Hydrogen and fuel cells :: emerging technologies and applications /
In a multidisciplinary field such as energy, Hydrogen and Fuel Cells stands out by covering the entire width of hydrogen production and usage technologies, giving detailed descriptions of not just one but the range of very different fuel cells that have been developed or are under development. In on...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London :
Academic Press, an imprint of Elsevier,
[2018]
|
Ausgabe: | Third edition. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | In a multidisciplinary field such as energy, Hydrogen and Fuel Cells stands out by covering the entire width of hydrogen production and usage technologies, giving detailed descriptions of not just one but the range of very different fuel cells that have been developed or are under development. In one volume, respected experts Bent Sorensen and Giuseppe Spazzafumo provide all the basic scientific theory underlying hydrogen and fuel cell technologies, but at the same time present applications and sustainable integration into society in a way accessible to a broad range of people working in this field, whether in technical, economic or management roles. The third edition reflects both recently emerged technologies and the market penetration of the most promising technologies, and it gives an appraisal of how far fuel cell technology may go in the future, considering current challenges and economic trends. This new edition has updated and expanded content on hydrogen storage and transmission, molten carbonate fuel cells, PEM fuel cells, solid oxide fuel cells, biofuel cells, including microbial fuel cells, applications in transportation and power plants, future scenarios and life-cycle assessment. It is ideal for researchers and professionals in the field of energy, and renewable energy in particular, both in academia and industry. It is also useful to lecturers and graduate students in engineering, physics, and environmental sciences, as well as professionals involved in energy or environmental regulation and policy. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780081007136 0081007132 9780081007082 0081007086 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1023028361 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 180214s2018 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OPELS |d STF |d OCLCF |d D6H |d MERER |d U3W |d OCLCQ |d LVT |d LQU |d S2H |d OCLCO |d YDX |d OCLCQ |d OCLCO |d K6U |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d SXB |d OCLCQ | ||
019 | |a 1105178496 |a 1105568759 | ||
020 | |a 9780081007136 |q (electronic bk.) | ||
020 | |a 0081007132 |q (electronic bk.) | ||
020 | |a 9780081007082 |q (electronic bk.) | ||
020 | |a 0081007086 |q (electronic bk.) | ||
035 | |a (OCoLC)1023028361 |z (OCoLC)1105178496 |z (OCoLC)1105568759 | ||
050 | 4 | |a TP359.H8 | |
072 | 7 | |a TEC |x 031000 |2 bisacsh | |
082 | 7 | |a 665.81 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Sørensen, Bent, |d 1941- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJkxGy99dXwbYJJCXFVXBP |0 http://id.loc.gov/authorities/names/n80084913 | |
245 | 1 | 0 | |a Hydrogen and fuel cells : |b emerging technologies and applications / |c Bent Sørensen, Giuseppe Spazzafumo. |
250 | |a Third edition. | ||
264 | 1 | |a London : |b Academic Press, an imprint of Elsevier, |c [2018] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed February 19, 2018). | |
520 | |a In a multidisciplinary field such as energy, Hydrogen and Fuel Cells stands out by covering the entire width of hydrogen production and usage technologies, giving detailed descriptions of not just one but the range of very different fuel cells that have been developed or are under development. In one volume, respected experts Bent Sorensen and Giuseppe Spazzafumo provide all the basic scientific theory underlying hydrogen and fuel cell technologies, but at the same time present applications and sustainable integration into society in a way accessible to a broad range of people working in this field, whether in technical, economic or management roles. The third edition reflects both recently emerged technologies and the market penetration of the most promising technologies, and it gives an appraisal of how far fuel cell technology may go in the future, considering current challenges and economic trends. This new edition has updated and expanded content on hydrogen storage and transmission, molten carbonate fuel cells, PEM fuel cells, solid oxide fuel cells, biofuel cells, including microbial fuel cells, applications in transportation and power plants, future scenarios and life-cycle assessment. It is ideal for researchers and professionals in the field of energy, and renewable energy in particular, both in academia and industry. It is also useful to lecturers and graduate students in engineering, physics, and environmental sciences, as well as professionals involved in energy or environmental regulation and policy. | ||
505 | 0 | |a Front Cover -- Hydrogen and Fuel Cells: Emerging Technologies and Applications -- Copyright -- Contents -- Preface -- Preface to second edition -- Preface to first edition -- Units and conversion factors -- Chapter 1: Introduction -- 1.1. Possible role of fuel cells and hydrogen -- References -- Chapter 2: Hydrogen -- 2.1. Production of hydrogen -- 2.1.1. Steam reforming -- 2.1.2. Partial oxidation, autothermal and dry reforming -- 2.1.3. Water electrolysis: reverse fuel cell operation -- 2.1.4. Gasification and woody biomass conversion -- 2.1.5. Biological hydrogen production -- 2.1.5.1. Photosynthesis -- 2.1.5.2. Bio-hydrogen production pathways -- 2.1.5.3. Hydrogen production by purple bacteria -- 2.1.5.4. Fermentation and other processes in the dark -- 2.1.5.5. Industrial-scale production of bio-hydrogen -- 2.1.6. Photodissociation -- 2.1.7. Direct thermal or catalytic splitting of water -- 2.2. Issues related to scale of production -- 2.2.1. Centralised hydrogen production -- 2.2.2. Distributed hydrogen production -- 2.2.3. Vehicle on-board fuel reforming -- 2.2.3.1. Production of methanol -- 2.2.3.2. Methanol-to-hydrogen conversion -- 2.3. Hydrogen storage options -- 2.3.1. Compressed gas storage -- 2.3.2. Liquid hydrogen storage -- 2.3.3. Hydride storage -- 2.3.3.1. Chemical thermodynamics -- 2.3.3.2. Metal hydrides -- 2.3.3.3. Complex hydrides -- 2.3.3.4. Modelling metal hydrides -- 2.3.4. Cryo-adsorbed gas storage -- 2.3.5. Other chemical storage options -- 2.3.6. Comparing storage options -- 2.4. Hydrogen transmission -- 2.4.1. Container transport -- 2.4.2. Pipeline transport -- 2.5. Hydrogen conversion overview -- 2.5.1. Uses as an energy carrier -- 2.5.2. Uses as an energy storage medium -- 2.5.3. Combustion uses in vehicles -- 2.5.4. Stationary hydrogen and fuel cell uses -- 2.5.5. Fuel cell uses for transportation. | |
