Morphing wing technologies :: large commercial aircraft and civil helicopters /
Morphing Wings Technologies: Large Commercial Aircraft and Civil Helicopters offers a fresh look at current research on morphing aircraft, including industry design, real manufactured prototypes and certification. This is an invaluable reference for students in the aeronautics and aerospace fields w...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, MA :
Butterworth-Heinemann,
[2018]
|
Ausgabe: | First edition. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Morphing Wings Technologies: Large Commercial Aircraft and Civil Helicopters offers a fresh look at current research on morphing aircraft, including industry design, real manufactured prototypes and certification. This is an invaluable reference for students in the aeronautics and aerospace fields who need an introduction to the morphing discipline, as well as senior professionals seeking exposure to morphing potentialities. Practical applications of morphing devices are presented-from the challenge of conceptual design incorporating both structural and aerodynamic studies, to the most promising and potentially flyable solutions aimed at improving the performance of commercial aircraft and UAVs. Morphing aircraft are multi-role aircraft that change their external shape substantially to adapt to a changing mission environment during flight. The book consists of eight sections as well as an appendix which contains both updates on main systems evolution (skin, structure, actuator, sensor, and control systems) and a survey on the most significant achievements of integrated systems for large commercial aircraft. |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource : color illustrations |
Bibliographie: | Includes bibliographical references at the end of each chapters and index. |
ISBN: | 9780081009697 0081009690 008100964X 9780081009642 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1007290487 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 171024t20182018maua ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d IDEBK |d OPELS |d UPM |d YDX |d VLB |d STF |d ZCU |d D6H |d KNOVL |d INU |d ERL |d DKU |d U3W |d OCLCF |d CEF |d OCLCQ |d INT |d OCLCQ |d LVT |d OCLCQ |d UHL |d S2H |d OCLCO |d HS0 |d OCLCQ |d K6U |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO |d Q2U |d OCLCO | ||
019 | |a 1113808957 |a 1162117884 |a 1227635543 |a 1259586850 |a 1289380463 |a 1316234156 |a 1317378965 |a 1327773040 | ||
020 | |a 9780081009697 |q (electronic bk.) | ||
020 | |a 0081009690 |q (electronic bk.) | ||
020 | |a 008100964X |q (hbk.) | ||
020 | |a 9780081009642 | ||
020 | |z 9780081009642 | ||
035 | |a (OCoLC)1007290487 |z (OCoLC)1113808957 |z (OCoLC)1162117884 |z (OCoLC)1227635543 |z (OCoLC)1259586850 |z (OCoLC)1289380463 |z (OCoLC)1316234156 |z (OCoLC)1317378965 |z (OCoLC)1327773040 | ||
050 | 4 | |a TL672 | |
072 | 7 | |a TEC |x 009000 |2 bisacsh | |
082 | 7 | |a 629.134/32 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Morphing wing technologies : |b large commercial aircraft and civil helicopters / |c edited by Antonio Concilio, Ignazio Dimino, Leonardo Lecce, Rosario Pecora. |
250 | |a First edition. | ||
264 | 1 | |a Cambridge, MA : |b Butterworth-Heinemann, |c [2018] | |
264 | 4 | |c ©2018 | |
300 | |a 1 online resource : |b color illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from PDF title page (Ebsco, viewed October 25, 2017). | |
500 | |a Includes index. | ||
520 | |a Morphing Wings Technologies: Large Commercial Aircraft and Civil Helicopters offers a fresh look at current research on morphing aircraft, including industry design, real manufactured prototypes and certification. This is an invaluable reference for students in the aeronautics and aerospace fields who need an introduction to the morphing discipline, as well as senior professionals seeking exposure to morphing potentialities. Practical applications of morphing devices are presented-from the challenge of conceptual design incorporating both structural and aerodynamic studies, to the most promising and potentially flyable solutions aimed at improving the performance of commercial aircraft and UAVs. Morphing aircraft are multi-role aircraft that change their external shape substantially to adapt to a changing mission environment during flight. The book consists of eight sections as well as an appendix which contains both updates on main systems evolution (skin, structure, actuator, sensor, and control systems) and a survey on the most significant achievements of integrated systems for large commercial aircraft. | ||
505 | 0 | 0 | |g Machine generated contents note: |g ch. 1 |t Historical Background and Current Scenario -- |g 1. |t Introduction -- |g 2. |t Components of a Wing Morphing Structural System -- |g 2.1. |t Structural Skeleton -- |g 2.2. |t Actuation Systems -- |g 2.3. |t Skin -- |g 2.4. |t Control System -- |g 2.5. |t Cabling -- |g 2.6. |t Assembly -- |g 3. |t Main Challenges -- |g 3.1. |t Skins -- |g 3.2. |t Actuation Systems -- |g 3.3. |t Sensor Systems -- |g 4. |t Back to the Past -- |g 4.1. |t Wright's Flyer -- |g 4.2. |t Plane and the Like for Aeroplanes -- |g 4.3. |t Parker's Wing -- |g 5. |t Modern Times -- |g 5.1. |t NASA Studies -- |g 5.2. |t DGLR Studies -- |g 5.3. |t Mission Adaptive Wing -- |g 5.4. |t Further NASA Studies -- |g 6. |t Recent Activities-United States -- |g 6.1. |t Adaptive Wing Reborn: SMAs -- |g 6.2. |t DARPA Smart Wing Program -- |g 6.3. |t DARPA Morphing Aircraft Structures Program -- |g 7. |t Recent Activities-Europe -- |g 7.1. |t ADIF -- |g 7.2. |t Clean Sky -- |g 8. |t Current Scenario -- |g 8.1. |t Airbus-SARISTU (Smart Intelligent Aircraft Structures) -- |g 8.2. |t Boeing-Adaptive Wing -- |g 8.3. |t Flexsys and Gulfstream -- |g 9. |t Tradition at the University of Napoli and CIRA -- |g 9.1. |t Adaptive Airfoil -- |g 9.2. |t Hinge-Less Wing -- |g 9.3. |t Smartflap -- |g 9.4. |t SADE -- |g 9.5. |t Clean Sky-JTI-GRA-Low Noise -- |g 9.6. |t EU-SARISTU -- |g 9.7. |t Adaptive Aileron -- |g 10. |t Future Perspectives -- |g 10.1. |t Safe Design -- |g 10.2. |t Skins and Fillers -- |g 10.3. |t Direct Actuation: The Use of Smart Materials -- |g 10.4. |t Wireless, Distributed Sensing -- |g 10.5. |t Control System Architecture -- |g 10.6. |t Cybernetics and Robotics -- |t Acknowledgments -- |t References -- |t University of Napoli and CIRA International Awards -- |g ch. 2 |t Aircraft Morphing-An Industry Vision -- |g 1. |t Introduction -- |g 2. |t Current Aircraft Capabilities -- |g 2.1. |t Interest of Industry -- |g 2.2. |t Some Considerations About Industry Aerodynamic Design Process -- |g 2.3. |t Expected Performance Targets -- |g 2.4. |t Manufacturing: New Materials and Controlled Industrial Processes -- |g 2.5. |t Assembly and Quality: Automation and Integrated Parts -- |g 2.6. |t Maintenance: Assessed Steps and Personnel Training -- |g 2.7. |t Safety: Assessed Methods for Standard Architectures -- |g 3. |t Current and Expected Needs -- |g 3.1. |t Technology Transition -- |g 3.2. |t Mission Configurable Wing -- |g 3.3. |t Improved Flaps and Ailerons -- |g 4. |t Morphing as a Solution -- |g 4.1. |t Wing and Control Surface Feasible Solutions -- |g 4.2. |t Some Specific Requirements -- |g 5. |t Conclusions -- |t References -- |g ch. 3 |t Development of Morphing Aircraft Benefit Assessment -- |g 1. |t Experiments as Basis for Morphing Progress -- |g 2. |t Advent of Transonic Methods -- |g 3. |t Automated Methods as Enabler for Large Scale Studies -- |g 4. |t Reintroduction of Flexible Materials -- |g 5. |t Final Step to Industrial Application -- |t References -- |g ch. 4 |t Span Morphing Concept: An Overview -- |g 1. |t Introduction -- |g 2. |t Effects of Span Increase -- |g 2.1. |t Aerodynamic Effects -- |g 2.2. |t Structural Effects -- |g 2.3. |t Stability and Control Effects -- |g 3. |t Span Morphing Concepts and Aircraft Performance -- |g 3.1. |t Symmetric Span Morphing -- |g 3.2. |t Asymmetric Span Morphing -- |g 4. |t Implementation Challenges -- |g 4.1. |t Telescopic Wings -- |g 4.2. |t Hinged Structures -- |g 4.3. |t Twin Spars -- |g 5. |t Conclusions -- |t Acknowledgments -- |t References -- |g ch. 5 |t Adjoint-Based Aerodynamic Shape Optimization Applied to Morphing Technology on a Regional Aircraft Wing -- |g 1. |t Introduction -- |g 2. |t Handling of Morphing Shape Changes in a CFD Context -- |g 2.1. |t Context of the Study -- |g 2.2. |t Discrete Model of Displacement Field at the Trailing Edge -- |g 2.3. |t 3D CFD Mesh Deformation Technique -- |g 3. |t CFD Evaluation and Far-Field Drag Analysis Over a Wing Equipped with a Morphing System -- |g 3.1. |t Finite-Volume Solver for the RANS Equations in elsA -- |g 3.2. |t Far-Field Drag Extraction Tool -- |g 4. |t Sensitivity Analysis Using a Discrete Adjoint of the RANS Equations -- |g 4.1. |t Residual and Objective Function Dependencies -- |g 4.2. |t Discrete Adjoint Method in elsA -- |g 5. |t Local Shape Optimization Technique -- |g 5.1. |t Definition of the Problem -- |g 5.2. |t Method of Feasible Directions -- |g 5.3. |t 2D Example: The Rosenbrock's Function Constrained by a Disk -- |g 6. |t Aerodynamic Shape Optimization of Morphing System: An Application Within the EU Project SARISTU -- |g 6.1. |t Optimization Problem -- |g 6.2. |t Optimization Loop Presentation -- |g 6.3. |t First Optimization -- |g 6.4. |t Second Optimization -- |g 6.5. |t Expectations on Morphing Technology -- |g 7. |t Conclusion -- |t References -- |t Further Reading -- |g ch. 6 |t Expected Performances -- |g 1. |t Introduction -- |g 2. |t Reference Aircraft -- |g 3. |t Active Camber Using Conventional Control Surfaces -- |g 3.1. |t Five Panels Over the Flap Region -- |g 4. |t Coupled Aerostructural Shape Optimization -- |g 4.1. |t Morphing Leading Edge -- |g 4.2. |t Morphing Trailing Edge -- |g 5. |t Fuel Savings -- |g 6. |t High-Fidelity Aerodynamic Analysis -- |g 6.1. |t Leading Edge Morphing -- |g 6.2. |t Trailing Edge Morphing -- |g 7. |t Weight Saving -- |g 7.1. |t Morphing Devices -- |g 8. |t Benefit Exploitation in the Transport Aircraft Design -- |g 9. |t Conclusions -- |t Acknowledgments -- |t References -- |g ch. 7 |t Morphing Skin: Foams -- |g 1. |t Introduction -- |g 2. |t Design Principles -- |g 3. |t Low Temperature Elastomers -- |g 4. |t Material Properties of HYPERFLEX -- |g 5. |t Properties of Bonded Joints -- |g 6. |t Properties of Morphing Skin -- |g 7. |t Skin Manufacturing -- |g 8. |t Summary and Conclusions -- |t References -- |g ch. 8 |t Design of Skin Panels for Morphing Wings in Lattice Materials -- |g 1. |t Introduction -- |g 2. |t Requirements for the Skin of a Morphing Wing -- |g 3. |t Methodology for Nonlinear Homogenization of Periodic Structures -- |g 4. |t Mechanical Properties of Skin Panels in Lattice Material -- |g 4.1. |t Analysis of Selected Lattice Topologies -- |g 4.2. |t Design Space of the Chevron Lattice -- |g 5. |t Conclusions -- |t References -- |g ch. 9 |t Composite Corrugated Laminates for Morphing Applications -- |g 1. |t Introduction -- |g 2. |t Types of Corrugated Laminates -- |g 3. |t Anisotropy and Stiffness Properties in Morphing Direction -- |g 3.1. |t Anisotropy Indices of Stiffness Properties -- |g 3.2. |t Compliance in Morphing Directions of Different Types of Composite Corrugated Laminates -- |g 4. |t Strength and Stiffness Contributions in Nonmorphing Directions -- |g 4.1. |t Failure Modes of Composite Corrugated Laminates and Strain Limits -- |g 4.2. |t Evaluation of Structural Stiffness Contribution in Nonmorphing Directions -- |g 5. |t Manufacturing of Composite Corrugated Laminates -- |g 6. |t Development of Aerodynamically Efficient Morphing Skins -- |g 6.1. |t Aerodynamic Issues in the Application of Composite Corrugated Laminates -- |g 6.2. |t Performance Index Based on Ratio Between Bending and Axial Compliance -- |g 6.3. |t Integration of an Elastomertic Cover on a Square-Shaped Corrugated Laminate -- |g 7. |t Conclusions -- |t References -- |g ch. 10 |t Active Metal Structures -- |g 1. |t Introduction -- |g 2. |t Morphing Oriented Kinematic Chains: Working Principles and Design Approaches -- |g 2.1. |t Spar Caps Section Area at Generic Cross-section -- |g 2.2. |t Spars Webs, Skin Panels, Rib Plate Thickness at Generic Cross-Section -- |g 3. |t Compliant Mechanisms: Working Principles and Design Approaches -- |g 4. |t Applications of Morphing Oriented Kinematic Chains -- |g 4.1. |t Morphing Concept Overview -- |g 4.2. |t Structural Analyses -- |g 5. |t Applications of the Compliant Mechanism Approach -- |g 5.1. |t Arc-Based Flap, Actuated by SMA Active Elements -- |g 5.2. |t X-Cell Architecture for a Single Slotted Flap -- |g 6. |t Conclusions -- |t References -- |g ch. |
505 | 0 | 0 | |t 11 |t Sensor Systems for Smart Architectures -- |g 1. |t Introduction -- |g 2. |t Strain Sensors -- |g 2.1. |t Strain Gauge Foils -- |g 2.2. |t Piezoelectric Devices -- |g 2.3. |t Graphene-Based Polymers -- |g 2.4. |t Fiber Optics -- |g 3. |t Sensor Systems for Large Scale Integration -- |g 3.1. |t Wireless Technology -- |g 3.2. |t Sprayed Technology -- |g 3.3. |t Distributed Technology -- |g 3.4. |t Some Installation Issues -- |g 4. |t Case Studies -- |g 4.1. |t Shape Reconstruction of a Variable Camber Wing Trailing Edge -- |g 4.2. |t Damage and Load Monitoring -- |g 4.3. |t Rotation Angle Monitoring -- |g 5. |t Conclusions and Perspectives -- |t References -- |g ch. 12 |t Control Techniques for a Smart Actuated Morphing Wing Model: Design, Numerical Simulation and Experimental Validation -- |g 1. |t Introduction -- |g 2. |t Project Background -- |g 3. |t General Structures of the Open Loop and Closed Loop Control Architectures -- |g 4. |t Open Loop Controllers -- |g 4.1. |t Fuzzy Logic PD Controller -- |g 4.2. |t Combined On-Off and PID Fuzzy Logic Controller -- |g 4.3. |t Combined On-Off and Cascade PD-PI Fuzzy Logic Controller -- |g 4.4. |t Combined On-Off and Self-Tuning Fuzzy Logic Controller -- |g 5. |t Optimized Closed Loop Control Method -- |g 6. |t Conclusions -- |t Acknowledgments -- |t References -- |g ch. 13 |t Influence of the Elastic Constraint on the Functionality of Integrated Morphing Devices -- |g 1. |t Introduction -- |g 2. |t Features of the FE Models -- |g 2.1. |t LE Modeling Strategy -- |g 2.2. |t TE Modeling Strategy -- |g 2.3. |t WL Modeling Strategy -- |g 3. |t Isolated Devices Behavior -- |g 4. |t Global Stiffness of the Outer Wing Box -- |g 5. |t Effects of the Actuation of the Morphing Devices -- |g 5.1. |t Cross Effects -- |g 5.2. |t Effects on the Wing Box -- |g 6. |t Conclusions and Further Steps -- |t References -- |g ch. 14 |t Application of the Extra-Modes Method to the Aeroelastic Analysis of Morphing Wing Structures -- |g 1. |t Introduction -- |g 2. |t Aeroelastic Equilibrium Equation and Stability -- |g 3. |t Extra-Modes Formulation -- |g 4. |t Aeroelastic Analyses of Morphing Wings Using the Extra-Modes Method -- |g 4.1. |t Effectiveness of Wing Twist Morphing as Roll Control Strategy -- |g 4.2. |t Trade-Off Flutter Analysis of a Morphing Wing Trailing Edge -- |g 5. |t Conclusions -- |t Bibliography -- |g ch. 15 |t Stress Analysis of a Morphing System -- |g 1. |t Introduction -- |g 2. |t Design of a Morphing Structure. |
