Varieties of continua :: from regions to points and back /
Hellman and Shapiro explore the development of the idea of the continuous, from the Aristotelian view that a true continuum cannot be composed of points to the now standard, entirely punctiform frameworks for analysis and geometry. They then investigate the underlying metaphysical issues concerning...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford :
Oxford University Press,
2018.
|
Ausgabe: | First edition. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Hellman and Shapiro explore the development of the idea of the continuous, from the Aristotelian view that a true continuum cannot be composed of points to the now standard, entirely punctiform frameworks for analysis and geometry. They then investigate the underlying metaphysical issues concerning the nature of space or space-time. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references (pages 199-204) and index. |
ISBN: | 9780191021350 0191021350 9780191781087 0191781088 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1021883217 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 180206s2018 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d EBLCP |d N$T |d OCLCF |d UAB |d UBY |d OH1 |d STBDS |d FIE |d YDX |d CEF |d KSU |d OTZ |d U3W |d OCLCQ |d STF |d WYU |d LVT |d BRX |d CUI |d OCLCQ |d OCL |d UKAHL |d OCLCO |d OCLCQ |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 1041476497 |a 1041881442 |a 1298413060 |a 1370509492 | ||
020 | |a 9780191021350 |q (electronic bk.) | ||
020 | |a 0191021350 |q (electronic bk.) | ||
020 | |a 9780191781087 | ||
020 | |a 0191781088 | ||
020 | |z 9780198712749 | ||
020 | |z 019871274X | ||
035 | |a (OCoLC)1021883217 |z (OCoLC)1041476497 |z (OCoLC)1041881442 |z (OCoLC)1298413060 |z (OCoLC)1370509492 | ||
050 | 4 | |a QA9 |b .H397 2018 | |
050 | 4 | |a QA611.28 | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514.325 |2 23 | |
084 | |a CC 2600 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Hellman, Geoffrey, |e author. |0 http://id.loc.gov/authorities/names/n88226801 | |
245 | 1 | 0 | |a Varieties of continua : |b from regions to points and back / |c Geoffrey Hellman and Stewart Shapiro. |
250 | |a First edition. | ||
264 | 1 | |a Oxford : |b Oxford University Press, |c 2018. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Vendor-supplied metadata. | |
520 | |a Hellman and Shapiro explore the development of the idea of the continuous, from the Aristotelian view that a true continuum cannot be composed of points to the now standard, entirely punctiform frameworks for analysis and geometry. They then investigate the underlying metaphysical issues concerning the nature of space or space-time. | ||
504 | |a Includes bibliographical references (pages 199-204) and index. | ||
505 | 0 | |a The old orthodoxy (Aristotle) vs the new orthodoxy (Dedekind-Cantor) -- The classical continuum without points -- Aristotelian and predicative continua -- Real numbers on an Aristotelian continuum -- Regions-based two-dimensional continua: the Euclidean case -- Non-Euclidean extensions -- The matter of points -- Scorecard -- References -- Index. | |
650 | 0 | |a Continuum (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh88000078 | |
650 | 0 | |a Continuity. |0 http://id.loc.gov/authorities/subjects/sh85031565 | |
650 | 6 | |a Continu (Mathématiques) | |
650 | 6 | |a Continuité. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Continuity |2 fast | |
650 | 7 | |a Continuum (Mathematics) |2 fast | |
700 | 1 | |a Shapiro, Stewart, |d 1951- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJktrrFfVdHwdDPPJQ4cyd |0 http://id.loc.gov/authorities/names/n84011861 | |
758 | |i has work: |a Varieties of continua (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGwXj8F7Mx64RFTqm9PXq3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version : |a Hellman, Geoffrey. |t Varieties of continua. |b First edition. |d Oxford : Oxford University Press, 2018 |z 019871274X |w (DLC) 2017950767 |w (OCoLC)1023652765 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1701931 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1701931 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH37166247 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5255024 | ||
938 | |a EBSCOhost |b EBSC |n 1701931 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0001840886 | ||
938 | |a YBP Library Services |b YANK |n 13833256 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1021883217 |
---|---|
_version_ | 1813903782412550144 |
adam_text | |
any_adam_object | |
author | Hellman, Geoffrey Shapiro, Stewart, 1951- |
author_GND | http://id.loc.gov/authorities/names/n88226801 http://id.loc.gov/authorities/names/n84011861 |
author_facet | Hellman, Geoffrey Shapiro, Stewart, 1951- |
author_role | aut aut |
author_sort | Hellman, Geoffrey |