505 | 8 | |a 2.5.6. Direct uses -- 2.6. Problems and discussion topics -- References -- Chapter 3: Fuel cells -- 3.1. Basic concepts -- 3.1.1. Electrochemistry and thermodynamics of fuel cells -- 3.1.1.1. Electrochemical device definitions -- 3.1.1.2. Fuel cells -- 3.1.2. Modelling aspects -- 3.1.3. Quantum chemistry approaches -- 3.1.3.1. Hartree-Fock approximation -- 3.1.3.2. Basis sets and molecular orbitals -- 3.1.3.3. Higher interactions and excited states: Møller-Plesset perturbation theory or density function phenomenological ... -- 3.1.4. Application to water splitting or fuel cell performance at a metal surface -- 3.1.5. Flow and diffusion modelling -- 3.1.6. The temperature factor -- 3.2. Molten carbonate fuel cells -- 3.3. Solid oxide fuel cells -- 3.4. Acid and alkaline fuel cells -- 3.5. Proton exchange membrane fuel cells -- 3.5.1. Current-collectors and gas delivery system -- 3.5.2. Gas diffusion layers -- 3.5.3. Membrane layer -- 3.5.4. Catalyst action -- 3.5.5. Overall performance -- 3.5.6. High-temperature and reverse operation -- 3.5.7. Degradation and lifetime -- 3.6. Direct methanol and other nonhydrogen fuel cells -- 3.7. Biofuel cells -- 3.8. Problems and discussion topics -- References -- Chapter 4: Fuel cell systems -- 4.1. Passenger cars -- 4.1.1. Overall system options for passenger cars -- 4.1.2. PEMFC and battery-fuel cell hybrid cars -- 4.1.3. Performance simulation -- 4.2. Other road vehicles -- 4.3. Ships, trains, and airplanes -- 4.4. Power plants and stand-alone systems -- 4.5. Building-integrated systems -- 4.6. Portable and other small-scale systems -- 4.7. Problems and discussion topics -- References -- Chapter 5: Implementation scenarios -- 5.1. Infrastructure requirements -- 5.1.1. Storage infrastructure -- 5.1.2. Transmission infrastructure -- 5.1.3. Local distribution -- 5.1.4. Filling stations. | |
505 | 8 | |a 5.1.5. Building-integrated concepts -- 5.2. Safety and norm issues -- 5.2.1. Safety concerns -- 5.2.2. Safety requirements -- 5.2.3. National and international standards -- 5.3. Scenarios based on fossil energy -- 5.3.1. Scenario techniques and demand modelling -- 5.3.2. Global clean fossil scenario -- 5.3.2.1. Clean fossil technologies -- 5.3.2.2. Fossil resource considerations -- 5.3.2.3. The fossil scenario -- 5.3.2.4. Evaluation of the clean fossil scenario -- 5.4. Scenarios based on nuclear energy -- 5.4.1. History and present concerns -- 5.4.2. Safe nuclear technologies -- 5.4.2.1. Inherently safe designs -- 5.4.2.2. Technical details of energy amplifier -- 5.4.2.3. Nuclear resources assessment -- 5.4.2.4. Safe nuclear scenario construction -- 5.4.2.5. Evaluation of the safe nuclear scenario -- 5.5. Scenarios based on renewable energy -- 5.5.1. Global renewable energy scenarios -- 5.5.2. Detailed national renewable energy scenario -- 5.5.2.1. Danish energy demand in 2050 -- 5.5.2.2. Available renewable resources -- 5.5.2.3. Construction of 2050 scenarios for Denmark -- Centralised scenario -- Decentralised scenario -- 5.5.2.4. Assessment of renewable energy scenarios -- 5.5.3. New regional scenarios -- 5.5.4. The British Isles -- 5.5.4.1. Energy demand of British Island regions -- 5.5.4.2. Potential energy supply for the British Island regions -- 5.5.4.3. 2050 scenario for the British Isles -- 5.6. Problems and discussion topics -- References -- Chapter 6: Social implications -- 6.1. Cost expectations -- 6.1.1. Hydrogen production costs -- 6.1.2. Fuel cell costs -- 6.1.3. Hydrogen storage costs -- 6.1.4. Infrastructure costs -- 6.1.5. System costs -- 6.2. Life-cycle analysis of environmental and social impacts -- 6.2.1. Purpose and methodology of life-cycle analysis -- 6.2.2. Life-cycle analysis of hydrogen production. | |
505 | 8 | |a 6.2.2.1. Conventional production by steam reforming -- 6.2.2.2. Production by electrolysis -- 6.2.2.3. Direct bio-production of hydrogen from cyanobacteria or algae -- Impacts from use of genetically engineered organisms -- 6.2.2.4. Hydrogen from fermentation of biomass -- 6.2.3. Life-cycle analysis of fuel cells -- 6.2.3.1. SOFCs and MCFCs -- 6.2.3.2. PEMFCs -- 6.2.4. Life-cycle comparison of conventional passenger car and passenger car with fuel cells -- 6.2.4.1. Environmental impact analysis -- 6.2.4.2. Social and economic impact analysis -- 6.2.4.3. Overall assessment -- 6.2.5. Life-cycle assessment of other vehicles for transportation -- 6.2.6. Life-cycle assessment of hydrogen storage and infrastructure -- 6.2.7. Life-cycle assessment of hydrogen systems -- 6.3. Uncertainties -- 6.4. Problems and discussion topics -- References -- Chapter 7: Conclusion: A conditional outcome -- 7.1. Opportunities -- 7.2. Obstacles -- 7.3. The competition -- 7.4. The way forward -- 7.4.1. Hydrogen storage in renewable energy systems -- 7.4.2. Fuel cell vehicles -- 7.4.3. Building-integrated fuel cells -- 7.4.4. Fuel cells in portable equipment -- 7.4.5. Fuel cells in centralised power production -- 7.4.6. Efficiency considerations -- 7.5. How much time do we have? -- 7.6 . The end and a beginning -- References -- Index -- Back Cover. | |
650 | 0 | |a Hydrogen as fuel. |0 http://id.loc.gov/authorities/subjects/sh85063422 | |
650 | 0 | |a Fuel cells. |0 http://id.loc.gov/authorities/subjects/sh85052220 | |
650 | 6 | |a Hydrogène (Combustible) | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Power Resources |x General. |2 bisacsh | |
650 | 7 | |a Fuel cells |2 fast | |
650 | 7 | |a Hydrogen as fuel |2 fast | |
700 | 1 | |a Spazzafumo, Giuseppe, |e author. | |
758 | |i has work: |a Hydrogen and fuel cells (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGRtcQPQmQ738v8fHfh3ry |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780081007082 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1553169 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 1553169 | ||
