022205200</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000940</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">C84C19F5-915E-415F-B1AD-D09A715D0C84</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fandango, Armando,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mastering TensorFlow 1.x :</subfield><subfield code="b">advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras /</subfield><subfield code="c">Armando Fandango.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed September 12, 2018)</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: TensorFlow 101 -- What is TensorFlow? -- TensorFlow core -- Code warm-up -- Hello TensorFlow -- Tensors -- Constants -- Operations -- Placeholders -- Creating tensors from Python objects -- Variables -- Tensors generated from library functions -- Populating tensor elements with the same values -- Populating tensor elements with sequences -- Populating tensor elements with a random distribution -- Getting Variables with tf.get_variable() -- Data flow graph or computation graph -- Order of execution and lazy loading -- Executing graphs across compute devices -- CPU and GPGPU -- Placing graph nodes on specific compute devices -- Simple placement -- Dynamic placement -- Soft placement -- GPU memory handling -- Multiple graphs -- TensorBoard -- A TensorBoard minimal example -- TensorBoard details -- Summary -- Chapter 2: High-Level Libraries for TensorFlow -- TF Estimator -- previously TF Learn -- TF Slim -- TFLearn -- Creating the TFLearn Layers -- TFLearn core layers -- TFLearn convolutional layers -- TFLearn recurrent layers -- TFLearn normalization layers -- TFLearn embedding layers -- TFLearn merge layers -- TFLearn estimator layers -- Creating the TFLearn Model -- Types of TFLearn models -- Training the TFLearn Model -- Using the TFLearn Model -- PrettyTensor -- Sonnet -- Summary -- Chapter 3: Keras 101 -- Installing Keras -- Neural Network Models in Keras -- Workflow for building models in Keras -- Creating the Keras model -- Sequential API for creating the Keras model -- Functional API for creating the Keras model -- Keras Layers -- Keras core layers -- Keras convolutional layers -- Keras pooling layers -- Keras locally-connected layers -- Keras recurrent layers -- Keras embedding layers -- Keras merge layers.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Keras advanced activation layers -- Keras normalization layers -- Keras noise layers -- Adding Layers to the Keras Model -- Sequential API to add layers to the Keras model -- Functional API to add layers to the Keras Model -- Compiling the Keras model -- Training the Keras model -- Predicting with the Keras model -- Additional modules in Keras -- Keras sequential model example for MNIST dataset -- Summary -- Chapter 4: Classical Machine Learning with TensorFlow -- Simple linear regression -- Data preparation -- Building a simple regression model -- Defining the inputs, parameters, and other variables -- Defining the model -- Defining the loss function -- Defining the optimizer function -- Training the model -- Using the trained model to predict -- Multi-regression -- Regularized regression -- Lasso regularization -- Ridge regularization -- ElasticNet regularization -- Classification using logistic regression -- Logistic regression for binary classification -- Logistic regression for multiclass classification -- Binary classification -- Multiclass classification -- Summary -- Chapter 5: Neural Networks and MLP with TensorFlow and Keras -- The perceptron -- MultiLayer Perceptron -- MLP for image classification -- TensorFlow-based MLP for MNIST classification -- Keras-based MLP for MNIST classification -- TFLearn-based MLP for MNIST classification -- Summary of MLP with TensorFlow, Keras, and TFLearn -- MLP for time series regression -- Summary -- Chapter 6: RNN with TensorFlow and Keras -- Simple Recurrent Neural Network -- RNN variants -- LSTM network -- GRU network -- TensorFlow for RNN -- TensorFlow RNN Cell Classes -- TensorFlow RNN Model Construction Classes -- TensorFlow RNN Cell Wrapper Classes -- Keras for RNN -- Application areas of RNNs -- RNN in Keras for MNIST data -- Summary -- Chapter 7: RNN for Time Series Data with TensorFlow and Keras.