505 | 0 | 0 | |g Note continued: |g 3. |t Finite Element Modeling of Morphing Structures -- |g 3.1. |t Rib and Spars -- |g 3.2. |t Fasteners -- |g 3.3. |t Skin -- |g 3.4. |t Actuation System -- |g 4. |t Design Loads and Constraints -- |g 5. |t Structural Design and Simulations -- |g 5.1. |t Static Analysis at Limit and Ultimate Loads: Linear and Nonlinear Analysis -- |g 5.2. |t Stress Analysis -- |g 5.3. |t Buckling Analysis -- |g 5.4. |t Modal Analysis -- |g 6. |t Stress Margins of Safety -- |g 6.1. |t Solid Parts -- |g 6.2. |t Internal Connections -- |g 7. |t Conclusions -- |t References -- |t Further Readings -- |g ch. 16 |t Morphing of the Leading Edge -- |g 1. |t Summary -- |g 2. |t Introduction -- |g 3. |t Conceptual Approach to the Morphing of the Leading Edge -- |g 4. |t Working Principle of the Architecture Selected to Produce the Drop Nose Effect -- |g 5. |t Architecture Design -- |g 5.1. |t Identification of the Kinematic Chain in the Rib Plane -- |g 5.2. |t Topologic Optimization of the In-Plane Rib Architecture -- |g 5.3. |t Spanwise Architecture and Actuation Design -- |g 5.4. |t Modelling and Working Simulation of the Complete Architecture -- |g 6. |t Prototyping -- |g 7. |t Experimental Campaign -- |g 7.1. |t Setup -- |g 7.2. |t Experimental Results -- |g 7.3. |t Numerical-Experimental Comparison -- |g 8. |t Conclusions and Further Steps -- |t References -- |g ch. 17 |t Adaptive Trailing Edge -- |g 1. |t Introduction -- |g 2. |t Concept -- |g 2.1. |t Layout -- |g 3. |t Design -- |g 3.1. |t Design Loads -- |g 3.2. |t Structural Sizing -- |g 3.3. |t Actuator Selection -- |g 3.4. |t Results -- |g 4. |t Safety and Reliability Aspects -- |g 4.1. |t Generalities -- |g 4.2. |t Distributed Actuation -- |g 4.3. |t ATED Function -- |g 4.4. |t Fault Hazard Assessment -- |g 4.5. |t Functional Hazard Assessment -- |g 5. |t Discussion: Implementation on Real Aircraft -- |g 5.1. |t System Development -- |g 5.2. |t Operational Aspects -- |g 5.3. |t Aeroelastic Issues -- |g 6. |t Conclusions and Future Developments -- |t Acknowledgments -- |t References -- |t Further Reading -- |g ch. 18 |t Morphing Aileron -- |g 1. |t Introduction -- |g 2. |t Conceptual Approach -- |g 3. |t Working Principle and T/A Architecture -- |g 4. |t Actuation System Design -- |g 5. |t Numerical Simulations -- |g 5.1. |t Interface Load -- |g 6. |t Prototyping -- |g 7. |t Experimental Tests and Main Outcome -- |g 7.1. |t GVT and Numerical Correlation -- |g 7.2. |t Functionality Test -- |g 7.3. |t Experimental Shapes -- |g 8. |t Wind Tunnel Tests -- |g 9. |t Conclusions -- |t References -- |g ch. 19 |t Morphing Technology for Advanced Future Commercial Aircrafts -- |g 1. |t Introduction -- |g 2. |t ATED Manufacturing -- |g 2.1. |t Morphing System -- |g 2.2. |t Manufacturing -- |g 2.3. |t Assembly -- |g 2.4. |t Test Campaign -- |g 2.5. |t Conclusions -- |g 3. |t Other Experiences -- |g 3.1. |t 3AS Project -- |g 3.2. |t CURVED Project -- |g 4. |t Future Studies-The Morphing Rudder -- |g 4.1. |t Synthesis -- |g 4.2. |t Manufacturing Challenges -- |g 4.3. |t Lateral Directional Stability Analysis -- |g 5. |t Conclusions -- |t References -- |t Further Reading -- |g ch. 20 |t Morphing Wing Integration -- |g 1. |t Introduction -- |g 2. |t Demonstrator Components -- |g 2.1. |t Wing Box Primary Structure -- |g 2.2. |t Leading Edge -- |g 2.3. |t Trailing Edge -- |g 2.4. |t Winglet -- |g 3. |t Conditions of Assembly -- |g 4. |t Jig -- |g 5. |t Equipment and Tooling -- |g 6. |t Demonstrator Assembly -- |g 6.1. |t Assembly of the Wing Box -- |g 6.2. |t Morphing Systems Installation: The Leading Edge -- |g 6.3. |t Morphing Systems Installation: The Trailing Edge -- |g 6.4. |t Morphing Systems Installation: The Winglet -- |g 7. |t FBG Sensor Network -- |g 8. |t Conclusions -- |t Acknowledgments -- |t References -- |g ch. 21 |t Morphing Devices: Safety, Reliability, and Certification Prospects -- |g 1. |t Introduction -- |g 2. |t System Level Approaches to the Certification of Morphing Wing Devices -- |g 2.1. |t Adaptive Droop Nose -- |g 2.2. |t Adaptive Trailing Edge Device -- |g 2.3. |t Morphing Winglet -- |g 2.4. |t Defining the System Level Functions of Morphing Devices -- |g 2.5. |t Dual Level Safety -- |g 3. |t Functional Hazard Assessment -- |g 4. |t Dual-Level Approach for the FTA of a Morphing Wing -- |g 5. |t Common Cause Analyses -- |g 5.1. |t Particular Risk Analysis -- |g 5.2. |t Common Mode Analysis -- |g 5.3. |t Zonal Safety Analysis -- |g 6. |t Conclusions -- |t References -- |g ch. 22 |t On the Experimental Characterization of Morphing Structures -- |g 1. |t Introduction -- |g 2. |t Testing Practices for Morphing Systems -- |g 2.1. |t Morphing Trailing Edge Device -- |g 3. |t Unit Tests: From Component to Morphing System Verification -- |g 3.1. |t Skin Over Dummy -- |g 3.2. |t Actuators Over Dummy -- |g 3.3. |t Control System Over Dummy -- |g 3.4. |t Control System Over Skinned Dummy -- |g 3.5. |t Complete System -- |g 4. |t System Integration Test Bench for Morphing Systems -- |g 5. |t Full-Scale Testing -- |g 5.1. |t Shape Control of Adaptive Wings -- |g 5.2. |t Wing Shape Controller Strategies and Experimental Verification -- |g 6. |t Conclusions -- |t References -- |g ch. 23 |t Wind Tunnel Testing of Adaptive Wing Structures -- |g 1. |t Introduction -- |g 1.1. |t General Test Procedure for the Morphing Item -- |g 2. |t 3AS -- |g 2.1. |t Requirements for the EURAM and Experimental Facilities -- |g 2.2. |t Model Design and Manufacture -- |g 2.3. |t Laboratory Tests -- |g 2.4. |t Aeroelastic Wing Tip Controls Concept -- |g 2.5. |t All-Movable Vertical Tail Concept -- |g 2.6. |t Selective Deformable Structure Concept -- |g 3. |t SADE -- |g 3.1. |t Wing Demonstrator -- |g 3.2. |t Videogrammetry Method of Deformation Measuring -- |g 3.3. |t Test Object and Experimental Facility -- |g 3.4. |t Measuring Process and Data Handling -- |g 4. |t SARISTU -- |g 4.1. |t Objectives of the Wind Tunnel Test -- |g 4.2. |t Ground Vibration Test and Flutter Expansion Test -- |g 4.3. |t Load Measurements -- |g 4.4. |t Calculations of Wing Demo Aerodynamics in T-104 WT -- |g 4.5. |t Deformations Measurements of the Wing with Elastic Controls in WT T-104 Flow -- |g 5. |t Conclusions -- |t Acknowledgments -- |t References -- |g ch. 24 |t Rotary Wings Morphing Technologies: State of the Art and Perspectives -- |g 1. |t Introduction -- |g 2. |t Overview of Rotor Morphing Technologies -- |g 2.1. |t Trailing Edge Flaps -- |g 2.2. |t Active and Variable Twist -- |g 2.3. |t Variable Span -- |g 2.4. |t Emerging Rotor Morphing Technologies -- |g 3. |t Critical Review of Some Significant Efforts -- |g 3.1. |t Active Trailing and Leading Edge Devices -- |g 3.2. |t Individual Blade Control -- |g 3.3. |t Active Twist -- |g 3.4. |t Variable Span -- |g 3.5. |t Slowed/Stopped Rotor -- |g 4. |t Conclusions -- |t References -- |g ch. 25 |t Aerodynamic Analyses of Tiltrotor Morphing Blades -- |g 1. |t Introduction -- |g 2. |t Aim and Structure of the Chapter -- |g 3. |t Research Context -- |g 4. |t Outline of Methods and Numerical Tools -- |g 4.1. |t Integration and Optimization Environment -- |g 4.2. |t MDA Procedures and Optimization Processes -- |g 4.3. |t BEMT Analysis -- |g 4.4. |t CFD Driven Analysis -- |g 4.5. |t Blade Parameterization -- |g 4.6. |t Airfoil Selection -- |g 4.7. |t Surface Grid Generation -- |g 4.8. |t Volume Grid Generation -- |g 5. |t Background -- |g 6. |t Case Study -- |g 6.1. |t Description of Activities -- |g 6.2. |t Baseline Geometry -- |g 6.3. |t Optimization Objectives and Strategy -- |g 7. |t Un-Morphed Blades -- |g 8. |t Morphing Blades -- |g 8.1. |t Blade Span Morphing and Variable Speed Rotor -- |g 8.2. |t Blade Section Morphing -- |g 9. |t Conclusions -- |t References -- |g ch. 26 |t Synergic Effects of Passive and Active Ice Protection Systems -- |g 1. |t Introduction -- |g 2. |t Pros and Cons of Considered IPS -- |g 2.1. |t Thermoelectric IPS -- |g 2.2. |t Low-Power Consuming Piezoelectric Deicing Systems -- |g 2.3. |t Hydrophobic Coatings -- |g 2.4. |t Alternative Strategy Based on a Hybrid Approach -- |g 3. |t Design and Realization of the IPS -- |g 3.1. |t Hydrophobic Coating Design and Process Assessment -- |g 3.2. |t Thermoelectric System Design and Ice Shedding Prediction -- |g 3.3. |t Piezoelectric IPS Sizing and Parameters Assessment -- |g 4. |t Experimental Validation -- |g 4.1. |t First WT Test Campaign -- |g 4.2. |t Second WT Test Campaign -- |g 5. |t Conclusions -- |t Acknowledgment -- |t References -- |t Further Reading -- |g ch. |
505 | 0 | 0 | |t 27 |t Helicopter Vibration Reduction -- |g 1. |t Introduction -- |g 2. |t NextGen Vibration Levels -- |g 3. |t Vibration Specifications -- |g 4. |t Source of Helicopter Vibratory Loads -- |g 5. |t How Do Vibratory Loads Get Into the Fuselage? -- |g 6. |t What Is Used for Vibration Control Now? -- |g 6.1. |t Why Not Isolation? -- |g 6.2. |t Venerable Frahm -- |g 6.3. |t Fuselage-Based Frahms -- |g 6.4. |t Rotor-Based Frahms -- |g 6.5. |t Frahms Are Heavy -- |g 6.6. |t Active Vibration Control -- |g 6.7. |t Dynamic Antiresonant Vibration Isolator -- |g 7. |t More Problems With Frahms -- |g 8. |t Active Counter-Force -- |g 8.1. |t Higher Harmonic Control -- |g 9. |t Individual Blade Control -- |g 9.1. |t Hydraulic IBC -- |g 9.2. |t Electrical IBC -- |g 9.3. |t On-Blade Flaps -- |g 10. |t Path Forward -- |t Acknowledgments -- |t References. |
504 | |a Includes bibliographical references at the end of each chapters and index. | ||
650 | 0 | |a Airplanes |x Wings |x Design. | |
650 | 0 | |a Vertically rising aircraft |x Wings |x Design. | |
650 | 0 | |a Airplanes |x Wings. |0 http://id.loc.gov/authorities/subjects/sh85002923 | |
650 | 0 | |a Vertically rising aircraft. |0 http://id.loc.gov/authorities/subjects/sh85142914 | |
650 | 6 | |a Avions |x Ailes. | |
650 | 6 | |a Avions à décollage et atterrissage verticaux. | |
650 | 7 | |a vertical take-off and landing aircraft. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Engineering (General) |2 bisacsh | |
650 | 7 | |a Airplanes |x Wings |x Design |2 fast | |
700 | 1 | |a Concilio, Antonio, |d 1964- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjtTCwkF7RT8drtGBPYWrC |0 http://id.loc.gov/authorities/names/nb2014028177 | |
700 | 1 | |a Dimino, Ignazio, |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjChCqh4vxFmryVxp3vgGb |0 http://id.loc.gov/authorities/names/n2015013333 | |
700 | 1 | |a Lecce, Leonardo, |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjxMPDkM73jf9m6mcQFmQy |0 http://id.loc.gov/authorities/names/nb2014028174 | |
700 | 1 | |a Pecora, Rosario, |e editor. |1 https://id.oclc.org/worldcat/entity/E39PCjGgg9rXdjb4TtxfYFXw4q |0 http://id.loc.gov/authorities/names/no2018045346 | |
758 | |i has work: |a Morphing wing technologies (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG3k8jBTFmpqYxTqDGRD4q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1144990 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780081009642 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 1144990 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis39146122 | ||
938 | |a YBP Library Services |b YANK |n 14922721 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1007290487 |
---|---|
_version_ | 1816882403769057280 |
adam_text | |
any_adam_object | |
author2 | Concilio, Antonio, 1964- Dimino, Ignazio Lecce, Leonardo Pecora, Rosario |
author2_role | edt edt edt edt |
author2_variant | a c ac i d id l l ll r p rp |
author_GND | http://id.loc.gov/authorities/names/nb2014028177 http://id.loc.gov/authorities/names/n2015013333 http://id.loc.gov/authorities/names/nb2014028174 http://id.loc.gov/authorities/names/no2018045346 |
author_facet | Concilio, Antonio, 1964- Dimino, Ignazio Lecce, Leonardo Pecora, Rosario |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TL672 |
callnumber-raw | TL672 |
callnumber-search | TL672 |
callnumber-sort | TL 3672 |
callnumber-subject | TL - Motor Vehicles and Aeronautics |
collection | ZDB-4-EBA |
contents | Historical Background and Current Scenario -- Introduction -- Components of a Wing Morphing Structural System -- Structural Skeleton -- Actuation Systems -- Skin -- Control System -- Cabling -- Assembly -- Main Challenges -- Skins -- Sensor Systems -- Back to the Past -- Wright's Flyer -- Plane and the Like for Aeroplanes -- Parker's Wing -- Modern Times -- NASA Studies -- DGLR Studies -- Mission Adaptive Wing -- Further NASA Studies -- Recent Activities-United States -- Adaptive Wing Reborn: SMAs -- DARPA Smart Wing Program -- DARPA Morphing Aircraft Structures Program -- Recent Activities-Europe -- ADIF -- Clean Sky -- Current Scenario -- Airbus-SARISTU (Smart Intelligent Aircraft Structures) -- Boeing-Adaptive Wing -- Flexsys and Gulfstream -- Tradition at the University of Napoli and CIRA -- Adaptive Airfoil -- Hinge-Less Wing -- Smartflap -- SADE -- Clean Sky-JTI-GRA-Low Noise -- EU-SARISTU -- Adaptive Aileron -- Future Perspectives -- Safe Design -- Skins and Fillers -- Direct Actuation: The Use of Smart Materials -- Wireless, Distributed Sensing -- Control System Architecture -- Cybernetics and Robotics -- Acknowledgments -- References -- University of Napoli and CIRA International Awards -- Aircraft Morphing-An Industry Vision -- Current Aircraft Capabilities -- Interest of Industry -- Some Considerations About Industry Aerodynamic Design Process -- Expected Performance Targets -- Manufacturing: New Materials and Controlled Industrial Processes -- Assembly and Quality: Automation and Integrated Parts -- Maintenance: Assessed Steps and Personnel Training -- Safety: Assessed Methods for Standard Architectures -- Current and Expected Needs -- Technology Transition -- Mission Configurable Wing -- Improved Flaps and Ailerons -- Morphing as a Solution -- Wing and Control Surface Feasible Solutions -- Some Specific Requirements -- Conclusions -- Development of Morphing Aircraft Benefit Assessment -- Experiments as Basis for Morphing Progress -- Advent of Transonic Methods -- Automated Methods as Enabler for Large Scale Studies -- Reintroduction of Flexible Materials -- Final Step to Industrial Application -- Span Morphing Concept: An Overview -- Effects of Span Increase -- Aerodynamic Effects -- Structural Effects -- Stability and Control Effects -- Span Morphing Concepts and Aircraft Performance -- Symmetric Span Morphing -- Asymmetric Span Morphing -- Implementation Challenges -- Telescopic Wings -- Hinged Structures -- Twin Spars -- Adjoint-Based Aerodynamic Shape Optimization