938 | |a YBP Library Services |b YANK |n 15158189 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1023028361 |
---|---|
_version_ | 1816882413306904576 |
adam_text | |
any_adam_object | |
author | Sørensen, Bent, 1941- Spazzafumo, Giuseppe |
author_GND | http://id.loc.gov/authorities/names/n80084913 |
author_facet | Sørensen, Bent, 1941- Spazzafumo, Giuseppe |
author_role | aut aut |
author_sort | Sørensen, Bent, 1941- |
author_variant | b s bs g s gs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TP359 |
callnumber-raw | TP359.H8 |
callnumber-search | TP359.H8 |
callnumber-sort | TP 3359 H8 |
callnumber-subject | TP - Chemical Technology |
collection | ZDB-4-EBA |
contents | Front Cover -- Hydrogen and Fuel Cells: Emerging Technologies and Applications -- Copyright -- Contents -- Preface -- Preface to second edition -- Preface to first edition -- Units and conversion factors -- Chapter 1: Introduction -- 1.1. Possible role of fuel cells and hydrogen -- References -- Chapter 2: Hydrogen -- 2.1. Production of hydrogen -- 2.1.1. Steam reforming -- 2.1.2. Partial oxidation, autothermal and dry reforming -- 2.1.3. Water electrolysis: reverse fuel cell operation -- 2.1.4. Gasification and woody biomass conversion -- 2.1.5. Biological hydrogen production -- 2.1.5.1. Photosynthesis -- 2.1.5.2. Bio-hydrogen production pathways -- 2.1.5.3. Hydrogen production by purple bacteria -- 2.1.5.4. Fermentation and other processes in the dark -- 2.1.5.5. Industrial-scale production of bio-hydrogen -- 2.1.6. Photodissociation -- 2.1.7. Direct thermal or catalytic splitting of water -- 2.2. Issues related to scale of production -- 2.2.1. Centralised hydrogen production -- 2.2.2. Distributed hydrogen production -- 2.2.3. Vehicle on-board fuel reforming -- 2.2.3.1. Production of methanol -- 2.2.3.2. Methanol-to-hydrogen conversion -- 2.3. Hydrogen storage options -- 2.3.1. Compressed gas storage -- 2.3.2. Liquid hydrogen storage -- 2.3.3. Hydride storage -- 2.3.3.1. Chemical thermodynamics -- 2.3.3.2. Metal hydrides -- 2.3.3.3. Complex hydrides -- 2.3.3.4. Modelling metal hydrides -- 2.3.4. Cryo-adsorbed gas storage -- 2.3.5. Other chemical storage options -- 2.3.6. Comparing storage options -- 2.4. Hydrogen transmission -- 2.4.1. Container transport -- 2.4.2. Pipeline transport -- 2.5. Hydrogen conversion overview -- 2.5.1. Uses as an energy carrier -- 2.5.2. Uses as an energy storage medium -- 2.5.3. Combustion uses in vehicles -- 2.5.4. Stationary hydrogen and fuel cell uses -- 2.5.5. Fuel cell uses for transportation. 2.5.6. Direct uses -- 2.6. Problems and discussion topics -- References -- Chapter 3: Fuel cells -- 3.1. Basic concepts -- 3.1.1. Electrochemistry and thermodynamics of fuel cells -- 3.1.1.1. Electrochemical device definitions -- 3.1.1.2. Fuel cells -- 3.1.2. Modelling aspects -- 3.1.3. Quantum chemistry approaches -- 3.1.3.1. Hartree-Fock approximation -- 3.1.3.2. Basis sets and molecular orbitals -- 3.1.3.3. Higher interactions and excited states: Møller-Plesset perturbation theory or density function phenomenological ... -- 3.1.4. Application to water splitting or fuel cell performance at a metal surface -- 3.1.5. Flow and diffusion modelling -- 3.1.6. The temperature factor -- 3.2. Molten carbonate fuel cells -- 3.3. Solid oxide fuel cells -- 3.4. Acid and alkaline fuel cells -- 3.5. Proton exchange membrane fuel cells -- 3.5.1. Current-collectors and gas delivery system -- 3.5.2. Gas diffusion layers -- 3.5.3. Membrane layer -- 3.5.4. Catalyst action -- 3.5.5. Overall performance -- 3.5.6. High-temperature and reverse operation -- 3.5.7. Degradation and lifetime -- 3.6. Direct methanol and other nonhydrogen fuel cells -- 3.7. Biofuel cells -- 3.8. Problems and discussion topics -- References -- Chapter 4: Fuel cell systems -- 4.1. Passenger cars -- 4.1.1. Overall system options for passenger cars -- 4.1.2. PEMFC and battery-fuel cell hybrid cars -- 4.1.3. Performance simulation -- 4.2. Other road vehicles -- 4.3. Ships, trains, and airplanes -- 4.4. Power plants and stand-alone systems -- 4.5. Building-integrated systems -- 4.6. Portable and other small-scale systems -- 4.7. Problems and discussion topics -- References -- Chapter 5: Implementation scenarios -- 5.1. Infrastructure requirements -- 5.1.1. Storage infrastructure -- 5.1.2. Transmission infrastructure -- 5.1.3. Local distribution -- 5.1.4. Filling stations. 5.1.5. Building-integrated concepts -- 5.2. Safety and norm issues -- 5.2.1. Safety concerns -- 5.2.2. Safety requirements -- 5.2.3. National and international standards -- 5.3. Scenarios based on fossil energy -- 5.3.1. Scenario techniques and demand modelling -- 5.3.2. Global clean fossil scenario -- 5.3.2.1. Clean fossil technologies -- 5.3.2.2. Fossil resource considerations -- 5.3.2.3. The fossil scenario -- 5.3.2.4. Evaluation of the clean fossil scenario -- 5.4. Scenarios based on nuclear energy -- 5.4.1. History and present concerns -- 5.4.2. Safe nuclear technologies -- 5.4.2.1. Inherently safe designs -- 5.4.2.2. Technical details of energy amplifier -- 5.4.2.3. Nuclear resources assessment -- 5.4.2.4. Safe nuclear scenario construction -- 5.4.2.5. Evaluation of the safe nuclear scenario -- 5.5. Scenarios based on renewable energy -- 5.5.1. Global renewable energy scenarios -- 5.5.2. Detailed national renewable energy scenario -- 5.5.2.1. Danish energy demand in 2050 -- 5.5.2.2. Available renewable resources -- 5.5.2.3. Construction of 2050 scenarios for Denmark -- Centralised scenario -- Decentralised scenario -- 5.5.2.4. Assessment of renewable energy scenarios -- 5.5.3. New regional scenarios -- 5.5.4. The British Isles -- 5.5.4.1. Energy demand of British Island regions -- 5.5.4.2. Potential energy supply for the British Island regions -- 5.5.4.3. 2050 scenario for the British Isles -- 5.6. Problems and discussion topics -- References -- Chapter 6: Social implications -- 6.1. Cost expectations -- 6.1.1. Hydrogen production costs -- 6.1.2. Fuel cell costs -- 6.1.3. Hydrogen storage costs -- 6.1.4. Infrastructure costs -- 6.1.5. System costs -- 6.2. Life-cycle analysis of environmental and social impacts -- 6.2.1. Purpose and methodology of life-cycle analysis -- 6.2.2. Life-cycle analysis of hydrogen production. 