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Airline Passengers dataset -- Loading the airpass dataset -- Visualizing the airpass dataset -- Preprocessing the dataset for RNN models with TensorFlow -- Simple RNN in TensorFlow -- LSTM in TensorFlow -- GRU in TensorFlow -- Preprocessing the dataset for RNN models with Keras -- Simple RNN with Keras -- LSTM with Keras -- GRU with Keras -- Summary -- Chapter 8: RNN for Text Data with TensorFlow and Keras -- Word vector representations -- Preparing the data for word2vec models -- Loading and preparing the PTB dataset -- Loading and preparing the text8 dataset -- Preparing the small validation set -- skip-gram model with TensorFlow -- Visualize the word embeddings using t-SNE -- skip-gram model with Keras -- Text generation with RNN models in TensorFlow and Keras -- Text generation LSTM in TensorFlow -- Text generation LSTM in Keras -- Summary -- Chapter 9: CNN with TensorFlow and Keras -- Understanding convolution -- Understanding pooling -- CNN architecture pattern -- LeNet -- LeNet for MNIST data -- LeNet CNN for MNIST with TensorFlow -- LeNet CNN for MNIST with Keras -- LeNet for CIFAR10 Data -- ConvNets for CIFAR10 with TensorFlow -- ConvNets for CIFAR10 with Keras -- Summary -- Chapter 10: Autoencoder with TensorFlow and Keras -- Autoencoder types -- Stacked autoencoder in TensorFlow -- Stacked autoencoder in Keras -- Denoising autoencoder in TensorFlow -- Denoising autoencoder in Keras -- Variational autoencoder in TensorFlow -- Variational autoencoder in Keras -- Summary -- Chapter 11: TensorFlow Models in Production with TF Serving -- Saving and Restoring models in TensorFlow -- Saving and restoring all graph variables with the saver class -- Saving and restoring selected variables with the saver class -- Saving and restoring Keras models -- TensorFlow Serving -- Installing TF Serving -- Saving models for TF Serving.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Serving models with TF Serving -- TF Serving in the Docker containers -- Installing Docker -- Building a Docker image for TF serving -- Serving the model in the Docker container -- TensorFlow Serving on Kubernetes -- Installing Kubernetes -- Uploading the Docker image to the dockerhub -- Deploying in Kubernetes -- Summary -- Chapter 12: Transfer Learning and Pre-Trained Models -- ImageNet dataset -- Retraining or fine-tuning models -- COCO animals dataset and pre-processing images -- VGG16 in TensorFlow -- Image classification using pre-trained VGG16 in TensorFlow -- Image preprocessing in TensorFlow for pre-trained VGG16 -- Image classification using retrained VGG16 in TensorFlow -- VGG16 in Keras -- Image classification using pre-trained VGG16 in Keras -- Image classification using retrained VGG16 in Keras -- Inception v3 in TensorFlow -- Image classification using Inception v3 in TensorFlow -- Image classification using retrained Inception v3 in TensorFlow -- Summary -- Chapter 13: Deep Reinforcement Learning -- OpenAI Gym 101 -- Applying simple policies to a cartpole game -- Reinforcement learning 101 -- Q function (learning to optimize when the model is not available) -- Exploration and exploitation in the RL algorithms -- V function (learning to optimize when the model is available) -- Reinforcement learning techniques -- Naive Neural Network policy for Reinforcement Learning -- Implementing Q-Learning -- Initializing and discretizing for Q-Learning -- Q-Learning with Q-Table -- Q-Learning with Q-Network or Deep Q Network (DQN) -- Summary -- Chapter 14: Generative Adversarial Networks -- Generative Adversarial Networks 101 -- Best practices for building and training GANs -- Simple GAN with TensorFlow -- Simple GAN with Keras -- Deep Convolutional GAN with TensorFlow and Keras -- Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 15: Distributed Models with TensorFlow Clusters -- Strategies for distributed execution -- TensorFlow clusters -- Defining cluster specification -- Create the server instances -- Define the parameter and operations across servers and devices -- Define and train the graph for asynchronous updates -- Define and train the graph for synchronous updates -- Summary -- Chapter 16: TensorFlow Models on Mobile and Embedded Platforms -- TensorFlow on mobile platforms -- TF Mobile in Android apps -- TF Mobile demo on Android -- TF Mobile in iOS apps -- TF Mobile demo on iOS -- TensorFlow Lite -- TF Lite Demo on Android -- TF Lite demo on iOS -- Summary -- Chapter 17: TensorFlow and Keras in R -- Installing TensorFlow and Keras packages in R -- TF core API in R -- TF estimator API in R -- Keras API in R -- TensorBoard in R -- The tfruns package in R -- Summary -- Chapter 18: Debugging TensorFlow Models -- Fetching tensor values with tf.Session.run() -- Printing tensor values with