Applied to Morphing Technology on a Regional Aircraft Wing -- Handling of Morphing Shape Changes in a CFD Context -- Context of the Study -- Discrete Model of Displacement Field at the Trailing Edge -- 3D CFD Mesh Deformation Technique -- CFD Evaluation and Far-Field Drag Analysis Over a Wing Equipped with a Morphing System -- Finite-Volume Solver for the RANS Equations in elsA -- Far-Field Drag Extraction Tool -- Sensitivity Analysis Using a Discrete Adjoint of the RANS Equations -- Residual and Objective Function Dependencies -- Discrete Adjoint Method in elsA -- Local Shape Optimization Technique -- Definition of the Problem -- Method of Feasible Directions -- 2D Example: The Rosenbrock's Function Constrained by a Disk -- Aerodynamic Shape Optimization of Morphing System: An Application Within the EU Project SARISTU -- Optimization Problem -- Optimization Loop Presentation -- First Optimization -- Second Optimization -- Expectations on Morphing Technology -- Conclusion -- Further Reading -- Expected Performances -- Reference Aircraft -- Active Camber Using Conventional Control Surfaces -- Five Panels Over the Flap Region -- Coupled Aerostructural Shape Optimization -- Morphing Leading Edge -- Morphing Trailing Edge -- Fuel Savings -- High-Fidelity Aerodynamic Analysis -- Leading Edge Morphing -- Trailing Edge Morphing -- Weight Saving -- Morphing Devices -- Benefit Exploitation in the Transport Aircraft Design -- Morphing Skin: Foams -- Design Principles -- Low Temperature Elastomers -- Material Properties of HYPERFLEX -- Properties of Bonded Joints -- Properties of Morphing Skin -- Skin Manufacturing -- Summary and Conclusions -- Design of Skin Panels for Morphing Wings in Lattice Materials -- Requirements for the Skin of a Morphing Wing -- Methodology for Nonlinear Homogenization of Periodic Structures -- Mechanical Properties of Skin Panels in Lattice Material -- Analysis of Selected Lattice Topologies -- Design Space of the Chevron Lattice -- Composite Corrugated Laminates for Morphing Applications -- Types of Corrugated Laminates -- Anisotropy and Stiffness Properties in Morphing Direction -- Anisotropy Indices of Stiffness Properties -- Compliance in Morphing Directions of Different Types of Composite Corrugated Laminates -- Strength and Stiffness Contributions in Nonmorphing Directions -- Failure Modes of Composite Corrugated Laminates and Strain Limits -- Evaluation of Structural Stiffness Contribution in Nonmorphing Directions -- Manufacturing of Composite Corrugated Laminates -- Development of Aerodynamically Efficient Morphing Skins -- Aerodynamic Issues in the Application of Composite Corrugated Laminates -- Performance Index Based on Ratio Between Bending and Axial Compliance -- Integration of an Elastomertic Cover on a Square-Shaped Corrugated Laminate -- Active Metal Structures -- Morphing Oriented Kinematic Chains: Working Principles and Design Approaches -- Spar Caps Section Area at Generic Cross-section -- Spars Webs, Skin Panels, Rib Plate Thickness at Generic Cross-Section -- Compliant Mechanisms: Working Principles and Design Approaches -- Applications of Morphing Oriented Kinematic Chains -- Morphing Concept Overview -- Structural Analyses -- Applications of the Compliant Mechanism Approach -- Arc-Based Flap, Actuated by SMA Active Elements -- X-Cell Architecture for a Single Slotted Flap -- 11 Sensor Systems for Smart Architectures -- Strain Sensors -- Strain Gauge Foils -- Piezoelectric Devices -- Graphene-Based Polymers -- Fiber Optics -- Sensor Systems for Large Scale Integration -- Wireless Technology -- Sprayed Technology -- Distributed Technology -- Some Installation Issues -- Case Studies -- Shape Reconstruction of a Variable Camber Wing Trailing Edge -- Damage and Load Monitoring -- Rotation Angle Monitoring -- Conclusions and Perspectives -- Control Techniques for a Smart Actuated Morphing Wing Model: Design, Numerical Simulation and Experimental Validation -- Project Background -- General Structures of the Open Loop and Closed Loop Control Architectures -- Open Loop Controllers -- Fuzzy Logic PD Controller -- Combined On-Off and PID Fuzzy Logic Controller -- Combined On-Off and Cascade PD-PI Fuzzy Logic Controller -- Combined On-Off and Self-Tuning Fuzzy Logic Controller -- Optimized Closed Loop Control Method -- Influence of the Elastic Constraint on the Functionality of Integrated Morphing Devices -- Features of the FE Models -- LE Modeling Strategy -- TE Modeling Strategy -- WL Modeling Strategy -- Isolated Devices Behavior -- Global Stiffness of the Outer Wing Box -- Effects of the Actuation of the Morphing Devices -- Cross Effects -- Effects on the Wing Box -- Conclusions and Further Steps -- Application of the Extra-Modes Method to the Aeroelastic Analysis of Morphing Wing Structures -- Aeroelastic Equilibrium Equation and Stability -- Extra-Modes Formulation -- Aeroelastic Analyses of Morphing Wings Using the Extra-Modes Method -- Effectiveness of Wing Twist Morphing as Roll Control Strategy -- Trade-Off Flutter Analysis of a Morphing Wing Trailing Edge -- Bibliography -- Stress Analysis of a Morphing System -- Design of a Morphing Structure. Finite Element Modeling of Morphing Structures -- Rib and Spars -- Fasteners -- Actuation System -- Design Loads and Constraints -- Structural Design and Simulations -- Static Analysis at Limit and Ultimate Loads: Linear and Nonlinear Analysis -- Stress Analysis -- Buckling Analysis -- Modal Analysis -- Stress Margins of Safety -- Solid Parts -- Internal Connections -- Further Readings -- Morphing of the Leading Edge -- Summary -- Conceptual Approach to the Morphing of the Leading Edge -- Working Principle of the Architecture Selected to Produce the Drop Nose Effect -- Architecture Design -- Identification of the Kinematic Chain in the Rib Plane -- Topologic Optimization of the In-Plane Rib Architecture -- Spanwise Architecture and Actuation Design -- Modelling and Working Simulation of the Complete Architecture -- Prototyping -- Experimental Campaign -- Setup -- Experimental Results -- Numerical-Experimental Comparison -- Adaptive Trailing Edge -- Concept -- Layout -- Design -- Design Loads -- Structural Sizing -- Actuator Selection -- Results -- Safety and Reliability Aspects -- Generalities -- Distributed Actuation -- ATED Function -- Fault Hazard Assessment -- Functional Hazard Assessment -- Discussion: Implementation on Real Aircraft -- System Development -- Operational Aspects -- Aeroelastic Issues -- Conclusions and Future Developments -- Morphing Aileron -- Conceptual Approach -- Working Principle and T/A Architecture -- Actuation System Design -- Numerical Simulations -- Interface Load -- Experimental Tests and Main Outcome -- GVT and Numerical Correlation -- Functionality Test -- Experimental Shapes -- Wind Tunnel Tests -- Morphing Technology for Advanced Future Commercial Aircrafts -- ATED Manufacturing -- Morphing System -- Manufacturing -- Test Campaign -- Other Experiences -- 3AS Project -- CURVED Project -- Future Studies-The Morphing Rudder -- Synthesis -- Manufacturing Challenges -- Lateral Directional Stability Analysis -- Morphing Wing Integration -- Demonstrator Components -- Wing Box Primary Structure -- Leading Edge -- Trailing Edge -- Winglet -- Conditions of Assembly -- Jig -- Equipment and Tooling -- Demonstrator Assembly -- Assembly of the Wing Box -- Morphing Systems Installation: The Leading Edge -- Morphing Systems Installation: The Trailing Edge -- Morphing Systems Installation: The Winglet -- FBG Sensor Network -- Morphing Devices: Safety, Reliability, and Certification Prospects -- System Level Approaches to the Certification of Morphing Wing Devices -- Adaptive Droop Nose -- Adaptive Trailing Edge Device -- Morphing Winglet -- Defining the System Level Functions of Morphing Devices -- Dual Level Safety -- Dual-Level Approach for the FTA of a Morphing Wing -- Common Cause Analyses -- Particular Risk Analysis -- Common Mode Analysis -- Zonal Safety Analysis -- On the Experimental Characterization of Morphing Structures -- Testing Practices for Morphing Systems -- Morphing Trailing Edge Device -- Unit Tests: From Component to Morphing System Verification -- Skin Over Dummy -- Actuators Over Dummy -- Control System Over Dummy -- Control System Over Skinned Dummy -- Complete System -- System Integration Test Bench for Morphing Systems -- Full-Scale Testing -- Shape Control of Adaptive Wings -- Wing Shape Controller Strategies and Experimental Verification -- Wind Tunnel Testing of Adaptive Wing Structures -- General Test Procedure for the Morphing Item -- 3AS -- Requirements for the EURAM and Experimental Facilities -- Model Design and Manufacture -- Laboratory Tests -- Aeroelastic Wing Tip Controls Concept -- All-Movable Vertical Tail Concept -- Selective Deformable Structure Concept -- Wing Demonstrator -- Videogrammetry Method of Deformation Measuring -- Test Object and Experimental Facility -- Measuring Process and Data Handling -- SARISTU -- Objectives of the Wind Tunnel Test -- Ground Vibration Test and Flutter Expansion Test -- Load Measurements -- Calculations of Wing Demo Aerodynamics in T-104 WT -- Deformations Measurements of the Wing with Elastic Controls in WT T-104 Flow -- Rotary Wings Morphing Technologies: State of the Art and Perspectives -- Overview of Rotor Morphing Technologies -- Trailing Edge Flaps -- Active and Variable Twist -- Variable Span -- Emerging Rotor Morphing Technologies -- Critical Review of Some Significant Efforts -- Active Trailing and Leading Edge Devices -- Individual Blade Control -- Active Twist -- Slowed/Stopped Rotor -- Aerodynamic Analyses of Tiltrotor Morphing Blades -- Aim and Structure of the Chapter -- Research Context -- Outline of Methods and Numerical Tools -- Integration and Optimization Environment -- MDA Procedures and Optimization Processes -- BEMT Analysis -- CFD Driven Analysis -- Blade Parameterization -- Airfoil Selection -- Surface Grid Generation -- Volume Grid Generation -- Background -- Case Study -- Description of Activities -- Baseline Geometry -- Optimization Objectives and Strategy -- Un-Morphed Blades -- Morphing Blades -- Blade Span Morphing and Variable Speed Rotor -- Blade Section Morphing -- Synergic Effects of Passive and Active Ice Protection Systems -- Pros and Cons of Considered IPS -- Thermoelectric IPS -- Low-Power Consuming Piezoelectric Deicing Systems -- Hydrophobic Coatings -- Alternative Strategy Based on a Hybrid Approach -- Design and Realization of the IPS -- Hydrophobic Coating Design and Process Assessment -- Thermoelectric System Design and Ice Shedding Prediction -- Piezoelectric IPS Sizing and Parameters Assessment -- Experimental Validation -- First WT Test Campaign -- Second WT Test Campaign -- Acknowledgment -- 27 Helicopter Vibration Reduction -- NextGen Vibration Levels -- Vibration Specifications -- Source of Helicopter Vibratory Loads -- How Do Vibratory Loads Get Into the Fuselage? -- What Is Used for Vibration Control Now? -- Why Not Isolation? -- Venerable Frahm -- Fuselage-Based Frahms -- Rotor-Based Frahms -- Frahms Are Heavy -- Active Vibration Control -- Dynamic Antiresonant Vibration Isolator -- More Problems With Frahms -- Active Counter-Force -- Higher Harmonic Control -- Hydraulic IBC -- Electrical IBC -- On-Blade Flaps -- Path Forward -- References. |
ctrlnum | (OCoLC)1007290487 |
dewey-full | 629.134/32 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.134/32 |
dewey-search | 629.134/32 |
dewey-sort | 3629.134 232 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Verkehr / Transport |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>22869cam a2200673 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1007290487</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">171024t20182018maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OPELS</subfield><subfield code="d">UPM</subfield><subfield code="d">YDX</subfield><subfield code="d">VLB</subfield><subfield code="d">STF</subfield><subfield code="d">ZCU</subfield><subfield code="d">D6H</subfield><subfield code="d">KNOVL</subfield><subfield code="d">INU</subfield><subfield code="d">ERL</subfield><subfield code="d">DKU</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UHL</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">Q2U</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1113808957</subfield><subfield code="a">1162117884</subfield><subfield code="a">1227635543</subfield><subfield code="a">1259586850</subfield><subfield code="a">1289380463</subfield><subfield code="a">1316234156</subfield><subfield code="a">1317378965</subfield><subfield code="a">1327773040</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081009697</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0081009690</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">008100964X</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081009642</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780081009642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1007290487</subfield><subfield code="z">(OCoLC)1113808957</subfield><subfield code="z">(OCoLC)1162117884</subfield><subfield code="z">(OCoLC)1227635543</subfield><subfield code="z">(OCoLC)1259586850</subfield><subfield code="z">(OCoLC)1289380463</subfield><subfield code="z">(OCoLC)1316234156</subfield><subfield code="z">(OCoLC)1317378965</subfield><subfield code="z">(OCoLC)1327773040</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TL672</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">629.134/32</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Morphing wing technologies :</subfield><subfield code="b">large commercial aircraft and civil helicopters /</subfield><subfield code="c">edited by Antonio Concilio, Ignazio Dimino, Leonardo Lecce, Rosario Pecora.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, MA :</subfield><subfield code="b">Butterworth-Heinemann,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">color illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (Ebsco, viewed October 25, 2017).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Morphing Wings Technologies: Large Commercial Aircraft and Civil Helicopters offers a fresh look at current research on morphing aircraft, including industry design, real manufactured prototypes and certification. This is an invaluable reference for students in the aeronautics and aerospace fields who need an introduction to the morphing discipline, as well as senior professionals seeking exposure to morphing potentialities. Practical applications of morphing devices are presented-from the challenge of conceptual design incorporating both structural and aerodynamic studies, to the most promising and potentially flyable solutions aimed at improving the performance of commercial aircraft and UAVs. Morphing aircraft are multi-role aircraft that change their external shape substantially to adapt to a changing mission environment during flight. The book consists of eight sections as well as an appendix which contains both updates on main systems evolution (skin, structure, actuator, sensor, and control systems) and a survey on the most significant achievements of integrated systems for large commercial aircraft.