6.2.2.1. Conventional production by steam reforming -- 6.2.2.2. Production by electrolysis -- 6.2.2.3. Direct bio-production of hydrogen from cyanobacteria or algae -- Impacts from use of genetically engineered organisms -- 6.2.2.4. Hydrogen from fermentation of biomass -- 6.2.3. Life-cycle analysis of fuel cells -- 6.2.3.1. SOFCs and MCFCs -- 6.2.3.2. PEMFCs -- 6.2.4. Life-cycle comparison of conventional passenger car and passenger car with fuel cells -- 6.2.4.1. Environmental impact analysis -- 6.2.4.2. Social and economic impact analysis -- 6.2.4.3. Overall assessment -- 6.2.5. Life-cycle assessment of other vehicles for transportation -- 6.2.6. Life-cycle assessment of hydrogen storage and infrastructure -- 6.2.7. Life-cycle assessment of hydrogen systems -- 6.3. Uncertainties -- 6.4. Problems and discussion topics -- References -- Chapter 7: Conclusion: A conditional outcome -- 7.1. Opportunities -- 7.2. Obstacles -- 7.3. The competition -- 7.4. The way forward -- 7.4.1. Hydrogen storage in renewable energy systems -- 7.4.2. Fuel cell vehicles -- 7.4.3. Building-integrated fuel cells -- 7.4.4. Fuel cells in portable equipment -- 7.4.5. Fuel cells in centralised power production -- 7.4.6. Efficiency considerations -- 7.5. How much time do we have? -- 7.6 . The end and a beginning -- References -- Index -- Back Cover. |
ctrlnum | (OCoLC)1023028361 |
dewey-full | 665.81 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 665 - Industrial oils, fats, waxes & gases |
dewey-raw | 665.81 |
dewey-search | 665.81 |
dewey-sort | 3665.81 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie |
edition | Third edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10904cam a2200565 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1023028361</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">180214s2018 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">OPELS</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCF</subfield><subfield code="d">D6H</subfield><subfield code="d">MERER</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">LQU</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1105178496</subfield><subfield code="a">1105568759</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081007136</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0081007132</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081007082</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0081007086</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1023028361</subfield><subfield code="z">(OCoLC)1105178496</subfield><subfield code="z">(OCoLC)1105568759</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TP359.H8</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">031000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">665.81</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sørensen, Bent,</subfield><subfield code="d">1941-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJkxGy99dXwbYJJCXFVXBP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80084913</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrogen and fuel cells :</subfield><subfield code="b">emerging technologies and applications /</subfield><subfield code="c">Bent Sørensen, Giuseppe Spazzafumo.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London :</subfield><subfield code="b">Academic Press, an imprint of Elsevier,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed February 19, 2018).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In a multidisciplinary field such as energy, Hydrogen and Fuel Cells stands out by covering the entire width of hydrogen production and usage technologies, giving detailed descriptions of not just one but the range of very different fuel cells that have been developed or are under development. In one volume, respected experts Bent Sorensen and Giuseppe Spazzafumo provide all the basic scientific theory underlying hydrogen and fuel cell technologies, but at the same time present applications and sustainable integration into society in a way accessible to a broad range of people working in this field, whether in technical, economic or management roles. The third edition reflects both recently emerged technologies and the market penetration of the most promising technologies, and it gives an appraisal of how far fuel cell technology may go in the future, considering current challenges and economic trends. This new edition has updated and expanded content on hydrogen storage and transmission, molten carbonate fuel cells, PEM fuel cells, solid oxide fuel cells, biofuel cells, including microbial fuel cells, applications in transportation and power plants, future scenarios and life-cycle assessment. It is ideal for researchers and professionals in the field of energy, and renewable energy in particular, both in academia and industry. It is also useful to lecturers and graduate students in engineering, physics, and environmental sciences, as well as professionals involved in energy or environmental regulation and policy.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- Hydrogen and Fuel Cells: Emerging Technologies and Applications -- Copyright -- Contents -- Preface -- Preface to second edition -- Preface to first edition -- Units and conversion factors -- Chapter 1: Introduction -- 1.1. Possible role of fuel cells and hydrogen -- References -- Chapter 2: Hydrogen -- 2.1. Production of hydrogen -- 2.1.1. Steam reforming -- 2.1.2. Partial oxidation, autothermal and dry reforming -- 2.1.3. Water electrolysis: reverse fuel cell operation -- 2.1.4. Gasification and woody biomass conversion -- 2.1.5. Biological hydrogen production -- 2.1.5.1. Photosynthesis -- 2.1.5.2. Bio-hydrogen production pathways -- 2.1.5.3. Hydrogen production by purple bacteria -- 2.1.5.4. Fermentation and other processes in the dark -- 2.1.5.5. Industrial-scale production of bio-hydrogen -- 2.1.6. Photodissociation -- 2.1.7. Direct thermal or catalytic splitting of water -- 2.2. Issues related to scale of production -- 2.2.1. Centralised hydrogen production -- 2.2.2. Distributed hydrogen production -- 2.2.3. Vehicle on-board fuel reforming -- 2.2.3.1. Production of methanol -- 2.2.3.2. Methanol-to-hydrogen conversion -- 2.3. Hydrogen storage options -- 2.3.1. Compressed gas storage -- 2.3.2. Liquid hydrogen storage -- 2.3.3. Hydride storage -- 2.3.3.1. Chemical thermodynamics -- 2.3.3.2. Metal hydrides -- 2.3.3.3. Complex