author_variant | g h gh s s ss |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9 .H397 2018 QA611.28 |
callnumber-search | QA9 .H397 2018 QA611.28 |
callnumber-sort | QA 19 H397 42018 |
callnumber-subject | QA - Mathematics |
classification_rvk | CC 2600 |
collection | ZDB-4-EBA |
contents | The old orthodoxy (Aristotle) vs the new orthodoxy (Dedekind-Cantor) -- The classical continuum without points -- Aristotelian and predicative continua -- Real numbers on an Aristotelian continuum -- Regions-based two-dimensional continua: the Euclidean case -- Non-Euclidean extensions -- The matter of points -- Scorecard -- References -- Index. |
ctrlnum | (OCoLC)1021883217 |
dewey-full | 514.325 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.325 |
dewey-search | 514.325 |
dewey-sort | 3514.325 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03545cam a2200625 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1021883217</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">180206s2018 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UAB</subfield><subfield code="d">UBY</subfield><subfield code="d">OH1</subfield><subfield code="d">STBDS</subfield><subfield code="d">FIE</subfield><subfield code="d">YDX</subfield><subfield code="d">CEF</subfield><subfield code="d">KSU</subfield><subfield code="d">OTZ</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">BRX</subfield><subfield code="d">CUI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1041476497</subfield><subfield code="a">1041881442</subfield><subfield code="a">1298413060</subfield><subfield code="a">1370509492</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191021350</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191021350</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191781087</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191781088</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780198712749</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">019871274X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1021883217</subfield><subfield code="z">(OCoLC)1041476497</subfield><subfield code="z">(OCoLC)1041881442</subfield><subfield code="z">(OCoLC)1298413060</subfield><subfield code="z">(OCoLC)1370509492</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9</subfield><subfield code="b">.H397 2018</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA611.28</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514.325</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hellman, Geoffrey,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88226801</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Varieties of continua :</subfield><subfield code="b">from regions to points and back /</subfield><subfield code="c">Geoffrey Hellman and Stewart Shapiro.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2018.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Vendor-supplied metadata.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hellman and Shapiro explore the development of the idea of the continuous, from the Aristotelian view that a true continuum cannot be composed of points to the now standard, entirely punctiform frameworks for analysis and geometry. They then investigate the underlying metaphysical issues concerning the nature of space or space-time.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 199-204) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">The old orthodoxy (Aristotle) vs the new orthodoxy (Dedekind-Cantor) -- The classical continuum without points -- Aristotelian and predicative continua -- Real numbers on an Aristotelian continuum -- Regions-based two-dimensional continua: the Euclidean case -- Non-Euclidean extensions -- The matter of points -- Scorecard -- References -- Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Continuum (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88000078</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Continuity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031565</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Continu (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Continuité.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Continuity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Continuum (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapiro, Stewart,</subfield><subfield code="d">1951-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJktrrFfVdHwdDPPJQ4cyd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84011861</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Varieties of continua (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGwXj8F7Mx64RFTqm9PXq3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version :</subfield><subfield code="a">Hellman, Geoffrey.</subfield><subfield code="t">Varieties of continua.</subfield><subfield code="b">First edition.</subfield><subfield code="d">Oxford : Oxford University Press, 2018</subfield><subfield code="z">019871274X</subfield><subfield code="w">(DLC) 2017950767</subfield><subfield code="w">(OCoLC)1023652765</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1701931</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1701931</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37166247</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5255024</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1701931</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0001840886</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13833256</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1021883217 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:24:09Z |