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Machine generated contents note:</subfield><subfield code="g">ch. 1</subfield><subfield code="t">Historical Background and Current Scenario --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Components of a Wing Morphing Structural System --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Structural Skeleton --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Actuation Systems --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Skin --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Control System --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Cabling --</subfield><subfield code="g">2.6.</subfield><subfield code="t">Assembly --</subfield><subfield code="g">3.</subfield><subfield code="t">Main Challenges --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Skins --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Actuation Systems --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Sensor Systems --</subfield><subfield code="g">4.</subfield><subfield code="t">Back to the Past --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Wright's Flyer --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Plane and the Like for Aeroplanes --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Parker's Wing --</subfield><subfield code="g">5.</subfield><subfield code="t">Modern Times --</subfield><subfield code="g">5.1.</subfield><subfield code="t">NASA Studies --</subfield><subfield code="g">5.2.</subfield><subfield code="t">DGLR Studies --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Mission Adaptive Wing --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Further NASA Studies --</subfield><subfield code="g">6.</subfield><subfield code="t">Recent Activities-United States --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Adaptive Wing Reborn: SMAs --</subfield><subfield code="g">6.2.</subfield><subfield code="t">DARPA Smart Wing Program --</subfield><subfield code="g">6.3.</subfield><subfield code="t">DARPA Morphing Aircraft Structures Program --</subfield><subfield code="g">7.</subfield><subfield code="t">Recent Activities-Europe --</subfield><subfield code="g">7.1.</subfield><subfield code="t">ADIF --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Clean Sky --</subfield><subfield code="g">8.</subfield><subfield code="t">Current Scenario --</subfield><subfield code="g">8.1.</subfield><subfield code="t">Airbus-SARISTU (Smart Intelligent Aircraft Structures) --</subfield><subfield code="g">8.2.</subfield><subfield code="t">Boeing-Adaptive Wing --</subfield><subfield code="g">8.3.</subfield><subfield code="t">Flexsys and Gulfstream --</subfield><subfield code="g">9.</subfield><subfield code="t">Tradition at the University of Napoli and CIRA --</subfield><subfield code="g">9.1.</subfield><subfield code="t">Adaptive Airfoil --</subfield><subfield code="g">9.2.</subfield><subfield code="t">Hinge-Less Wing --</subfield><subfield code="g">9.3.</subfield><subfield code="t">Smartflap --</subfield><subfield code="g">9.4.</subfield><subfield code="t">SADE --</subfield><subfield code="g">9.5.</subfield><subfield code="t">Clean Sky-JTI-GRA-Low Noise --</subfield><subfield code="g">9.6.</subfield><subfield code="t">EU-SARISTU --</subfield><subfield code="g">9.7.</subfield><subfield code="t">Adaptive Aileron --</subfield><subfield code="g">10.</subfield><subfield code="t">Future Perspectives --</subfield><subfield code="g">10.1.</subfield><subfield code="t">Safe Design --</subfield><subfield code="g">10.2.</subfield><subfield code="t">Skins and Fillers --</subfield><subfield code="g">10.3.</subfield><subfield code="t">Direct Actuation: The Use of Smart Materials --</subfield><subfield code="g">10.4.</subfield><subfield code="t">Wireless, Distributed Sensing --</subfield><subfield code="g">10.5.</subfield><subfield code="t">Control System Architecture --</subfield><subfield code="g">10.6.</subfield><subfield code="t">Cybernetics and Robotics --</subfield><subfield code="t">Acknowledgments --</subfield><subfield code="t">References --</subfield><subfield code="t">University of Napoli and CIRA International Awards --</subfield><subfield code="g">ch. 2</subfield><subfield code="t">Aircraft Morphing-An Industry Vision --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Current Aircraft Capabilities --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Interest of Industry --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Some Considerations About Industry Aerodynamic Design Process --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Expected Performance Targets --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Manufacturing: New Materials and Controlled Industrial Processes --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Assembly and Quality: Automation and Integrated Parts --</subfield><subfield code="g">2.6.</subfield><subfield code="t">Maintenance: Assessed Steps and Personnel Training --</subfield><subfield code="g">2.7.</subfield><subfield code="t">Safety: Assessed Methods for Standard Architectures --</subfield><subfield code="g">3.</subfield><subfield code="t">Current and Expected Needs --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Technology Transition --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Mission Configurable Wing --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Improved Flaps and Ailerons --</subfield><subfield code="g">4.</subfield><subfield code="t">Morphing as a Solution --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Wing and Control Surface Feasible Solutions --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Some Specific Requirements --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 3</subfield><subfield code="t">Development of Morphing Aircraft Benefit Assessment --</subfield><subfield code="g">1.</subfield><subfield code="t">Experiments as Basis for Morphing Progress --</subfield><subfield code="g">2.</subfield><subfield code="t">Advent of Transonic Methods --</subfield><subfield code="g">3.</subfield><subfield code="t">Automated Methods as Enabler for Large Scale Studies --</subfield><subfield code="g">4.</subfield><subfield code="t">Reintroduction of Flexible Materials --</subfield><subfield code="g">5.</subfield><subfield code="t">Final Step to Industrial Application --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 4</subfield><subfield code="t">Span Morphing Concept: An Overview --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Effects of Span Increase --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Aerodynamic Effects --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Structural Effects --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Stability and Control Effects --</subfield><subfield code="g">3.</subfield><subfield code="t">Span Morphing Concepts and Aircraft Performance --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Symmetric Span Morphing --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Asymmetric Span Morphing --</subfield><subfield code="g">4.</subfield><subfield code="t">Implementation Challenges --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Telescopic Wings --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Hinged Structures --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Twin Spars --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">Acknowledgments --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 5</subfield><subfield code="t">Adjoint-Based Aerodynamic Shape Optimization Applied to Morphing Technology on a Regional Aircraft Wing --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Handling of Morphing Shape Changes in a CFD Context --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Context of the Study --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Discrete Model of Displacement Field at the Trailing Edge --</subfield><subfield code="g">2.3.</subfield><subfield code="t">3D CFD Mesh Deformation Technique --</subfield><subfield code="g">3.</subfield><subfield code="t">CFD Evaluation and Far-Field Drag Analysis Over a Wing Equipped with a Morphing System --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Finite-Volume Solver for the RANS Equations in elsA --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Far-Field Drag Extraction Tool --</subfield><subfield code="g">4.</subfield><subfield code="t">Sensitivity Analysis Using a Discrete Adjoint of the RANS Equations --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Residual and Objective Function Dependencies --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Discrete Adjoint Method in elsA --</subfield><subfield code="g">5.</subfield><subfield code="t">Local Shape Optimization Technique --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Definition of the Problem --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Method of Feasible Directions --</subfield><subfield code="g">5.3.</subfield><subfield code="t">2D Example: The Rosenbrock's Function Constrained by a Disk --</subfield><subfield code="g">6.</subfield><subfield code="t">Aerodynamic Shape Optimization of Morphing System: An Application Within the EU Project SARISTU --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Optimization Problem --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Optimization Loop Presentation --</subfield><subfield code="g">6.3.</subfield><subfield code="t">First Optimization --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Second Optimization --</subfield><subfield code="g">6.5.</subfield><subfield code="t">Expectations on Morphing Technology --</subfield><subfield code="g">7.</subfield><subfield code="t">Conclusion --</subfield><subfield code="t">References --</subfield><subfield code="t">Further Reading --</subfield><subfield code="g">ch. 6</subfield><subfield code="t">Expected Performances --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Reference Aircraft --</subfield><subfield code="g">3.</subfield><subfield code="t">Active Camber Using Conventional Control Surfaces --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Five Panels Over the Flap Region --</subfield><subfield code="g">4.</subfield><subfield code="t">Coupled Aerostructural Shape Optimization --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Morphing Leading Edge --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Morphing Trailing Edge --</subfield><subfield code="g">5.</subfield><subfield code="t">Fuel Savings --</subfield><subfield code="g">6.</subfield><subfield code="t">High-Fidelity Aerodynamic Analysis --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Leading Edge Morphing --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Trailing Edge Morphing --</subfield><subfield code="g">7.</subfield><subfield code="t">Weight Saving --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Morphing Devices --</subfield><subfield code="g">8.</subfield><subfield code="t">Benefit Exploitation in the Transport Aircraft Design --</subfield><subfield code="g">9.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">Acknowledgments --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 7</subfield><subfield code="t">Morphing Skin: Foams --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Design Principles --</subfield><subfield code="g">3.</subfield><subfield code="t">Low Temperature Elastomers --</subfield><subfield code="g">4.</subfield><subfield code="t">Material Properties of HYPERFLEX --</subfield><subfield code="g">5.</subfield><subfield code="t">Properties of Bonded Joints --</subfield><subfield code="g">6.</subfield><subfield code="t">Properties of Morphing Skin --</subfield><subfield code="g">7.</subfield><subfield code="t">Skin Manufacturing --</subfield><subfield code="g">8.</subfield><subfield code="t">Summary and Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 8</subfield><subfield code="t">Design of Skin Panels for Morphing Wings in Lattice Materials --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Requirements for the Skin of a Morphing Wing --</subfield><subfield code="g">3.</subfield><subfield code="t">Methodology for Nonlinear Homogenization of Periodic Structures --</subfield><subfield code="g">4.</subfield><subfield code="t">Mechanical Properties of Skin Panels in Lattice Material --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Analysis of Selected Lattice Topologies --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Design Space of the Chevron Lattice --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 9</subfield><subfield code="t">Composite Corrugated Laminates for Morphing Applications --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Types of Corrugated Laminates --</subfield><subfield code="g">3.</subfield><subfield code="t">Anisotropy and Stiffness Properties in Morphing Direction --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Anisotropy Indices of Stiffness Properties --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Compliance in Morphing Directions of Different Types of Composite Corrugated Laminates --</subfield><subfield code="g">4.</subfield><subfield code="t">Strength and Stiffness Contributions in Nonmorphing Directions --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Failure Modes of Composite Corrugated Laminates and Strain Limits --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Evaluation of Structural Stiffness Contribution in Nonmorphing Directions --</subfield><subfield code="g">5.</subfield><subfield code="t">Manufacturing of Composite Corrugated Laminates --</subfield><subfield code="g">6.</subfield><subfield code="t">Development of Aerodynamically Efficient Morphing Skins --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Aerodynamic Issues in the Application of Composite Corrugated Laminates --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Performance Index Based on Ratio Between Bending and Axial Compliance --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Integration of an Elastomertic Cover on a Square-Shaped Corrugated Laminate --</subfield><subfield code="g">7.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 10</subfield><subfield code="t">Active Metal Structures --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Morphing Oriented Kinematic Chains: Working Principles and Design Approaches --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Spar Caps Section Area at Generic Cross-section --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Spars Webs, Skin Panels, Rib Plate Thickness at Generic Cross-Section --</subfield><subfield code="g">3.