hydrides -- 2.3.3.4. Modelling metal hydrides -- 2.3.4. Cryo-adsorbed gas storage -- 2.3.5. Other chemical storage options -- 2.3.6. Comparing storage options -- 2.4. Hydrogen transmission -- 2.4.1. Container transport -- 2.4.2. Pipeline transport -- 2.5. Hydrogen conversion overview -- 2.5.1. Uses as an energy carrier -- 2.5.2. Uses as an energy storage medium -- 2.5.3. Combustion uses in vehicles -- 2.5.4. Stationary hydrogen and fuel cell uses -- 2.5.5. Fuel cell uses for transportation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5.6. Direct uses -- 2.6. Problems and discussion topics -- References -- Chapter 3: Fuel cells -- 3.1. Basic concepts -- 3.1.1. Electrochemistry and thermodynamics of fuel cells -- 3.1.1.1. Electrochemical device definitions -- 3.1.1.2. Fuel cells -- 3.1.2. Modelling aspects -- 3.1.3. Quantum chemistry approaches -- 3.1.3.1. Hartree-Fock approximation -- 3.1.3.2. Basis sets and molecular orbitals -- 3.1.3.3. Higher interactions and excited states: Møller-Plesset perturbation theory or density function phenomenological ... -- 3.1.4. Application to water splitting or fuel cell performance at a metal surface -- 3.1.5. Flow and diffusion modelling -- 3.1.6. The temperature factor -- 3.2. Molten carbonate fuel cells -- 3.3. Solid oxide fuel cells -- 3.4. Acid and alkaline fuel cells -- 3.5. Proton exchange membrane fuel cells -- 3.5.1. Current-collectors and gas delivery system -- 3.5.2. Gas diffusion layers -- 3.5.3. Membrane layer -- 3.5.4. Catalyst action -- 3.5.5. Overall performance -- 3.5.6. High-temperature and reverse operation -- 3.5.7. Degradation and lifetime -- 3.6. Direct methanol and other nonhydrogen fuel cells -- 3.7. Biofuel cells -- 3.8. Problems and discussion topics -- References -- Chapter 4: Fuel cell systems -- 4.1. Passenger cars -- 4.1.1. Overall system options for passenger cars -- 4.1.2. PEMFC and battery-fuel cell hybrid cars -- 4.1.3. Performance simulation -- 4.2. Other road vehicles -- 4.3. Ships, trains, and airplanes -- 4.4. Power plants and stand-alone systems -- 4.5. Building-integrated systems -- 4.6. Portable and other small-scale systems -- 4.7. Problems and discussion topics -- References -- Chapter 5: Implementation scenarios -- 5.1. Infrastructure requirements -- 5.1.1. Storage infrastructure -- 5.1.2. Transmission infrastructure -- 5.1.3. Local distribution -- 5.1.4. Filling stations.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1.5. Building-integrated concepts -- 5.2. Safety and norm issues -- 5.2.1. Safety concerns -- 5.2.2. Safety requirements -- 5.2.3. National and international standards -- 5.3. Scenarios based on fossil energy -- 5.3.1. Scenario techniques and demand modelling -- 5.3.2. Global clean fossil scenario -- 5.3.2.1. Clean fossil technologies -- 5.3.2.2. Fossil resource considerations -- 5.3.2.3. The fossil scenario -- 5.3.2.4. Evaluation of the clean fossil scenario -- 5.4. Scenarios based on nuclear energy -- 5.4.1. History and present concerns -- 5.4.2. Safe nuclear technologies -- 5.4.2.1. Inherently safe designs -- 5.4.2.2. Technical details of energy amplifier -- 5.4.2.3. Nuclear resources assessment -- 5.4.2.4. Safe nuclear scenario construction -- 5.4.2.5. Evaluation of the safe nuclear scenario -- 5.5. Scenarios based on renewable energy -- 5.5.1. Global renewable energy scenarios -- 5.5.2. Detailed national renewable energy scenario -- 5.5.2.1. Danish energy demand in 2050 -- 5.5.2.2. Available renewable resources -- 5.5.2.3. Construction of 2050 scenarios for Denmark -- Centralised scenario -- Decentralised scenario -- 5.5.2.4. Assessment of renewable energy scenarios -- 5.5.3. New regional scenarios -- 5.5.4. The British Isles -- 5.5.4.1. Energy demand of British Island regions -- 5.5.4.2. Potential energy supply for the British Island regions -- 5.5.4.3. 2050 scenario for the British Isles -- 5.6. Problems and discussion topics -- References -- Chapter 6: Social implications -- 6.1. Cost expectations -- 6.1.1. Hydrogen production costs -- 6.1.2. Fuel cell costs -- 6.1.3. Hydrogen storage costs -- 6.1.4. Infrastructure costs -- 6.1.5. System costs -- 6.2. Life-cycle analysis of environmental and social impacts -- 6.2.1. Purpose and methodology of life-cycle analysis -- 6.2.2. Life-cycle analysis of hydrogen production.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.2.1. Conventional production by steam reforming -- 6.2.2.2. Production by electrolysis -- 6.2.2.3. Direct bio-production of hydrogen from cyanobacteria or algae -- Impacts from use of genetically engineered organisms -- 6.2.2.4. Hydrogen from fermentation of biomass -- 6.2.3. Life-cycle analysis of fuel cells -- 6.2.3.1. SOFCs and MCFCs -- 6.2.3.2. PEMFCs -- 6.2.4. Life-cycle comparison of conventional passenger car and passenger car with fuel cells -- 6.2.4.1. Environmental impact analysis -- 6.2.4.2. Social and economic impact analysis -- 6.2.4.3. Overall assessment -- 6.2.5. Life-cycle assessment of other vehicles for transportation -- 6.2.6. Life-cycle assessment of hydrogen storage and infrastructure -- 6.2.7. Life-cycle assessment of hydrogen systems -- 6.3. Uncertainties -- 6.4. Problems and discussion topics -- References -- Chapter 7: Conclusion: A conditional outcome -- 7.1. Opportunities -- 7.2. Obstacles -- 7.3. The competition -- 7.4. The way forward -- 7.4.1. Hydrogen storage in renewable energy systems -- 7.4.2. Fuel cell vehicles -- 7.4.3. Building-integrated fuel cells -- 7.4.4. Fuel cells in portable equipment -- 7.4.5. Fuel cells in centralised power production -- 7.4.6. Efficiency considerations -- 7.5. How much time do we have? -- 7.6 . The end and a beginning -- References -- Index -- Back Cover.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hydrogen as fuel.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85063422</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fuel cells.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052220</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Hydrogène (Combustible)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Power Resources</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuel cells</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrogen as fuel</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spazzafumo, Giuseppe,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hydrogen and fuel cells (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGRtcQPQmQ738v8fHfh3ry</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780081007082</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1553169</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1553169</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">15158189</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1023028361 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:28:13Z |