tf.Print() -- Asserting on conditions with tf.Assert() -- Debugging with the TensorFlow debugger (tfdbg) -- Summary -- Appendix: Tensor Processing Units -- Other Books You May Enjoy -- Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Build, scale, and deploy deep neural network models using the star libraries in Python About This Book Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras Build, deploy, and scale end-to-end deep neural network models in a production environment Learn to deploy TensorFlow on mobile, and distributed TensorFlow on GPU, Clusters, and Kubernetes Who This Book Is For This book is for data scientists, machine learning engineers, artificial intelligence engineers, and for all TensorFlow users who wish to upgrade their TensorFlow knowledge and work on various machine learning and deep learning problems. If you are looking for an easy-to-follow guide that underlines the intricacies and complex use cases of machine learning, you will find this book extremely useful. Some basic understanding of TensorFlow is required to get the most out of the book. What You Will Learn Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow Scale and deploy production models with distributed and high-performance computing on GPU and clusters Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters In Detail TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow ...</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D001185</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks & fuzzy systems.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1699208</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1699208</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15132129</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1023657952 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:28:13Z |
institution | BVB |
isbn | 9781788297004 1788297008 1788292065 9781788292061 |
language | English |
oclc_num | 1023657952 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Fandango, Armando, author. Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / Armando Fandango. Birmingham, UK : Packt Publishing, 2018. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Online resource; title from PDF title page (EBSCO, viewed September 12, 2018) Cover -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: TensorFlow 101 -- What is TensorFlow? -- TensorFlow core -- Code warm-up -- Hello TensorFlow -- Tensors -- Constants -- Operations -- Placeholders -- Creating tensors from Python objects -- Variables -- Tensors generated from library functions -- Populating tensor elements with the same values -- Populating tensor elements with sequences -- Populating tensor elements with a random distribution -- Getting Variables with tf.get_variable() -- Data flow graph or computation graph -- Order of execution and lazy loading -- Executing graphs across compute devices -- CPU and GPGPU -- Placing graph nodes on specific compute devices -- Simple placement -- Dynamic placement -- Soft placement -- GPU memory handling -- Multiple graphs -- TensorBoard -- A TensorBoard minimal example -- TensorBoard details -- Summary -- Chapter 2: High-Level Libraries for TensorFlow -- TF Estimator -- previously TF Learn -- TF Slim -- TFLearn -- Creating the TFLearn Layers -- TFLearn core layers -- TFLearn convolutional layers -- TFLearn recurrent layers -- TFLearn normalization layers -- TFLearn embedding layers -- TFLearn merge layers -- TFLearn estimator layers -- Creating the TFLearn Model -- Types of TFLearn models -- Training the TFLearn Model -- Using the TFLearn Model -- PrettyTensor -- Sonnet -- Summary -- Chapter 3: Keras 101 -- Installing Keras -- Neural Network Models in Keras -- Workflow for building models in Keras -- Creating the Keras model -- Sequential API for creating the Keras model -- Functional API for creating the Keras model -- Keras Layers -- Keras core layers -- Keras convolutional layers -- Keras pooling layers -- Keras locally-connected layers -- Keras recurrent layers -- Keras embedding layers -- Keras merge layers. Keras advanced activation layers -- Keras normalization layers -- Keras noise layers -- Adding Layers to the Keras Model -- Sequential API to add layers to the Keras model -- Functional API to add layers to the Keras Model -- Compiling the Keras model -- Training the Keras model -- Predicting with the Keras model -- Additional modules in Keras -- Keras sequential model example for MNIST dataset -- Summary -- Chapter 4: Classical Machine Learning with