</subfield><subfield code="t">Compliant Mechanisms: Working Principles and Design Approaches --</subfield><subfield code="g">4.</subfield><subfield code="t">Applications of Morphing Oriented Kinematic Chains --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Morphing Concept Overview --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Structural Analyses --</subfield><subfield code="g">5.</subfield><subfield code="t">Applications of the Compliant Mechanism Approach --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Arc-Based Flap, Actuated by SMA Active Elements --</subfield><subfield code="g">5.2.</subfield><subfield code="t">X-Cell Architecture for a Single Slotted Flap --</subfield><subfield code="g">6.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">11</subfield><subfield code="t">Sensor Systems for Smart Architectures --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Strain Sensors --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Strain Gauge Foils --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Piezoelectric Devices --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Graphene-Based Polymers --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Fiber Optics --</subfield><subfield code="g">3.</subfield><subfield code="t">Sensor Systems for Large Scale Integration --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Wireless Technology --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Sprayed Technology --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Distributed Technology --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Some Installation Issues --</subfield><subfield code="g">4.</subfield><subfield code="t">Case Studies --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Shape Reconstruction of a Variable Camber Wing Trailing Edge --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Damage and Load Monitoring --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Rotation Angle Monitoring --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions and Perspectives --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 12</subfield><subfield code="t">Control Techniques for a Smart Actuated Morphing Wing Model: Design, Numerical Simulation and Experimental Validation --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Project Background --</subfield><subfield code="g">3.</subfield><subfield code="t">General Structures of the Open Loop and Closed Loop Control Architectures --</subfield><subfield code="g">4.</subfield><subfield code="t">Open Loop Controllers --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Fuzzy Logic PD Controller --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Combined On-Off and PID Fuzzy Logic Controller --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Combined On-Off and Cascade PD-PI Fuzzy Logic Controller --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Combined On-Off and Self-Tuning Fuzzy Logic Controller --</subfield><subfield code="g">5.</subfield><subfield code="t">Optimized Closed Loop Control Method --</subfield><subfield code="g">6.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">Acknowledgments --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 13</subfield><subfield code="t">Influence of the Elastic Constraint on the Functionality of Integrated Morphing Devices --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Features of the FE Models --</subfield><subfield code="g">2.1.</subfield><subfield code="t">LE Modeling Strategy --</subfield><subfield code="g">2.2.</subfield><subfield code="t">TE Modeling Strategy --</subfield><subfield code="g">2.3.</subfield><subfield code="t">WL Modeling Strategy --</subfield><subfield code="g">3.</subfield><subfield code="t">Isolated Devices Behavior --</subfield><subfield code="g">4.</subfield><subfield code="t">Global Stiffness of the Outer Wing Box --</subfield><subfield code="g">5.</subfield><subfield code="t">Effects of the Actuation of the Morphing Devices --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Cross Effects --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Effects on the Wing Box --</subfield><subfield code="g">6.</subfield><subfield code="t">Conclusions and Further Steps --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 14</subfield><subfield code="t">Application of the Extra-Modes Method to the Aeroelastic Analysis of Morphing Wing Structures --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Aeroelastic Equilibrium Equation and Stability --</subfield><subfield code="g">3.</subfield><subfield code="t">Extra-Modes Formulation --</subfield><subfield code="g">4.</subfield><subfield code="t">Aeroelastic Analyses of Morphing Wings Using the Extra-Modes Method --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Effectiveness of Wing Twist Morphing as Roll Control Strategy --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Trade-Off Flutter Analysis of a Morphing Wing Trailing Edge --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">Bibliography --</subfield><subfield code="g">ch. 15</subfield><subfield code="t">Stress Analysis of a Morphing System --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Design of a Morphing Structure.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Note continued:</subfield><subfield code="g">3.</subfield><subfield code="t">Finite Element Modeling of Morphing Structures --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Rib and Spars --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Fasteners --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Skin --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Actuation System --</subfield><subfield code="g">4.</subfield><subfield code="t">Design Loads and Constraints --</subfield><subfield code="g">5.</subfield><subfield code="t">Structural Design and Simulations --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Static Analysis at Limit and Ultimate Loads: Linear and Nonlinear Analysis --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Stress Analysis --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Buckling Analysis --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Modal Analysis --</subfield><subfield code="g">6.</subfield><subfield code="t">Stress Margins of Safety --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Solid Parts --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Internal Connections --</subfield><subfield code="g">7.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="t">Further Readings --</subfield><subfield code="g">ch. 16</subfield><subfield code="t">Morphing of the Leading Edge --</subfield><subfield code="g">1.</subfield><subfield code="t">Summary --</subfield><subfield code="g">2.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">3.</subfield><subfield code="t">Conceptual Approach to the Morphing of the Leading Edge --</subfield><subfield code="g">4.</subfield><subfield code="t">Working Principle of the Architecture Selected to Produce the Drop Nose Effect --</subfield><subfield code="g">5.</subfield><subfield code="t">Architecture Design --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Identification of the Kinematic Chain in the Rib Plane --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Topologic Optimization of the In-Plane Rib Architecture --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Spanwise Architecture and Actuation Design --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Modelling and Working Simulation of the Complete Architecture --</subfield><subfield code="g">6.</subfield><subfield code="t">Prototyping --</subfield><subfield code="g">7.</subfield><subfield code="t">Experimental Campaign --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Setup --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Experimental Results --</subfield><subfield code="g">7.3.</subfield><subfield code="t">Numerical-Experimental Comparison --</subfield><subfield code="g">8.</subfield><subfield code="t">Conclusions and Further Steps --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 17</subfield><subfield code="t">Adaptive Trailing Edge --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Concept --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Layout --</subfield><subfield code="g">3.</subfield><subfield code="t">Design --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Design Loads --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Structural Sizing --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Actuator Selection --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Results --</subfield><subfield code="g">4.</subfield><subfield code="t">Safety and Reliability Aspects --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Generalities --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Distributed Actuation --</subfield><subfield code="g">4.3.</subfield><subfield code="t">ATED Function --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Fault Hazard Assessment --</subfield><subfield code="g">4.5.</subfield><subfield code="t">Functional Hazard Assessment --</subfield><subfield code="g">5.</subfield><subfield code="t">Discussion: Implementation on Real Aircraft --</subfield><subfield code="g">5.1.</subfield><subfield code="t">System Development --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Operational Aspects --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Aeroelastic Issues --</subfield><subfield code="g">6.</subfield><subfield code="t">Conclusions and Future Developments --</subfield><subfield code="t">Acknowledgments --</subfield><subfield code="t">References --</subfield><subfield code="t">Further Reading --</subfield><subfield code="g">ch. 18</subfield><subfield code="t">Morphing Aileron --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Conceptual Approach --</subfield><subfield code="g">3.</subfield><subfield code="t">Working Principle and T/A Architecture --</subfield><subfield code="g">4.</subfield><subfield code="t">Actuation System Design --</subfield><subfield code="g">5.</subfield><subfield code="t">Numerical Simulations --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Interface Load --</subfield><subfield code="g">6.</subfield><subfield code="t">Prototyping --</subfield><subfield code="g">7.</subfield><subfield code="t">Experimental Tests and Main Outcome --</subfield><subfield code="g">7.1.</subfield><subfield code="t">GVT and Numerical Correlation --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Functionality Test --</subfield><subfield code="g">7.3.</subfield><subfield code="t">Experimental Shapes --</subfield><subfield code="g">8.</subfield><subfield code="t">Wind Tunnel Tests --</subfield><subfield code="g">9.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 19</subfield><subfield code="t">Morphing Technology for Advanced Future Commercial Aircrafts --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">ATED Manufacturing --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Morphing System --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Manufacturing --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Assembly --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Test Campaign --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="g">3.</subfield><subfield code="t">Other Experiences --</subfield><subfield code="g">3.1.</subfield><subfield code="t">3AS Project --</subfield><subfield code="g">3.2.</subfield><subfield code="t">CURVED Project --</subfield><subfield code="g">4.</subfield><subfield code="t">Future Studies-The Morphing Rudder --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Synthesis --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Manufacturing Challenges --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Lateral Directional Stability Analysis --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="t">Further Reading --</subfield><subfield code="g">ch. 20</subfield><subfield code="t">Morphing Wing Integration --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Demonstrator Components --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Wing Box Primary Structure --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Leading Edge --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Trailing Edge --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Winglet --</subfield><subfield code="g">3.</subfield><subfield code="t">Conditions of Assembly --</subfield><subfield code="g">4.</subfield><subfield code="t">Jig --</subfield><subfield code="g">5.</subfield><subfield code="t">Equipment and Tooling --</subfield><subfield code="g">6.</subfield><subfield code="t">Demonstrator Assembly --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Assembly of the Wing Box --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Morphing Systems Installation: The Leading Edge --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Morphing Systems Installation: The Trailing Edge --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Morphing Systems Installation: The Winglet --</subfield><subfield code="g">7.</subfield><subfield code="t">FBG Sensor Network --</subfield><subfield code="g">8.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">Acknowledgments --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 21</subfield><subfield code="t">Morphing Devices: Safety, Reliability, and Certification Prospects --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">System Level Approaches to the Certification of Morphing Wing Devices --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Adaptive Droop Nose --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Adaptive Trailing Edge Device --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Morphing Winglet --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Defining the System Level Functions of Morphing Devices --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Dual Level Safety --</subfield><subfield code="g">3.</subfield><subfield code="t">Functional Hazard Assessment --</subfield><subfield code="g">4.</subfield><subfield code="t">Dual-Level Approach for the FTA of a Morphing Wing --</subfield><subfield code="g">5.</subfield><subfield code="t">Common Cause Analyses --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Particular Risk Analysis --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Common Mode Analysis --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Zonal Safety Analysis --</subfield><subfield code="g">6.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 22</subfield><subfield code="t">On the Experimental Characterization of Morphing Structures --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Testing Practices for Morphing Systems --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Morphing Trailing Edge Device --</subfield><subfield code="g">3.