institution | BVB |
isbn | 9780081007136 0081007132 9780081007082 0081007086 |
language | English |
oclc_num | 1023028361 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Academic Press, an imprint of Elsevier, |
record_format | marc |
spelling | Sørensen, Bent, 1941- author. https://id.oclc.org/worldcat/entity/E39PBJkxGy99dXwbYJJCXFVXBP http://id.loc.gov/authorities/names/n80084913 Hydrogen and fuel cells : emerging technologies and applications / Bent Sørensen, Giuseppe Spazzafumo. Third edition. London : Academic Press, an imprint of Elsevier, [2018] 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Online resource; title from PDF title page (EBSCO, viewed February 19, 2018). In a multidisciplinary field such as energy, Hydrogen and Fuel Cells stands out by covering the entire width of hydrogen production and usage technologies, giving detailed descriptions of not just one but the range of very different fuel cells that have been developed or are under development. In one volume, respected experts Bent Sorensen and Giuseppe Spazzafumo provide all the basic scientific theory underlying hydrogen and fuel cell technologies, but at the same time present applications and sustainable integration into society in a way accessible to a broad range of people working in this field, whether in technical, economic or management roles. The third edition reflects both recently emerged technologies and the market penetration of the most promising technologies, and it gives an appraisal of how far fuel cell technology may go in the future, considering current challenges and economic trends. This new edition has updated and expanded content on hydrogen storage and transmission, molten carbonate fuel cells, PEM fuel cells, solid oxide fuel cells, biofuel cells, including microbial fuel cells, applications in transportation and power plants, future scenarios and life-cycle assessment. It is ideal for researchers and professionals in the field of energy, and renewable energy in particular, both in academia and industry. It is also useful to lecturers and graduate students in engineering, physics, and environmental sciences, as well as professionals involved in energy or environmental regulation and policy. Front Cover -- Hydrogen and Fuel Cells: Emerging Technologies and Applications -- Copyright -- Contents -- Preface -- Preface to second edition -- Preface to first edition -- Units and conversion factors -- Chapter 1: Introduction -- 1.1. Possible role of fuel cells and hydrogen -- References -- Chapter 2: Hydrogen -- 2.1. Production of hydrogen -- 2.1.1. Steam reforming -- 2.1.2. Partial oxidation, autothermal and dry reforming -- 2.1.3. Water electrolysis: reverse fuel cell operation -- 2.1.4. Gasification and woody biomass conversion -- 2.1.5. Biological hydrogen production -- 2.1.5.1. Photosynthesis -- 2.1.5.2. Bio-hydrogen production pathways -- 2.1.5.3. Hydrogen production by purple bacteria -- 2.1.5.4. Fermentation and other processes in the dark -- 2.1.5.5. Industrial-scale production of bio-hydrogen -- 2.1.6. Photodissociation -- 2.1.7. Direct thermal or catalytic splitting of water -- 2.2. Issues related to scale of production -- 2.2.1. Centralised hydrogen production -- 2.2.2. Distributed hydrogen production -- 2.2.3. Vehicle on-board fuel reforming -- 2.2.3.1. Production of methanol -- 2.2.3.2. Methanol-to-hydrogen conversion -- 2.3. Hydrogen storage options -- 2.3.1. Compressed gas storage -- 2.3.2. Liquid hydrogen storage -- 2.3.3. Hydride storage -- 2.3.3.1. Chemical thermodynamics -- 2.3.3.2. Metal hydrides -- 2.3.3.3. Complex hydrides -- 2.3.3.4. Modelling metal hydrides -- 2.3.4. Cryo-adsorbed gas storage -- 2.3.5. Other chemical storage options -- 2.3.6. Comparing storage options -- 2.4. Hydrogen transmission -- 2.4.1. Container transport -- 2.4.2. Pipeline transport -- 2.5. Hydrogen conversion overview -- 2.5.1. Uses as an energy carrier -- 2.5.2. Uses as an energy storage medium -- 2.5.3. Combustion uses in vehicles -- 2.5.4. Stationary hydrogen and fuel cell uses -- 2.5.5. Fuel cell uses for transportation. 2.5.6. Direct uses -- 2.6. Problems and discussion topics -- References -- Chapter 3: Fuel cells -- 3.1. Basic concepts -- 3.1.1. Electrochemistry and thermodynamics of fuel cells -- 3.1.1.1. Electrochemical device definitions -- 3.1.1.2. Fuel cells -- 3.1.2. Modelling aspects -- 3.1.3. Quantum chemistry approaches -- 3.1.3.1. Hartree-Fock approximation -- 3.1.3.2. Basis sets and molecular orbitals -- 3.1.3.3. Higher interactions and excited states: Møller-Plesset perturbation theory or density function phenomenological ... -- 3.1.4. Application to water splitting or fuel cell performance at a metal surface -- 3.1.5. Flow and diffusion modelling -- 3.1.6. The temperature factor -- 3.2. Molten carbonate fuel cells -- 3.3. Solid oxide fuel cells -- 3.4. Acid and alkaline fuel cells -- 3.5. Proton exchange membrane fuel cells -- 3.5.1. Current-collectors and gas delivery system -- 3.5.2. Gas diffusion layers -- 3.5.3. Membrane layer -- 3.5.4. Catalyst action -- 3.5.5. Overall performance -- 3.5.6. High-temperature and reverse operation -- 3.5.7. Degradation and lifetime -- 3.6. Direct methanol and other nonhydrogen fuel cells -- 3.7. Biofuel cells -- 3.8. Problems and discussion topics -- References -- Chapter 4: Fuel cell systems -- 4.1. Passenger cars -- 4.1.1. Overall system options for passenger cars -- 4.1.2. PEMFC and battery-fuel cell hybrid cars -- 4.1.3. Performance simulation -- 4.2. Other road vehicles -- 4.3. Ships, trains, and airplanes -- 4.4. Power plants and stand-alone systems -- 4.5. Building-integrated systems -- 4.6. Portable and other small-scale systems -- 4.7. Problems and discussion topics -- References -- Chapter 5: Implementation scenarios -- 5.1. Infrastructure requirements -- 5.1.1. Storage infrastructure -- 5.1.2. Transmission infrastructure -- 5.1.3. Local distribution -- 5.1.4. Filling stations. 