institution | BVB |
isbn | 9780191021350 0191021350 9780191781087 0191781088 |
language | English |
oclc_num | 1021883217 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Hellman, Geoffrey, author. http://id.loc.gov/authorities/names/n88226801 Varieties of continua : from regions to points and back / Geoffrey Hellman and Stewart Shapiro. First edition. Oxford : Oxford University Press, 2018. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Vendor-supplied metadata. Hellman and Shapiro explore the development of the idea of the continuous, from the Aristotelian view that a true continuum cannot be composed of points to the now standard, entirely punctiform frameworks for analysis and geometry. They then investigate the underlying metaphysical issues concerning the nature of space or space-time. Includes bibliographical references (pages 199-204) and index. The old orthodoxy (Aristotle) vs the new orthodoxy (Dedekind-Cantor) -- The classical continuum without points -- Aristotelian and predicative continua -- Real numbers on an Aristotelian continuum -- Regions-based two-dimensional continua: the Euclidean case -- Non-Euclidean extensions -- The matter of points -- Scorecard -- References -- Index. Continuum (Mathematics) http://id.loc.gov/authorities/subjects/sh88000078 Continuity. http://id.loc.gov/authorities/subjects/sh85031565 Continu (Mathématiques) Continuité. MATHEMATICS Topology. bisacsh Continuity fast Continuum (Mathematics) fast Shapiro, Stewart, 1951- author. https://id.oclc.org/worldcat/entity/E39PBJktrrFfVdHwdDPPJQ4cyd http://id.loc.gov/authorities/names/n84011861 has work: Varieties of continua (Text) https://id.oclc.org/worldcat/entity/E39PCGwXj8F7Mx64RFTqm9PXq3 https://id.oclc.org/worldcat/ontology/hasWork Print version : Hellman, Geoffrey. Varieties of continua. First edition. Oxford : Oxford University Press, 2018 019871274X (DLC) 2017950767 (OCoLC)1023652765 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1701931 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1701931 Volltext |
spellingShingle | Hellman, Geoffrey Shapiro, Stewart, 1951- Varieties of continua : from regions to points and back / The old orthodoxy (Aristotle) vs the new orthodoxy (Dedekind-Cantor) -- The classical continuum without points -- Aristotelian and predicative continua -- Real numbers on an Aristotelian continuum -- Regions-based two-dimensional continua: the Euclidean case -- Non-Euclidean extensions -- The matter of points -- Scorecard -- References -- Index. Continuum (Mathematics) http://id.loc.gov/authorities/subjects/sh88000078 Continuity. http://id.loc.gov/authorities/subjects/sh85031565 Continu (Mathématiques) Continuité. MATHEMATICS Topology. bisacsh Continuity fast Continuum (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh88000078 http://id.loc.gov/authorities/subjects/sh85031565 |
title | Varieties of continua : from regions to points and back / |
title_auth | Varieties of continua : from regions to points and back / |
title_exact_search | Varieties of continua : from regions to points and back / |
title_full | Varieties of continua : from regions to points and back / Geoffrey Hellman and Stewart Shapiro. |
title_fullStr | Varieties of continua : from regions to points and back / Geoffrey Hellman and Stewart Shapiro. |
title_full_unstemmed | Varieties of continua : from regions to points and back / Geoffrey Hellman and Stewart Shapiro. |
title_short | Varieties of continua : |
title_sort | varieties of continua from regions to points and back |
title_sub | from regions to points and back / |
topic | Continuum (Mathematics) http://id.loc.gov/authorities/subjects/sh88000078 Continuity. http://id.loc.gov/authorities/subjects/sh85031565 Continu (Mathématiques) Continuité. MATHEMATICS Topology. bisacsh Continuity fast Continuum (Mathematics) fast |
topic_facet | Continuum (Mathematics) Continuity. Continu (Mathématiques) Continuité. MATHEMATICS Topology. Continuity |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1701931 |
work_keys_str_mv | AT hellmangeoffrey varietiesofcontinuafromregionstopointsandback AT shapirostewart varietiesofcontinuafromregionstopointsandback |