</subfield><subfield code="t">Unit Tests: From Component to Morphing System Verification --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Skin Over Dummy --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Actuators Over Dummy --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Control System Over Dummy --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Control System Over Skinned Dummy --</subfield><subfield code="g">3.5.</subfield><subfield code="t">Complete System --</subfield><subfield code="g">4.</subfield><subfield code="t">System Integration Test Bench for Morphing Systems --</subfield><subfield code="g">5.</subfield><subfield code="t">Full-Scale Testing --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Shape Control of Adaptive Wings --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Wing Shape Controller Strategies and Experimental Verification --</subfield><subfield code="g">6.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 23</subfield><subfield code="t">Wind Tunnel Testing of Adaptive Wing Structures --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">1.1.</subfield><subfield code="t">General Test Procedure for the Morphing Item --</subfield><subfield code="g">2.</subfield><subfield code="t">3AS --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Requirements for the EURAM and Experimental Facilities --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Model Design and Manufacture --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Laboratory Tests --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Aeroelastic Wing Tip Controls Concept --</subfield><subfield code="g">2.5.</subfield><subfield code="t">All-Movable Vertical Tail Concept --</subfield><subfield code="g">2.6.</subfield><subfield code="t">Selective Deformable Structure Concept --</subfield><subfield code="g">3.</subfield><subfield code="t">SADE --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Wing Demonstrator --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Videogrammetry Method of Deformation Measuring --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Test Object and Experimental Facility --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Measuring Process and Data Handling --</subfield><subfield code="g">4.</subfield><subfield code="t">SARISTU --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Objectives of the Wind Tunnel Test --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Ground Vibration Test and Flutter Expansion Test --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Load Measurements --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Calculations of Wing Demo Aerodynamics in T-104 WT --</subfield><subfield code="g">4.5.</subfield><subfield code="t">Deformations Measurements of the Wing with Elastic Controls in WT T-104 Flow --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">Acknowledgments --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 24</subfield><subfield code="t">Rotary Wings Morphing Technologies: State of the Art and Perspectives --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Overview of Rotor Morphing Technologies --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Trailing Edge Flaps --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Active and Variable Twist --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Variable Span --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Emerging Rotor Morphing Technologies --</subfield><subfield code="g">3.</subfield><subfield code="t">Critical Review of Some Significant Efforts --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Active Trailing and Leading Edge Devices --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Individual Blade Control --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Active Twist --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Variable Span --</subfield><subfield code="g">3.5.</subfield><subfield code="t">Slowed/Stopped Rotor --</subfield><subfield code="g">4.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 25</subfield><subfield code="t">Aerodynamic Analyses of Tiltrotor Morphing Blades --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Aim and Structure of the Chapter --</subfield><subfield code="g">3.</subfield><subfield code="t">Research Context --</subfield><subfield code="g">4.</subfield><subfield code="t">Outline of Methods and Numerical Tools --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Integration and Optimization Environment --</subfield><subfield code="g">4.2.</subfield><subfield code="t">MDA Procedures and Optimization Processes --</subfield><subfield code="g">4.3.</subfield><subfield code="t">BEMT Analysis --</subfield><subfield code="g">4.4.</subfield><subfield code="t">CFD Driven Analysis --</subfield><subfield code="g">4.5.</subfield><subfield code="t">Blade Parameterization --</subfield><subfield code="g">4.6.</subfield><subfield code="t">Airfoil Selection --</subfield><subfield code="g">4.7.</subfield><subfield code="t">Surface Grid Generation --</subfield><subfield code="g">4.8.</subfield><subfield code="t">Volume Grid Generation --</subfield><subfield code="g">5.</subfield><subfield code="t">Background --</subfield><subfield code="g">6.</subfield><subfield code="t">Case Study --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Description of Activities --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Baseline Geometry --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Optimization Objectives and Strategy --</subfield><subfield code="g">7.</subfield><subfield code="t">Un-Morphed Blades --</subfield><subfield code="g">8.</subfield><subfield code="t">Morphing Blades --</subfield><subfield code="g">8.1.</subfield><subfield code="t">Blade Span Morphing and Variable Speed Rotor --</subfield><subfield code="g">8.2.</subfield><subfield code="t">Blade Section Morphing --</subfield><subfield code="g">9.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">References --</subfield><subfield code="g">ch. 26</subfield><subfield code="t">Synergic Effects of Passive and Active Ice Protection Systems --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Pros and Cons of Considered IPS --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Thermoelectric IPS --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Low-Power Consuming Piezoelectric Deicing Systems --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Hydrophobic Coatings --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Alternative Strategy Based on a Hybrid Approach --</subfield><subfield code="g">3.</subfield><subfield code="t">Design and Realization of the IPS --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Hydrophobic Coating Design and Process Assessment --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Thermoelectric System Design and Ice Shedding Prediction --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Piezoelectric IPS Sizing and Parameters Assessment --</subfield><subfield code="g">4.</subfield><subfield code="t">Experimental Validation --</subfield><subfield code="g">4.1.</subfield><subfield code="t">First WT Test Campaign --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Second WT Test Campaign --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions --</subfield><subfield code="t">Acknowledgment --</subfield><subfield code="t">References --</subfield><subfield code="t">Further Reading --</subfield><subfield code="g">ch.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">27</subfield><subfield code="t">Helicopter Vibration Reduction --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">NextGen Vibration Levels --</subfield><subfield code="g">3.</subfield><subfield code="t">Vibration Specifications --</subfield><subfield code="g">4.</subfield><subfield code="t">Source of Helicopter Vibratory Loads --</subfield><subfield code="g">5.</subfield><subfield code="t">How Do Vibratory Loads Get Into the Fuselage? --</subfield><subfield code="g">6.</subfield><subfield code="t">What Is Used for Vibration Control Now? --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Why Not Isolation? --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Venerable Frahm --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Fuselage-Based Frahms --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Rotor-Based Frahms --</subfield><subfield code="g">6.5.</subfield><subfield code="t">Frahms Are Heavy --</subfield><subfield code="g">6.6.</subfield><subfield code="t">Active Vibration Control --</subfield><subfield code="g">6.7.</subfield><subfield code="t">Dynamic Antiresonant Vibration Isolator --</subfield><subfield code="g">7.</subfield><subfield code="t">More Problems With Frahms --</subfield><subfield code="g">8.</subfield><subfield code="t">Active Counter-Force --</subfield><subfield code="g">8.1.</subfield><subfield code="t">Higher Harmonic Control --</subfield><subfield code="g">9.</subfield><subfield code="t">Individual Blade Control --</subfield><subfield code="g">9.1.</subfield><subfield code="t">Hydraulic IBC --</subfield><subfield code="g">9.2.</subfield><subfield code="t">Electrical IBC --</subfield><subfield code="g">9.3.</subfield><subfield code="t">On-Blade Flaps --</subfield><subfield code="g">10.</subfield><subfield code="t">Path Forward --</subfield><subfield code="t">Acknowledgments --</subfield><subfield code="t">References.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references at the end of each chapters and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Airplanes</subfield><subfield code="x">Wings</subfield><subfield code="x">Design.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Vertically rising aircraft</subfield><subfield code="x">Wings</subfield><subfield code="x">Design.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Airplanes</subfield><subfield code="x">Wings.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85002923</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Vertically rising aircraft.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85142914</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Avions</subfield><subfield code="x">Ailes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Avions à décollage et atterrissage verticaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">vertical take-off and landing aircraft.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Airplanes</subfield><subfield code="x">Wings</subfield><subfield code="x">Design</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Concilio, Antonio,</subfield><subfield code="d">1964-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjtTCwkF7RT8drtGBPYWrC</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2014028177</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dimino, Ignazio,</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjChCqh4vxFmryVxp3vgGb</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2015013333</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lecce, Leonardo,</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjxMPDkM73jf9m6mcQFmQy</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2014028174</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pecora, Rosario,</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGgg9rXdjb4TtxfYFXw4q</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2018045346</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Morphing wing technologies (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG3k8jBTFmpqYxTqDGRD4q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1144990</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780081009642</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1144990</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis39146122</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14922721</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1007290487 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:28:04Z |
institution | BVB |
isbn | 9780081009697 0081009690 008100964X 9780081009642 |
language | English |
oclc_num | 1007290487 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : color illustrations |
psigel | ZDB-4-EBA |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Butterworth-Heinemann, |
record_format | marc |
spelling | Morphing wing technologies : large commercial aircraft and civil helicopters / edited by Antonio Concilio, Ignazio Dimino, Leonardo Lecce, Rosario Pecora. First edition. Cambridge, MA : Butterworth-Heinemann, [2018] ©2018 1 online resource : color illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from PDF title page (Ebsco, viewed October 25, 2017). Includes index. Morphing Wings Technologies: Large Commercial Aircraft and Civil Helicopters offers a fresh look at current research on morphing aircraft, including industry design, real manufactured prototypes and certification. This is an invaluable reference for students in the aeronautics and aerospace fields who need an introduction to the morphing discipline, as well as senior professionals seeking exposure to morphing potentialities. Practical applications of morphing devices are presented-from the challenge of conceptual design incorporating both structural and aerodynamic studies, to the most promising and potentially flyable solutions aimed at improving the performance of commercial aircraft and UAVs. Morphing aircraft are multi-role aircraft that change their external shape substantially to adapt to a changing mission environment during flight. The book consists of eight sections as well as an appendix which contains both updates on main systems evolution (skin, structure, actuator, sensor, and control systems) and a survey on the most significant achievements of integrated systems for large commercial aircraft. Machine generated contents note: ch. 1 Historical Background and Current Scenario -- 1. Introduction -- 2. Components of a Wing Morphing Structural System -- 2.1. Structural Skeleton -- 2.2. Actuation Systems -- 2.3. Skin -- 2.4. Control System -- 2.5. Cabling -- 2.6. Assembly -- 3. Main Challenges -- 3.1. Skins -- 3.2. Actuation Systems -- 3.3. Sensor Systems -- 4. Back to the Past -- 4.1. Wright's Flyer -- 4.2. Plane and the Like for Aeroplanes -- 4.3. Parker's Wing -- 5. Modern Times -- 5.1. NASA Studies -- 5.2. DGLR Studies -- 5.3. Mission Adaptive Wing -- 5.4. Further NASA Studies -- 6. Recent Activities-United States -- 6.1. Adaptive Wing Reborn: SMAs -- 6.2. DARPA Smart Wing Program -- 6.3. DARPA Morphing Aircraft Structures Program -- 7. Recent Activities-Europe -- 7.1. ADIF -- 7.2. Clean Sky -- 8. Current Scenario -- 8.1. Airbus-SARISTU (Smart Intelligent Aircraft Structures) -- 8.2. Boeing-Adaptive Wing -- 8.3. Flexsys and Gulfstream -- 9. Tradition at the University of Napoli and CIRA -- 9.1. Adaptive Airfoil -- 