5.1.5. Building-integrated concepts -- 5.2. Safety and norm issues -- 5.2.1. Safety concerns -- 5.2.2. Safety requirements -- 5.2.3. National and international standards -- 5.3. Scenarios based on fossil energy -- 5.3.1. Scenario techniques and demand modelling -- 5.3.2. Global clean fossil scenario -- 5.3.2.1. Clean fossil technologies -- 5.3.2.2. Fossil resource considerations -- 5.3.2.3. The fossil scenario -- 5.3.2.4. Evaluation of the clean fossil scenario -- 5.4. Scenarios based on nuclear energy -- 5.4.1. History and present concerns -- 5.4.2. Safe nuclear technologies -- 5.4.2.1. Inherently safe designs -- 5.4.2.2. Technical details of energy amplifier -- 5.4.2.3. Nuclear resources assessment -- 5.4.2.4. Safe nuclear scenario construction -- 5.4.2.5. Evaluation of the safe nuclear scenario -- 5.5. Scenarios based on renewable energy -- 5.5.1. Global renewable energy scenarios -- 5.5.2. Detailed national renewable energy scenario -- 5.5.2.1. Danish energy demand in 2050 -- 5.5.2.2. Available renewable resources -- 5.5.2.3. Construction of 2050 scenarios for Denmark -- Centralised scenario -- Decentralised scenario -- 5.5.2.4. Assessment of renewable energy scenarios -- 5.5.3. New regional scenarios -- 5.5.4. The British Isles -- 5.5.4.1. Energy demand of British Island regions -- 5.5.4.2. Potential energy supply for the British Island regions -- 5.5.4.3. 2050 scenario for the British Isles -- 5.6. Problems and discussion topics -- References -- Chapter 6: Social implications -- 6.1. Cost expectations -- 6.1.1. Hydrogen production costs -- 6.1.2. Fuel cell costs -- 6.1.3. Hydrogen storage costs -- 6.1.4. Infrastructure costs -- 6.1.5. System costs -- 6.2. Life-cycle analysis of environmental and social impacts -- 6.2.1. Purpose and methodology of life-cycle analysis -- 6.2.2. Life-cycle analysis of hydrogen production. 6.2.2.1. Conventional production by steam reforming -- 6.2.2.2. Production by electrolysis -- 6.2.2.3. Direct bio-production of hydrogen from cyanobacteria or algae -- Impacts from use of genetically engineered organisms -- 6.2.2.4. Hydrogen from fermentation of biomass -- 6.2.3. Life-cycle analysis of fuel cells -- 6.2.3.1. SOFCs and MCFCs -- 6.2.3.2. PEMFCs -- 6.2.4. Life-cycle comparison of conventional passenger car and passenger car with fuel cells -- 6.2.4.1. Environmental impact analysis -- 6.2.4.2. Social and economic impact analysis -- 6.2.4.3. Overall assessment -- 6.2.5. Life-cycle assessment of other vehicles for transportation -- 6.2.6. Life-cycle assessment of hydrogen storage and infrastructure -- 6.2.7. Life-cycle assessment of hydrogen systems -- 6.3. Uncertainties -- 6.4. Problems and discussion topics -- References -- Chapter 7: Conclusion: A conditional outcome -- 7.1. Opportunities -- 7.2. Obstacles -- 7.3. The competition -- 7.4. The way forward -- 7.4.1. Hydrogen storage in renewable energy systems -- 7.4.2. Fuel cell vehicles -- 7.4.3. Building-integrated fuel cells -- 7.4.4. Fuel cells in portable equipment -- 7.4.5. Fuel cells in centralised power production -- 7.4.6. Efficiency considerations -- 7.5. How much time do we have? -- 7.6 . The end and a beginning -- References -- Index -- Back Cover. Hydrogen as fuel. http://id.loc.gov/authorities/subjects/sh85063422 Fuel cells. http://id.loc.gov/authorities/subjects/sh85052220 Hydrogène (Combustible) TECHNOLOGY & ENGINEERING Power Resources General. bisacsh Fuel cells fast Hydrogen as fuel fast Spazzafumo, Giuseppe, author. has work: Hydrogen and fuel cells (Text) https://id.oclc.org/worldcat/entity/E39PCGRtcQPQmQ738v8fHfh3ry https://id.oclc.org/worldcat/ontology/hasWork FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780081007082 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1553169 Volltext |
spellingShingle | Sørensen, Bent, 1941- Spazzafumo, Giuseppe Hydrogen and fuel cells : emerging technologies and applications / Front Cover -- Hydrogen and Fuel Cells: Emerging Technologies and Applications -- Copyright -- Contents -- Preface -- Preface to second edition -- Preface to first edition -- Units and conversion factors -- Chapter 1: Introduction -- 1.1. Possible role of fuel cells and hydrogen -- References -- Chapter 2: Hydrogen -- 2.1. Production of hydrogen -- 2.1.1. Steam reforming -- 2.1.2. Partial oxidation, autothermal and dry reforming -- 2.1.3. Water electrolysis: reverse fuel cell operation -- 2.1.4. Gasification and woody biomass conversion -- 2.1.5. Biological hydrogen production -- 2.1.5.1. Photosynthesis -- 2.1.5.2. Bio-hydrogen production pathways -- 2.1.5.3. Hydrogen production by purple bacteria -- 2.1.5.4. Fermentation and other processes in the dark -- 2.1.5.5. Industrial-scale production of bio-hydrogen -- 2.1.6. Photodissociation -- 2.1.7. Direct thermal or catalytic splitting of water -- 2.2. Issues related to scale of production -- 2.2.1. Centralised hydrogen production -- 2.2.2. Distributed hydrogen production -- 2.2.3. Vehicle on-board fuel reforming -- 2.2.3.1. Production of methanol -- 2.2.3.2. Methanol-to-hydrogen conversion -- 2.3. Hydrogen storage options -- 2.3.1. Compressed gas storage -- 2.3.2. Liquid hydrogen storage -- 2.3.3. Hydride storage -- 2.3.3.1. Chemical thermodynamics -- 2.3.3.2. Metal hydrides -- 2.3.3.3. Complex hydrides -- 2.3.3.4. Modelling metal hydrides -- 2.3.4. Cryo-adsorbed gas storage -- 2.3.5. Other chemical storage options -- 2.3.6. Comparing storage options -- 2.4. Hydrogen transmission -- 2.4.1. Container transport -- 2.4.2. Pipeline transport -- 2.5. Hydrogen conversion overview -- 2.5.1. Uses as an energy carrier -- 2.5.2. Uses as an energy storage medium -- 2.5.3. Combustion uses in vehicles -- 2.5.4. Stationary hydrogen and fuel cell uses -- 2.5.5. Fuel cell uses for transportation. 