TensorFlow -- Simple linear regression -- Data preparation -- Building a simple regression model -- Defining the inputs, parameters, and other variables -- Defining the model -- Defining the loss function -- Defining the optimizer function -- Training the model -- Using the trained model to predict -- Multi-regression -- Regularized regression -- Lasso regularization -- Ridge regularization -- ElasticNet regularization -- Classification using logistic regression -- Logistic regression for binary classification -- Logistic regression for multiclass classification -- Binary classification -- Multiclass classification -- Summary -- Chapter 5: Neural Networks and MLP with TensorFlow and Keras -- The perceptron -- MultiLayer Perceptron -- MLP for image classification -- TensorFlow-based MLP for MNIST classification -- Keras-based MLP for MNIST classification -- TFLearn-based MLP for MNIST classification -- Summary of MLP with TensorFlow, Keras, and TFLearn -- MLP for time series regression -- Summary -- Chapter 6: RNN with TensorFlow and Keras -- Simple Recurrent Neural Network -- RNN variants -- LSTM network -- GRU network -- TensorFlow for RNN -- TensorFlow RNN Cell Classes -- TensorFlow RNN Model Construction Classes -- TensorFlow RNN Cell Wrapper Classes -- Keras for RNN -- Application areas of RNNs -- RNN in Keras for MNIST data -- Summary -- Chapter 7: RNN for Time Series Data with TensorFlow and Keras. Airline Passengers dataset -- Loading the airpass dataset -- Visualizing the airpass dataset -- Preprocessing the dataset for RNN models with TensorFlow -- Simple RNN in TensorFlow -- LSTM in TensorFlow -- GRU in TensorFlow -- Preprocessing the dataset for RNN models with Keras -- Simple RNN with Keras -- LSTM with Keras -- GRU with Keras -- Summary -- Chapter 8: RNN for Text Data with TensorFlow and Keras -- Word vector representations -- Preparing the data for word2vec models -- Loading and preparing the PTB dataset -- Loading and preparing the text8 dataset -- Preparing the small validation set -- skip-gram model with TensorFlow -- Visualize the word embeddings using t-SNE -- skip-gram model with Keras -- Text generation with RNN models in TensorFlow and Keras -- Text generation LSTM in TensorFlow -- Text generation LSTM in Keras -- Summary -- Chapter 9: CNN with TensorFlow and Keras -- Understanding convolution -- Understanding pooling -- CNN architecture pattern -- LeNet -- LeNet for MNIST data -- LeNet CNN for MNIST with TensorFlow -- LeNet CNN for MNIST with Keras -- LeNet for CIFAR10 Data -- ConvNets for CIFAR10 with TensorFlow -- ConvNets for CIFAR10 with Keras -- Summary -- Chapter 10: Autoencoder with TensorFlow and Keras -- Autoencoder types -- Stacked autoencoder in TensorFlow -- Stacked autoencoder in Keras -- Denoising autoencoder in TensorFlow -- Denoising autoencoder in Keras -- Variational autoencoder in TensorFlow -- Variational autoencoder in Keras -- Summary -- Chapter 11: TensorFlow Models in Production with TF Serving -- Saving and Restoring models in TensorFlow -- Saving and restoring all graph variables with the saver class -- Saving and restoring selected variables with the saver class -- Saving and restoring Keras models -- TensorFlow Serving -- Installing TF Serving -- Saving models for TF Serving. Serving models with TF Serving -- TF Serving in the Docker containers -- Installing Docker -- Building a Docker image for TF serving -- Serving the model in the Docker container -- TensorFlow Serving on Kubernetes -- Installing Kubernetes -- Uploading the Docker image to the dockerhub -- Deploying in Kubernetes -- Summary -- Chapter 12: Transfer Learning and Pre-Trained Models -- ImageNet dataset -- Retraining or fine-tuning models -- COCO animals dataset and pre-processing images -- VGG16 in TensorFlow -- Image classification using pre-trained VGG16 in TensorFlow -- Image preprocessing in TensorFlow for pre-trained VGG16 -- Image classification using retrained VGG16 in TensorFlow -- VGG16 in Keras -- Image classification using pre-trained VGG16 in Keras -- Image classification using retrained VGG16 in Keras -- Inception v3 in TensorFlow -- Image classification using Inception v3 in TensorFlow -- Image classification using retrained Inception v3 in TensorFlow -- Summary -- Chapter 13: Deep Reinforcement Learning -- OpenAI Gym 101 -- Applying simple policies to a cartpole game -- Reinforcement learning 101 -- Q function (learning to optimize when the model is not available) -- Exploration and exploitation in the RL algorithms -- V function (learning to optimize when the model is available) -- Reinforcement learning techniques -- Naive Neural Network policy for Reinforcement Learning -- Implementing Q-Learning -- Initializing and discretizing for Q-Learning -- Q-Learning with Q-Table -- Q-Learning with Q-Network or Deep Q Network (DQN) -- Summary -- Chapter 14: Generative Adversarial Networks -- Generative Adversarial Networks 101 -- Best practices for building and training GANs -- Simple GAN with TensorFlow -- Simple GAN with Keras -- Deep Convolutional GAN with TensorFlow and Keras -- Summary. Chapter 15: Distributed Models with TensorFlow Clusters -- Strategies for distributed execution -- TensorFlow clusters -- Defining cluster specification -- Create the server instances -- Define the parameter and operations across servers and devices -- Define and train the graph for asynchronous updates -- Define and train the graph for synchronous updates -- Summary -- Chapter 16: TensorFlow Models on Mobile and Embedded Platforms -- TensorFlow on mobile platforms -- TF Mobile in Android apps -- TF Mobile demo on Android -- TF Mobile in iOS apps -- TF Mobile demo on iOS -- TensorFlow Lite -- TF Lite Demo on Android -- TF Lite demo on iOS -- Summary -- Chapter 17: TensorFlow and Keras in R -- Installing TensorFlow and Keras packages in R -- TF core API in R -- TF estimator API in R -- Keras API in R -- TensorBoard in R -- The tfruns package in R -- Summary -- Chapter 18: Debugging TensorFlow Models -- Fetching tensor values with tf.Session.run() -- Printing tensor values with tf.Print() -- Asserting on conditions with tf.Assert() -- Debugging with the TensorFlow debugger (tfdbg) -- Summary -- Appendix: Tensor Processing Units -- Other Books You May Enjoy -- Index. Build, scale, and deploy deep neural network models using the star libraries in Python About This Book Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras Build, deploy, and scale end-to-end deep neural network models in a production environment Learn to deploy TensorFlow on mobile, and distributed TensorFlow on GPU, Clusters, and Kubernetes Who This Book Is For This book is for data scientists, machine learning engineers, artificial intelligence engineers, and for all TensorFlow users who wish to upgrade their TensorFlow knowledge and work on various machine learning and deep learning problems. If you are looking for an easy-to-follow guide that underlines the intricacies and complex use cases of machine learning, you will find this book extremely useful. Some basic understanding of TensorFlow is required to get the most out of the book. What You Will Learn Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow Scale and deploy production models with distributed and high-performance computing on GPU and clusters Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters In Detail TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow ... Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. artificial intelligence. aat Artificial intelligence. bicssc Neural networks & fuzzy systems. bicssc Data mining. bicssc COMPUTERS General. bisacsh Artificial intelligence fast Machine learning fast FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1699208 Volltext |
spellingShingle | Fandango, Armando Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / Cover -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: TensorFlow 101 -- What is TensorFlow? -- TensorFlow core -- Code warm-up -- Hello TensorFlow -- Tensors -- Constants -- Operations -- Placeholders -- Creating tensors from Python objects -- Variables -- Tensors generated from library functions -- Populating tensor elements with the same values -- Populating tensor elements with sequences -- Populating tensor elements with a random distribution -- Getting Variables with tf.get_variable() -- Data flow graph or computation graph -- Order of execution and lazy loading -- Executing graphs across compute devices -- CPU and GPGPU -- Placing graph nodes on specific compute devices -- Simple placement -- Dynamic placement -- Soft placement -- GPU memory handling -- Multiple graphs -- TensorBoard -- A TensorBoard minimal example -- TensorBoard details -- Summary -- Chapter 2: High-Level Libraries for TensorFlow -- TF Estimator -- previously TF Learn -- TF Slim -- TFLearn -- Creating the TFLearn Layers -- TFLearn core layers -- TFLearn convolutional layers -- TFLearn recurrent layers -- TFLearn normalization layers -- TFLearn embedding layers -- TFLearn merge layers -- TFLearn estimator layers -- Creating the TFLearn Model -- Types of TFLearn models -- Training the TFLearn Model -- Using the TFLearn Model -- PrettyTensor -- Sonnet -- Summary -- Chapter 3: Keras 101 -- Installing Keras -- Neural Network Models in Keras -- Workflow for building models in Keras -- Creating the Keras model -- Sequential API for creating the Keras model -- Functional API for creating the Keras model -- Keras Layers -- Keras core layers -- Keras convolutional layers -- Keras pooling layers -- Keras locally-connected layers -- Keras recurrent layers -- Keras embedding layers -- Keras merge layers. Keras advanced activation layers -- Keras normalization layers -- Keras noise layers -- Adding Layers to the Keras Model -- Sequential API to add layers to the Keras model -- Functional API to add layers to the Keras Model -- Compiling the Keras model -- Training the Keras model -- Predicting with the Keras model -- Additional modules in Keras -- Keras sequential model example for MNIST dataset -- Summary -- Chapter 4: Classical Machine Learning with TensorFlow -- Simple linear regression -- Data preparation -- Building a simple regression model -- Defining the inputs, parameters, and other variables -- Defining the model -- Defining the loss function -- Defining the optimizer function -- Training the model -- Using the trained model to predict -- Multi-regression -- Regularized regression -- Lasso regularization -- Ridge regularization -- ElasticNet regularization -- Classification using logistic regression -- Logistic regression for binary classification -- Logistic regression for multiclass classification -- Binary classification -- Multiclass classification -- Summary -- Chapter 5: Neural Networks and MLP with TensorFlow and Keras -- The perceptron -- MultiLayer Perceptron -- MLP for image classification -- TensorFlow-based MLP for MNIST classification -- Keras-based MLP for MNIST classification -- TFLearn-based MLP for MNIST classification -- Summary of MLP with TensorFlow, Keras, and TFLearn -- MLP for time series regression -- Summary -- Chapter 6: RNN with TensorFlow and Keras -- Simple Recurrent Neural Network -- RNN variants -- LSTM network -- GRU network -- TensorFlow for RNN -- TensorFlow RNN Cell Classes -- TensorFlow RNN Model Construction Classes -- TensorFlow RNN Cell Wrapper Classes -- Keras for RNN -- Application areas of RNNs -- RNN in Keras for MNIST data -- Summary -- Chapter 7: RNN for Time Series Data with TensorFlow and Keras. Airline Passengers dataset -- Loading the airpass dataset -- Visualizing the airpass dataset -- Preprocessing the dataset for RNN models with TensorFlow -- Simple RNN in TensorFlow -- LSTM in TensorFlow -- GRU in TensorFlow -- Preprocessing the dataset for RNN models with Keras -- Simple RNN with Keras -- LSTM with Keras -- GRU with Keras -- Summary -- Chapter 8: RNN for Text Data with TensorFlow and Keras -- Word vector representations -- Preparing the data for word2vec models -- Loading and preparing the PTB dataset -- Loading and preparing the text8 dataset -- Preparing the small validation set -- skip-gram model with TensorFlow -- Visualize the word embeddings using t-SNE -- skip-gram model with Keras -- Text generation with RNN models in TensorFlow and Keras -- Text generation LSTM in TensorFlow -- Text generation LSTM in Keras -- Summary -- Chapter 9: CNN with TensorFlow and Keras -- Understanding convolution -- Understanding pooling -- CNN architecture pattern -- LeNet -- LeNet for MNIST data -- LeNet CNN for MNIST with TensorFlow -- LeNet CNN for MNIST with Keras -- LeNet for CIFAR10 Data -- ConvNets for CIFAR10 with TensorFlow -- ConvNets for CIFAR10 with Keras -- Summary -- Chapter 10: Autoencoder with TensorFlow and Keras -- Autoencoder types -- Stacked autoencoder in TensorFlow -- Stacked autoencoder in Keras -- Denoising autoencoder in TensorFlow -- Denoising autoencoder in Keras -- Variational autoencoder in TensorFlow -- Variational autoencoder in Keras -- Summary -- Chapter 11: TensorFlow Models in Production with TF Serving -- Saving and Restoring models in TensorFlow -- Saving and restoring all graph variables with the saver class -- Saving and restoring selected variables with the saver class -- Saving and restoring Keras models -- TensorFlow Serving -- Installing TF Serving -- Saving models for TF Serving. Serving models with TF Serving -- TF Serving in the Docker containers -- Installing Docker -- Building a Docker image for TF serving -- Serving the model in the Docker container -- TensorFlow Serving on Kubernetes -- Installing Kubernetes -- Uploading the Docker image to the dockerhub -- Deploying in Kubernetes -- Summary -- Chapter 12: Transfer Learning and Pre-Trained Models -- ImageNet dataset -- Retraining or fine-tuning models -- COCO animals dataset and pre-processing images -- VGG16 in TensorFlow -- Image classification using pre-trained VGG16 in TensorFlow -- Image preprocessing in TensorFlow for pre-trained VGG16 -- Image classification using retrained VGG16 in TensorFlow -- VGG16 in Keras -- Image classification using pre-trained VGG16 in Keras -- Image classification using retrained VGG16 in Keras -- Inception v3 in TensorFlow -- Image classification using Inception v3 in TensorFlow -- Image classification using retrained Inception v3 in TensorFlow -- Summary -- Chapter 13: Deep Reinforcement Learning -- OpenAI Gym 101 -- Applying simple policies to a cartpole game -- Reinforcement learning 101 -- Q function (learning to optimize when the model is not available) -- Exploration and exploitation in the RL algorithms -- V function (learning to optimize when the model is available) -- Reinforcement learning techniques -- Naive Neural Network policy for Reinforcement Learning -- Implementing Q-Learning -- Initializing and discretizing for Q-Learning -- Q-Learning with Q-Table -- Q-Learning with Q-Network or Deep Q Network (DQN) -- Summary -- Chapter 14: Generative Adversarial Networks -- Generative Adversarial Networks 101 -- Best practices for building and training GANs -- Simple GAN with TensorFlow -- Simple GAN with Keras -- Deep Convolutional GAN with TensorFlow and Keras -- Summary. Chapter 15: Distributed Models with TensorFlow Clusters -- Strategies for distributed execution -- TensorFlow clusters -- Defining cluster specification -- Create the server instances -- Define the parameter and operations across servers and devices -- Define and train the graph for asynchronous updates -- Define and train the graph for synchronous updates -- Summary -- Chapter 16: TensorFlow Models on Mobile and Embedded Platforms -- TensorFlow on mobile platforms -- TF Mobile in Android apps -- TF Mobile demo on Android -- TF Mobile in iOS apps -- TF Mobile demo on iOS -- TensorFlow Lite -- TF Lite Demo on Android -- TF Lite demo on iOS -- Summary -- Chapter 17: TensorFlow and Keras in R -- Installing TensorFlow and Keras packages in R -- TF core API in R -- TF estimator API in R -- Keras API in R -- TensorBoard in R -- The tfruns package in R -- Summary -- Chapter 18: Debugging TensorFlow Models -- Fetching tensor values with tf.Session.run() -- Printing tensor values with tf.Print() -- Asserting on conditions with tf.Assert() -- Debugging with the TensorFlow debugger (tfdbg) -- Summary -- Appendix: Tensor Processing Units -- Other Books You May Enjoy -- Index. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. artificial intelligence. aat Artificial intelligence. bicssc Neural networks & fuzzy systems. bicssc Data mining. bicssc COMPUTERS General. bisacsh Artificial intelligence fast Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh85008180 https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D000069550 |
title | Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / |
title_auth | Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / |
title_exact_search | Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / |
title_full | Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / Armando Fandango. |
title_fullStr | Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / Armando Fandango. |
title_full_unstemmed | Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / Armando Fandango. |
title_short | Mastering TensorFlow 1.x : |
title_sort | mastering tensorflow 1 x advanced machine learning and deep learning concepts using tensorflow 1 x and keras |
title_sub | advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. artificial intelligence. aat Artificial intelligence. bicssc Neural networks & fuzzy systems. bicssc Data mining. bicssc COMPUTERS General. bisacsh Artificial intelligence fast Machine learning fast |
topic_facet | Machine learning. Artificial intelligence. Artificial Intelligence Machine Learning Apprentissage automatique. Intelligence artificielle. artificial intelligence. Neural networks & fuzzy systems. Data mining. COMPUTERS General. Artificial intelligence Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1699208 |
work_keys_str_mv | AT fandangoarmando masteringtensorflow1xadvancedmachinelearninganddeeplearningconceptsusingtensorflow1xandkeras |