2.5.6. Direct uses -- 2.6. Problems and discussion topics -- References -- Chapter 3: Fuel cells -- 3.1. Basic concepts -- 3.1.1. Electrochemistry and thermodynamics of fuel cells -- 3.1.1.1. Electrochemical device definitions -- 3.1.1.2. Fuel cells -- 3.1.2. Modelling aspects -- 3.1.3. Quantum chemistry approaches -- 3.1.3.1. Hartree-Fock approximation -- 3.1.3.2. Basis sets and molecular orbitals -- 3.1.3.3. Higher interactions and excited states: Møller-Plesset perturbation theory or density function phenomenological ... -- 3.1.4. Application to water splitting or fuel cell performance at a metal surface -- 3.1.5. Flow and diffusion modelling -- 3.1.6. The temperature factor -- 3.2. Molten carbonate fuel cells -- 3.3. Solid oxide fuel cells -- 3.4. Acid and alkaline fuel cells -- 3.5. Proton exchange membrane fuel cells -- 3.5.1. Current-collectors and gas delivery system -- 3.5.2. Gas diffusion layers -- 3.5.3. Membrane layer -- 3.5.4. Catalyst action -- 3.5.5. Overall performance -- 3.5.6. High-temperature and reverse operation -- 3.5.7. Degradation and lifetime -- 3.6. Direct methanol and other nonhydrogen fuel cells -- 3.7. Biofuel cells -- 3.8. Problems and discussion topics -- References -- Chapter 4: Fuel cell systems -- 4.1. Passenger cars -- 4.1.1. Overall system options for passenger cars -- 4.1.2. PEMFC and battery-fuel cell hybrid cars -- 4.1.3. Performance simulation -- 4.2. Other road vehicles -- 4.3. Ships, trains, and airplanes -- 4.4. Power plants and stand-alone systems -- 4.5. Building-integrated systems -- 4.6. Portable and other small-scale systems -- 4.7. Problems and discussion topics -- References -- Chapter 5: Implementation scenarios -- 5.1. Infrastructure requirements -- 5.1.1. Storage infrastructure -- 5.1.2. Transmission infrastructure -- 5.1.3. Local distribution -- 5.1.4. Filling stations. 5.1.5. Building-integrated concepts -- 5.2. Safety and norm issues -- 5.2.1. Safety concerns -- 5.2.2. Safety requirements -- 5.2.3. National and international standards -- 5.3. Scenarios based on fossil energy -- 5.3.1. Scenario techniques and demand modelling -- 5.3.2. Global clean fossil scenario -- 5.3.2.1. Clean fossil technologies -- 5.3.2.2. Fossil resource considerations -- 5.3.2.3. The fossil scenario -- 5.3.2.4. Evaluation of the clean fossil scenario -- 5.4. Scenarios based on nuclear energy -- 5.4.1. History and present concerns -- 5.4.2. Safe nuclear technologies -- 5.4.2.1. Inherently safe designs -- 5.4.2.2. Technical details of energy amplifier -- 5.4.2.3. Nuclear resources assessment -- 5.4.2.4. Safe nuclear scenario construction -- 5.4.2.5. Evaluation of the safe nuclear scenario -- 5.5. Scenarios based on renewable energy -- 5.5.1. Global renewable energy scenarios -- 5.5.2. Detailed national renewable energy scenario -- 5.5.2.1. Danish energy demand in 2050 -- 5.5.2.2. Available renewable resources -- 5.5.2.3. Construction of 2050 scenarios for Denmark -- Centralised scenario -- Decentralised scenario -- 5.5.2.4. Assessment of renewable energy scenarios -- 5.5.3. New regional scenarios -- 5.5.4. The British Isles -- 5.5.4.1. Energy demand of British Island regions -- 5.5.4.2. Potential energy supply for the British Island regions -- 5.5.4.3. 2050 scenario for the British Isles -- 5.6. Problems and discussion topics -- References -- Chapter 6: Social implications -- 6.1. Cost expectations -- 6.1.1. Hydrogen production costs -- 6.1.2. Fuel cell costs -- 6.1.3. Hydrogen storage costs -- 6.1.4. Infrastructure costs -- 6.1.5. System costs -- 6.2. Life-cycle analysis of environmental and social impacts -- 6.2.1. Purpose and methodology of life-cycle analysis -- 6.2.2. Life-cycle analysis of hydrogen production. 6.2.2.1. Conventional production by steam reforming -- 6.2.2.2. Production by electrolysis -- 6.2.2.3. Direct bio-production of hydrogen from cyanobacteria or algae -- Impacts from use of genetically engineered organisms -- 6.2.2.4. Hydrogen from fermentation of biomass -- 6.2.3. Life-cycle analysis of fuel cells -- 6.2.3.1. SOFCs and MCFCs -- 6.2.3.2. PEMFCs -- 6.2.4. Life-cycle comparison of conventional passenger car and passenger car with fuel cells -- 6.2.4.1. Environmental impact analysis -- 6.2.4.2. Social and economic impact analysis -- 6.2.4.3. Overall assessment -- 6.2.5. Life-cycle assessment of other vehicles for transportation -- 6.2.6. Life-cycle assessment of hydrogen storage and infrastructure -- 6.2.7. Life-cycle assessment of hydrogen systems -- 6.3. Uncertainties -- 6.4. Problems and discussion topics -- References -- Chapter 7: Conclusion: A conditional outcome -- 7.1. Opportunities -- 7.2. Obstacles -- 7.3. The competition -- 7.4. The way forward -- 7.4.1. Hydrogen storage in renewable energy systems -- 7.4.2. Fuel cell vehicles -- 7.4.3. Building-integrated fuel cells -- 7.4.4. Fuel cells in portable equipment -- 7.4.5. Fuel cells in centralised power production -- 7.4.6. Efficiency considerations -- 7.5. How much time do we have? -- 7.6 . The end and a beginning -- References -- Index -- Back Cover. Hydrogen as fuel. http://id.loc.gov/authorities/subjects/sh85063422 Fuel cells. http://id.loc.gov/authorities/subjects/sh85052220 Hydrogène (Combustible) TECHNOLOGY & ENGINEERING Power Resources General. bisacsh Fuel cells fast Hydrogen as fuel fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85063422 http://id.loc.gov/authorities/subjects/sh85052220 |
title | Hydrogen and fuel cells : emerging technologies and applications / |
title_auth | Hydrogen and fuel cells : emerging technologies and applications / |
title_exact_search | Hydrogen and fuel cells : emerging technologies and applications / |
title_full | Hydrogen and fuel cells : emerging technologies and applications / Bent Sørensen, Giuseppe Spazzafumo. |
title_fullStr | Hydrogen and fuel cells : emerging technologies and applications / Bent Sørensen, Giuseppe Spazzafumo. |
title_full_unstemmed | Hydrogen and fuel cells : emerging technologies and applications / Bent Sørensen, Giuseppe Spazzafumo. |
title_short | Hydrogen and fuel cells : |
title_sort | hydrogen and fuel cells emerging technologies and applications |
title_sub | emerging technologies and applications / |
topic | Hydrogen as fuel. http://id.loc.gov/authorities/subjects/sh85063422 Fuel cells. http://id.loc.gov/authorities/subjects/sh85052220 Hydrogène (Combustible) TECHNOLOGY & ENGINEERING Power Resources General. bisacsh Fuel cells fast Hydrogen as fuel fast |
topic_facet | Hydrogen as fuel. Fuel cells. Hydrogène (Combustible) TECHNOLOGY & ENGINEERING Power Resources General. Fuel cells Hydrogen as fuel |
url | https://www.sciencedirect.com/science/book/9780081007082 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1553169 |
work_keys_str_mv | AT sørensenbent hydrogenandfuelcellsemergingtechnologiesandapplications AT spazzafumogiuseppe hydrogenandfuelcellsemergingtechnologiesandapplications |