9.2. Hinge-Less Wing -- 9.3. Smartflap -- 9.4. SADE -- 9.5. Clean Sky-JTI-GRA-Low Noise -- 9.6. EU-SARISTU -- 9.7. Adaptive Aileron -- 10. Future Perspectives -- 10.1. Safe Design -- 10.2. Skins and Fillers -- 10.3. Direct Actuation: The Use of Smart Materials -- 10.4. Wireless, Distributed Sensing -- 10.5. Control System Architecture -- 10.6. Cybernetics and Robotics -- Acknowledgments -- References -- University of Napoli and CIRA International Awards -- ch. 2 Aircraft Morphing-An Industry Vision -- 1. Introduction -- 2. Current Aircraft Capabilities -- 2.1. Interest of Industry -- 2.2. Some Considerations About Industry Aerodynamic Design Process -- 2.3. Expected Performance Targets -- 2.4. Manufacturing: New Materials and Controlled Industrial Processes -- 2.5. Assembly and Quality: Automation and Integrated Parts -- 2.6. Maintenance: Assessed Steps and Personnel Training -- 2.7. Safety: Assessed Methods for Standard Architectures -- 3. Current and Expected Needs -- 3.1. Technology Transition -- 3.2. Mission Configurable Wing -- 3.3. Improved Flaps and Ailerons -- 4. Morphing as a Solution -- 4.1. Wing and Control Surface Feasible Solutions -- 4.2. Some Specific Requirements -- 5. Conclusions -- References -- ch. 3 Development of Morphing Aircraft Benefit Assessment -- 1. Experiments as Basis for Morphing Progress -- 2. Advent of Transonic Methods -- 3. Automated Methods as Enabler for Large Scale Studies -- 4. Reintroduction of Flexible Materials -- 5. Final Step to Industrial Application -- References -- ch. 4 Span Morphing Concept: An Overview -- 1. Introduction -- 2. Effects of Span Increase -- 2.1. Aerodynamic Effects -- 2.2. Structural Effects -- 2.3. Stability and Control Effects -- 3. Span Morphing Concepts and Aircraft Performance -- 3.1. Symmetric Span Morphing -- 3.2. Asymmetric Span Morphing -- 4. Implementation Challenges -- 4.1. Telescopic Wings -- 4.2. Hinged Structures -- 4.3. Twin Spars -- 5. Conclusions -- Acknowledgments -- References -- ch. 5 Adjoint-Based Aerodynamic Shape Optimization Applied to Morphing Technology on a Regional Aircraft Wing -- 1. Introduction -- 2. Handling of Morphing Shape Changes in a CFD Context -- 2.1. Context of the Study -- 2.2. Discrete Model of Displacement Field at the Trailing Edge -- 2.3. 3D CFD Mesh Deformation Technique -- 3. CFD Evaluation and Far-Field Drag Analysis Over a Wing Equipped with a Morphing System -- 3.1. Finite-Volume Solver for the RANS Equations in elsA -- 3.2. Far-Field Drag Extraction Tool -- 4. Sensitivity Analysis Using a Discrete Adjoint of the RANS Equations -- 4.1. Residual and Objective Function Dependencies -- 4.2. Discrete Adjoint Method in elsA -- 5. Local Shape Optimization Technique -- 5.1. Definition of the Problem -- 5.2. Method of Feasible Directions -- 5.3. 2D Example: The Rosenbrock's Function Constrained by a Disk -- 6. Aerodynamic Shape Optimization of Morphing System: An Application Within the EU Project SARISTU -- 6.1. Optimization Problem -- 6.2. Optimization Loop Presentation -- 6.3. First Optimization -- 6.4. Second Optimization -- 6.5. Expectations on Morphing Technology -- 7. Conclusion -- References -- Further Reading -- ch. 6 Expected Performances -- 1. Introduction -- 2. Reference Aircraft -- 3. Active Camber Using Conventional Control Surfaces -- 3.1. Five Panels Over the Flap Region -- 4. Coupled Aerostructural Shape Optimization -- 4.1. Morphing Leading Edge -- 4.2. Morphing Trailing Edge -- 5. Fuel Savings -- 6. High-Fidelity Aerodynamic Analysis -- 6.1. Leading Edge Morphing -- 6.2. Trailing Edge Morphing -- 7. Weight Saving -- 7.1. Morphing Devices -- 8. Benefit Exploitation in the Transport Aircraft Design -- 9. Conclusions -- Acknowledgments -- References -- ch. 7 Morphing Skin: Foams -- 1. Introduction -- 2. Design Principles -- 3. Low Temperature Elastomers -- 4. Material Properties of HYPERFLEX -- 5. Properties of Bonded Joints -- 6. Properties of Morphing Skin -- 7. Skin Manufacturing -- 8. Summary and Conclusions -- References -- ch. 8 Design of Skin Panels for Morphing Wings in Lattice Materials -- 1. Introduction -- 2. Requirements for the Skin of a Morphing Wing -- 3. Methodology for Nonlinear Homogenization of Periodic Structures -- 4. Mechanical Properties of Skin Panels in Lattice Material -- 4.1. Analysis of Selected Lattice Topologies -- 4.2. Design Space of the Chevron Lattice -- 5. Conclusions -- References -- ch. 9 Composite Corrugated Laminates for Morphing Applications -- 1. Introduction -- 2. Types of Corrugated Laminates -- 3. Anisotropy and Stiffness Properties in Morphing Direction -- 3.1. Anisotropy Indices of Stiffness Properties -- 3.2. Compliance in Morphing Directions of Different Types of Composite Corrugated Laminates -- 4. Strength and Stiffness Contributions in Nonmorphing Directions -- 4.1. Failure Modes of Composite Corrugated Laminates and Strain Limits -- 4.2. Evaluation of Structural Stiffness Contribution in Nonmorphing Directions -- 5. Manufacturing of Composite Corrugated Laminates -- 6. Development of Aerodynamically Efficient Morphing Skins -- 6.1. Aerodynamic Issues in the Application of Composite Corrugated Laminates -- 6.2. Performance Index Based on Ratio Between Bending and Axial Compliance -- 6.3. Integration of an Elastomertic Cover on a Square-Shaped Corrugated Laminate -- 7. Conclusions -- References -- ch. 10 Active Metal Structures -- 1. Introduction -- 2. Morphing Oriented Kinematic Chains: Working Principles and Design Approaches -- 2.1. Spar Caps Section Area at Generic Cross-section -- 2.2. Spars Webs, Skin Panels, Rib Plate Thickness at Generic Cross-Section -- 3. Compliant Mechanisms: Working Principles and Design Approaches -- 4. Applications of Morphing Oriented Kinematic Chains -- 4.1. Morphing Concept Overview -- 4.2. Structural Analyses -- 5. Applications of the Compliant Mechanism Approach -- 5.1. Arc-Based Flap, Actuated by SMA Active Elements -- 5.2. X-Cell Architecture for a Single Slotted Flap -- 6. Conclusions -- References -- ch. 11 Sensor Systems for Smart Architectures -- 1. Introduction -- 2. Strain Sensors -- 2.1. Strain Gauge Foils -- 2.2. Piezoelectric Devices -- 2.3. Graphene-Based Polymers -- 2.4. Fiber Optics -- 3. Sensor Systems for Large Scale Integration -- 3.1. Wireless Technology -- 3.2. Sprayed Technology -- 3.3. Distributed Technology -- 3.4. Some Installation Issues -- 4. Case Studies -- 4.1. Shape Reconstruction of a Variable Camber Wing Trailing Edge -- 4.2. Damage and Load Monitoring -- 4.3. Rotation Angle Monitoring -- 5. Conclusions and Perspectives -- References -- ch. 12 Control Techniques for a Smart Actuated Morphing Wing Model: Design, Numerical Simulation and Experimental Validation -- 1. Introduction -- 2. Project Background -- 3. General Structures of the Open Loop and Closed Loop Control Architectures -- 4. Open Loop Controllers -- 4.1. Fuzzy Logic PD Controller -- 4.2. Combined On-Off and PID Fuzzy Logic Controller -- 4.3. Combined On-Off and Cascade PD-PI Fuzzy Logic Controller -- 4.4. Combined On-Off and Self-Tuning Fuzzy Logic Controller -- 5. Optimized Closed Loop Control Method -- 6. Conclusions -- Acknowledgments -- References -- ch. 13 Influence of the Elastic Constraint on the Functionality of Integrated Morphing Devices -- 1. Introduction -- 2. Features of the FE Models -- 2.1. LE Modeling Strategy -- 2.2. TE Modeling Strategy -- 2.3. WL Modeling Strategy -- 3. Isolated Devices Behavior -- 4. Global Stiffness of the Outer Wing Box -- 5. Effects of the Actuation of the Morphing Devices -- 5.1. Cross Effects -- 5.2. Effects on the Wing Box -- 6. Conclusions and Further Steps -- References -- ch. 14 Application of the Extra-Modes Method to the Aeroelastic Analysis of Morphing Wing Structures -- 1. Introduction -- 2. Aeroelastic Equilibrium Equation and Stability -- 3. Extra-Modes Formulation -- 4. Aeroelastic Analyses of Morphing Wings Using the Extra-Modes Method -- 4.1. Effectiveness of Wing Twist Morphing as Roll Control Strategy -- 4.2. Trade-Off Flutter Analysis of a Morphing Wing Trailing Edge -- 5. Conclusions -- Bibliography -- ch. 15 Stress Analysis of a Morphing System -- 1. Introduction -- 2. Design of a Morphing Structure. Note continued: 3. Finite Element Modeling of Morphing Structures -- 3.1. Rib and Spars -- 3.2. Fasteners -- 3.3. Skin -- 3.4. Actuation System -- 4. Design Loads and Constraints -- 5. Structural Design and Simulations -- 5.1. Static Analysis at Limit and Ultimate Loads: Linear and Nonlinear Analysis -- 5.2. Stress Analysis -- 5.3. Buckling Analysis -- 5.4. Modal Analysis -- 6. Stress Margins of Safety -- 6.1. Solid Parts -- 6.2. Internal Connections -- 7. Conclusions -- References -- Further Readings -- ch. 16 Morphing of the Leading Edge -- 1. Summary -- 2. Introduction -- 3. Conceptual Approach to the Morphing of the Leading Edge -- 4. Working Principle of the Architecture Selected to Produce the Drop Nose Effect -- 5. Architecture Design -- 5.1. Identification of the Kinematic Chain in the Rib Plane -- 5.2. Topologic Optimization of the In-Plane Rib Architecture -- 5.3. Spanwise Architecture and Actuation Design -- 5.4. Modelling and Working Simulation of the Complete Architecture -- 6. Prototyping -- 7. Experimental Campaign -- 7.1. Setup -- 7.2. Experimental Results -- 7.3. Numerical-Experimental Comparison -- 8. Conclusions and Further Steps -- References -- ch. 17 Adaptive Trailing Edge -- 1. Introduction -- 2. Concept -- 2.1. Layout -- 3. Design -- 3.1. Design Loads -- 3.2. Structural Sizing -- 3.3. Actuator Selection -- 3.4. Results -- 4. Safety and Reliability Aspects -- 4.1. Generalities -- 4.2. Distributed Actuation -- 4.3. ATED Function -- 4.4. Fault Hazard Assessment -- 4.5. Functional Hazard Assessment -- 5. Discussion: Implementation on Real Aircraft -- 5.1. System Development -- 5.2. Operational Aspects -- 5.3. Aeroelastic Issues -- 6. Conclusions and Future Developments -- Acknowledgments -- References -- Further Reading -- ch. 18 Morphing Aileron -- 1. Introduction -- 2. Conceptual Approach -- 3. Working Principle and T/A Architecture -- 4. Actuation System Design -- 5. Numerical Simulations -- 5.1. Interface Load -- 6. Prototyping -- 7. Experimental Tests and Main Outcome -- 7.1. GVT and Numerical Correlation -- 7.2. Functionality Test -- 7.3. Experimental Shapes -- 8. Wind Tunnel Tests -- 9. Conclusions -- References -- ch. 19 Morphing Technology for Advanced Future Commercial Aircrafts -- 1. Introduction -- 2. ATED Manufacturing -- 2.1. Morphing System -- 2.2. Manufacturing -- 2.3. Assembly -- 2.4. Test Campaign -- 2.5. Conclusions -- 3. Other Experiences -- 3.1. 3AS Project -- 3.2. CURVED Project -- 4. Future Studies-The Morphing Rudder -- 4.1. Synthesis -- 4.2. Manufacturing Challenges -- 4.3. Lateral Directional Stability Analysis -- 5. Conclusions -- References -- Further Reading -- ch. 20 Morphing Wing Integration -- 1. Introduction -- 2. Demonstrator Components -- 2.1. Wing Box Primary Structure -- 2.2. Leading Edge -- 2.3. Trailing Edge -- 2.4. Winglet -- 3. Conditions of Assembly -- 4. Jig -- 5. Equipment and Tooling -- 6. Demonstrator Assembly -- 6.1. Assembly of the Wing Box -- 6.2. Morphing Systems Installation: The Leading Edge -- 6.3. Morphing Systems Installation: The Trailing Edge -- 6.4. Morphing Systems Installation: The Winglet -- 7. FBG Sensor Network -- 8. Conclusions -- Acknowledgments -- References -- ch. 21 Morphing Devices: Safety, Reliability, and Certification Prospects -- 1. Introduction -- 2. System Level Approaches to the Certification of Morphing Wing Devices -- 2.1. Adaptive Droop Nose -- 2.2. Adaptive Trailing Edge Device -- 2.3. Morphing Winglet -- 2.4. Defining the System Level Functions of Morphing Devices -- 2.5. Dual Level Safety -- 3. Functional Hazard Assessment -- 4. Dual-Level Approach for the FTA of a Morphing Wing -- 5. Common Cause Analyses -- 5.1. Particular Risk Analysis -- 5.2. Common Mode Analysis -- 5.3. Zonal Safety Analysis -- 6. Conclusions -- References -- ch. 22 On the Experimental Characterization of Morphing Structures -- 1. Introduction -- 2. Testing Practices for Morphing Systems -- 2.1. Morphing Trailing Edge Device -- 3. Unit Tests: From Component to Morphing System Verification -- 3.1. Skin Over Dummy -- 3.2. Actuators Over Dummy -- 3.3. Control System Over Dummy -- 3.4. Control System Over Skinned Dummy -- 3.5. Complete System -- 4. System Integration Test Bench for Morphing Systems -- 5. Full-Scale Testing -- 5.1. Shape Control of Adaptive Wings -- 5.2. Wing Shape Controller Strategies and Experimental Verification -- 6. Conclusions -- References -- ch. 23 Wind Tunnel Testing of Adaptive Wing Structures -- 1. Introduction -- 1.1. General Test Procedure for the Morphing Item -- 2. 3AS -- 2.1. Requirements for the EURAM and Experimental Facilities -- 2.2. Model Design and Manufacture -- 2.3. Laboratory Tests -- 2.4. Aeroelastic Wing Tip Controls Concept -- 2.5. All-Movable Vertical Tail Concept -- 2.6. Selective Deformable Structure Concept -- 3. SADE -- 3.1. Wing Demonstrator -- 3.2. Videogrammetry Method of Deformation Measuring -- 3.3. Test Object and Experimental Facility -- 3.4. Measuring Process and Data Handling -- 4. SARISTU -- 4.1. Objectives of the Wind Tunnel Test -- 4.2. Ground Vibration Test and Flutter Expansion Test -- 4.3. Load Measurements -- 4.4. Calculations of Wing Demo Aerodynamics in T-104 WT -- 4.5. Deformations Measurements of the Wing with Elastic Controls in WT T-104 Flow -- 5. Conclusions -- Acknowledgments -- References -- ch. 24 Rotary Wings Morphing Technologies: State of the Art and Perspectives -- 1. Introduction -- 2. Overview of Rotor Morphing Technologies -- 2.1. Trailing Edge Flaps -- 2.2. Active and Variable Twist -- 2.3. Variable Span -- 2.4. Emerging Rotor Morphing Technologies -- 3. Critical Review of Some Significant Efforts -- 3.1. Active Trailing and Leading Edge Devices -- 3.2. Individual Blade Control -- 3.3. Active Twist -- 3.4. Variable Span -- 3.5. Slowed/Stopped Rotor -- 4. Conclusions -- References -- ch. 25 Aerodynamic Analyses of Tiltrotor Morphing Blades -- 1. Introduction -- 2. Aim and Structure of the Chapter -- 3. Research Context -- 4. Outline of Methods and Numerical Tools -- 4.1. Integration and Optimization Environment -- 4.2. MDA Procedures and Optimization Processes -- 4.3. BEMT Analysis -- 4.4. CFD Driven Analysis -- 4.5. Blade Parameterization -- 4.6. Airfoil Selection -- 4.7. Surface Grid Generation -- 4.8. Volume Grid Generation -- 5. Background -- 6. Case Study -- 6.1. Description of Activities -- 6.2. Baseline Geometry -- 6.3. Optimization Objectives and Strategy -- 7. Un-Morphed Blades -- 8. Morphing Blades -- 8.1. Blade Span Morphing and Variable Speed Rotor -- 8.2. Blade Section Morphing -- 9. Conclusions -- References -- ch. 26 Synergic Effects of Passive and Active Ice Protection Systems -- 1. Introduction -- 2. Pros and Cons of Considered IPS -- 2.1. Thermoelectric IPS -- 2.2. Low-Power Consuming Piezoelectric Deicing Systems -- 2.3. Hydrophobic Coatings -- 2.4. Alternative Strategy Based on a Hybrid Approach -- 3. Design and Realization of the IPS -- 3.1. Hydrophobic Coating Design and Process Assessment -- 3.2. Thermoelectric System Design and Ice Shedding Prediction -- 3.3. Piezoelectric IPS Sizing and Parameters Assessment -- 4. Experimental Validation -- 4.1. First WT Test Campaign -- 4.2. Second WT Test Campaign -- 5. Conclusions -- Acknowledgment -- References -- Further Reading -- ch. 27 Helicopter Vibration Reduction -- 1. Introduction -- 2. NextGen Vibration Levels -- 3. Vibration Specifications -- 4. Source of Helicopter Vibratory Loads -- 5. How Do Vibratory Loads Get Into the Fuselage? -- 6. What Is Used for Vibration Control Now? -- 6.1. Why Not Isolation? -- 6.2. Venerable Frahm -- 6.3. Fuselage-Based Frahms -- 6.4. Rotor-Based Frahms -- 6.5. Frahms Are Heavy -- 6.6. Active Vibration Control -- 6.7. Dynamic Antiresonant Vibration Isolator -- 7. More Problems With Frahms -- 8. Active Counter-Force -- 8.1. Higher Harmonic Control -- 9. Individual Blade Control -- 9.1. Hydraulic IBC -- 9.2. Electrical IBC -- 9.3. On-Blade Flaps -- 10. Path Forward -- Acknowledgments -- References. Includes bibliographical references at the end of each chapters and index. Airplanes Wings Design. Vertically rising aircraft Wings Design. Airplanes Wings. http://id.loc.gov/authorities/subjects/sh85002923 Vertically rising aircraft. http://id.loc.gov/authorities/subjects/sh85142914 Avions Ailes. Avions à décollage et atterrissage verticaux. vertical take-off and landing aircraft. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh Airplanes Wings Design fast Concilio, Antonio, 1964- editor. https://id.oclc.org/worldcat/entity/E39PCjtTCwkF7RT8drtGBPYWrC http://id.loc.gov/authorities/names/nb2014028177 Dimino, Ignazio, editor. https://id.oclc.org/worldcat/entity/E39PCjChCqh4vxFmryVxp3vgGb http://id.loc.gov/authorities/names/n2015013333 Lecce, Leonardo, editor. https://id.oclc.org/worldcat/entity/E39PCjxMPDkM73jf9m6mcQFmQy http://id.loc.gov/authorities/names/nb2014028174 Pecora, Rosario, editor. https://id.oclc.org/worldcat/entity/E39PCjGgg9rXdjb4TtxfYFXw4q http://id.loc.gov/authorities/names/no2018045346 has work: Morphing wing technologies (Text) https://id.oclc.org/worldcat/entity/E39PCG3k8jBTFmpqYxTqDGRD4q https://id.oclc.org/worldcat/ontology/hasWork FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1144990 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780081009642 Volltext |
spellingShingle | Morphing wing technologies : large commercial aircraft and civil helicopters / Historical Background and Current Scenario -- Introduction -- Components of a Wing Morphing Structural System -- Structural Skeleton -- Actuation Systems -- Skin -- Control System -- Cabling -- Assembly -- Main Challenges -- Skins -- Sensor Systems -- Back to the Past -- Wright's Flyer -- Plane and the Like for Aeroplanes -- Parker's Wing -- Modern Times -- NASA Studies -- DGLR Studies -- Mission Adaptive Wing -- Further NASA Studies -- Recent Activities-United States -- Adaptive Wing Reborn: SMAs -- DARPA Smart Wing Program -- DARPA Morphing Aircraft Structures Program -- Recent Activities-Europe -- ADIF -- Clean Sky -- Current Scenario -- Airbus-SARISTU (Smart Intelligent Aircraft Structures) -- Boeing-Adaptive Wing -- Flexsys and Gulfstream -- Tradition at the University of Napoli and CIRA -- Adaptive Airfoil -- Hinge-Less Wing -- Smartflap -- SADE -- Clean Sky-JTI-GRA-Low Noise -- EU-SARISTU -- Adaptive Aileron -- Future Perspectives -- Safe Design -- Skins and Fillers -- Direct Actuation: The Use of Smart Materials -- Wireless, Distributed Sensing -- Control System Architecture -- Cybernetics and Robotics -- Acknowledgments -- References -- University of Napoli and CIRA International Awards -- Aircraft Morphing-An Industry Vision -- Current Aircraft Capabilities -- Interest of Industry -- Some Considerations About Industry Aerodynamic Design Process -- Expected Performance Targets -- Manufacturing: New Materials and Controlled Industrial Processes -- Assembly and Quality: Automation and Integrated Parts -- Maintenance: Assessed Steps and Personnel Training -- Safety: Assessed Methods for Standard Architectures -- Current and Expected Needs -- Technology Transition -- Mission Configurable Wing -- Improved Flaps and Ailerons -- Morphing as a Solution -- Wing and Control Surface Feasible Solutions -- Some Specific Requirements -- Conclusions -- Development of Morphing Aircraft Benefit Assessment -- Experiments as Basis for Morphing Progress -- Advent of Transonic Methods -- Automated Methods as Enabler for Large Scale Studies -- Reintroduction of Flexible Materials -- Final Step to Industrial Application -- Span Morphing Concept: An Overview -- Effects of Span Increase -- Aerodynamic Effects -- Structural Effects -- Stability and Control Effects -- Span Morphing Concepts and Aircraft Performance -- Symmetric Span Morphing -- Asymmetric Span Morphing -- Implementation Challenges -- Telescopic Wings -- Hinged Structures -- Twin Spars -- Adjoint-Based Aerodynamic Shape Optimization Applied to Morphing Technology on a Regional Aircraft Wing -- Handling of Morphing Shape Changes in a CFD Context -- Context of the Study -- Discrete Model of Displacement Field at the Trailing Edge -- 3D CFD Mesh Deformation Technique -- CFD Evaluation and Far-Field Drag Analysis Over a Wing Equipped with a Morphing System -- Finite-Volume Solver for the RANS Equations in elsA -- Far-Field Drag Extraction Tool -- Sensitivity Analysis Using a Discrete Adjoint of the RANS Equations -- Residual and Objective Function Dependencies -- Discrete Adjoint Method in elsA -- Local Shape Optimization Technique -- Definition of the Problem -- Method of Feasible Directions -- 2D Example: The Rosenbrock's Function Constrained by a Disk -- Aerodynamic Shape Optimization of Morphing System: An Application Within the EU Project SARISTU -- Optimization Problem -- Optimization Loop Presentation -- First Optimization -- Second Optimization -- Expectations on Morphing Technology -- Conclusion -- Further Reading -- Expected Performances -- Reference Aircraft -- Active Camber Using Conventional Control Surfaces -- Five Panels Over the Flap Region -- Coupled Aerostructural Shape Optimization -- Morphing Leading Edge -- Morphing Trailing Edge -- Fuel Savings -- High-Fidelity Aerodynamic Analysis -- Leading Edge Morphing -- Trailing Edge Morphing -- Weight Saving -- Morphing Devices -- Benefit Exploitation in the Transport Aircraft Design -- Morphing Skin: Foams -- Design Principles -- Low Temperature Elastomers -- Material Properties of HYPERFLEX -- Properties of Bonded Joints -- Properties of Morphing Skin -- Skin Manufacturing -- Summary and Conclusions -- Design of Skin Panels for Morphing Wings in Lattice Materials -- Requirements for the Skin of a Morphing Wing -- Methodology for Nonlinear Homogenization of Periodic Structures -- Mechanical Properties of Skin Panels in Lattice Material -- Analysis of Selected Lattice Topologies -- Design Space of the Chevron Lattice -- Composite Corrugated Laminates for Morphing Applications -- Types of Corrugated Laminates -- Anisotropy and Stiffness Properties in Morphing Direction -- Anisotropy Indices of Stiffness Properties -- Compliance in Morphing Directions of Different Types of Composite Corrugated Laminates -- Strength and Stiffness Contributions in Nonmorphing Directions -- Failure Modes of Composite Corrugated Laminates and Strain Limits -- Evaluation of Structural Stiffness Contribution in Nonmorphing Directions -- Manufacturing of Composite Corrugated Laminates -- Development of Aerodynamically Efficient Morphing Skins -- Aerodynamic Issues in the Application of Composite Corrugated Laminates -- Performance Index Based on Ratio Between Bending and Axial Compliance -- Integration of an Elastomertic Cover on a Square-Shaped Corrugated Laminate -- Active Metal Structures -- Morphing Oriented Kinematic Chains: Working Principles and Design Approaches -- Spar Caps Section Area at Generic Cross-section -- Spars Webs, Skin Panels, Rib Plate Thickness at Generic Cross-Section -- Compliant Mechanisms: Working Principles and Design Approaches -- Applications of Morphing Oriented Kinematic Chains -- Morphing Concept Overview -- Structural Analyses -- Applications of the Compliant Mechanism Approach -- Arc-Based Flap, Actuated by SMA Active Elements -- X-Cell Architecture for a Single Slotted Flap -- 11 Sensor Systems for Smart Architectures -- Strain Sensors -- Strain Gauge Foils -- Piezoelectric Devices -- Graphene-Based Polymers -- Fiber Optics -- Sensor Systems for Large Scale Integration -- Wireless Technology -- Sprayed Technology -- Distributed Technology -- Some Installation Issues -- Case Studies -- Shape Reconstruction of a Variable Camber Wing Trailing Edge -- Damage and Load Monitoring -- Rotation Angle Monitoring -- Conclusions and Perspectives -- Control Techniques for a Smart Actuated Morphing Wing Model: Design, Numerical Simulation and Experimental Validation -- Project Background -- General Structures of the Open Loop and Closed Loop Control Architectures -- Open Loop Controllers -- Fuzzy Logic PD Controller -- Combined On-Off and PID Fuzzy Logic Controller -- Combined On-Off and Cascade PD-PI Fuzzy Logic Controller -- Combined On-Off and Self-Tuning Fuzzy Logic Controller -- Optimized Closed Loop Control Method -- Influence of the Elastic Constraint on the Functionality of Integrated Morphing Devices -- Features of the FE Models -- LE Modeling Strategy -- TE Modeling Strategy -- WL Modeling Strategy -- Isolated Devices Behavior -- Global Stiffness of the Outer Wing Box -- Effects of the Actuation of the Morphing Devices -- Cross Effects -- Effects on the Wing Box -- Conclusions and Further Steps -- Application of the Extra-Modes Method to the Aeroelastic Analysis of Morphing Wing Structures -- Aeroelastic Equilibrium Equation and Stability -- Extra-Modes Formulation -- Aeroelastic Analyses of Morphing Wings Using the Extra-Modes Method -- Effectiveness of Wing Twist Morphing as Roll Control Strategy -- Trade-Off Flutter Analysis of a Morphing Wing Trailing Edge -- Bibliography -- Stress Analysis of a Morphing System -- Design of a Morphing Structure. Finite Element Modeling of Morphing Structures -- Rib and Spars -- Fasteners -- Actuation System -- Design Loads and Constraints -- Structural Design and Simulations -- Static Analysis at Limit and Ultimate Loads: Linear and Nonlinear Analysis -- Stress Analysis -- Buckling Analysis -- Modal Analysis -- Stress Margins of Safety -- Solid Parts -- Internal Connections -- Further Readings -- Morphing of the Leading Edge -- Summary -- Conceptual Approach to the Morphing of the Leading Edge -- Working Principle of the Architecture Selected to Produce the Drop Nose Effect -- Architecture Design -- Identification of the Kinematic Chain in the Rib Plane -- Topologic Optimization of the In-Plane Rib Architecture -- Spanwise Architecture and Actuation Design -- Modelling and Working Simulation of the Complete Architecture -- Prototyping -- Experimental Campaign -- Setup -- Experimental Results -- Numerical-Experimental Comparison -- Adaptive Trailing Edge -- Concept -- Layout -- Design -- Design Loads -- Structural Sizing -- Actuator Selection -- Results -- Safety and Reliability Aspects -- Generalities -- Distributed Actuation -- ATED Function -- Fault Hazard Assessment -- Functional Hazard Assessment -- Discussion: Implementation on Real Aircraft -- System Development -- Operational Aspects -- Aeroelastic Issues -- Conclusions and Future Developments -- Morphing Aileron -- Conceptual Approach -- Working Principle and T/A Architecture -- Actuation System Design -- Numerical Simulations -- Interface Load -- Experimental Tests and Main Outcome -- GVT and Numerical Correlation -- Functionality Test -- Experimental Shapes -- Wind Tunnel Tests -- Morphing Technology for Advanced Future Commercial Aircrafts -- ATED Manufacturing -- Morphing System -- Manufacturing -- Test Campaign -- Other Experiences -- 3AS Project -- CURVED Project -- Future Studies-The Morphing Rudder -- Synthesis -- Manufacturing Challenges -- Lateral Directional Stability Analysis -- Morphing Wing Integration -- Demonstrator Components -- Wing Box Primary Structure -- Leading Edge -- Trailing Edge -- Winglet -- Conditions of Assembly -- Jig -- Equipment and Tooling -- Demonstrator Assembly -- Assembly of the Wing Box -- Morphing Systems Installation: The Leading Edge -- Morphing Systems Installation: The Trailing Edge -- Morphing Systems Installation: The Winglet -- FBG Sensor Network -- Morphing Devices: Safety, Reliability, and Certification Prospects -- System Level Approaches to the Certification of Morphing Wing Devices -- Adaptive Droop Nose -- Adaptive Trailing Edge Device -- Morphing Winglet -- Defining the System Level Functions of Morphing Devices -- Dual Level Safety -- Dual-Level Approach for the FTA of a Morphing Wing -- Common Cause Analyses -- Particular Risk Analysis -- Common Mode Analysis -- Zonal Safety Analysis -- On the Experimental Characterization of Morphing Structures -- Testing Practices for Morphing Systems -- Morphing Trailing Edge Device -- Unit Tests: From Component to Morphing System Verification -- Skin Over Dummy -- Actuators Over Dummy -- Control System Over Dummy -- Control System Over Skinned Dummy -- Complete System -- System Integration Test Bench for Morphing Systems -- Full-Scale Testing -- Shape Control of Adaptive Wings -- Wing Shape Controller Strategies and Experimental Verification -- Wind Tunnel Testing of Adaptive Wing Structures -- General Test Procedure for the Morphing Item -- 3AS -- Requirements for the EURAM and Experimental Facilities -- Model Design and Manufacture -- Laboratory Tests -- Aeroelastic Wing Tip Controls Concept -- All-Movable Vertical Tail Concept -- Selective Deformable Structure Concept -- Wing Demonstrator -- Videogrammetry Method of Deformation Measuring -- Test Object and Experimental Facility -- Measuring Process and Data Handling -- SARISTU -- Objectives of the Wind Tunnel Test -- Ground Vibration Test and Flutter Expansion Test -- Load Measurements -- Calculations of Wing Demo Aerodynamics in T-104 WT -- Deformations Measurements of the Wing with Elastic Controls in WT T-104 Flow -- Rotary Wings Morphing Technologies: State of the Art and Perspectives -- Overview of Rotor Morphing Technologies -- Trailing Edge Flaps -- Active and Variable Twist -- Variable Span -- Emerging Rotor Morphing Technologies -- Critical Review of Some Significant Efforts -- Active Trailing and Leading Edge Devices -- Individual Blade Control -- Active Twist -- Slowed/Stopped Rotor -- Aerodynamic Analyses of Tiltrotor Morphing Blades -- Aim and Structure of the Chapter -- Research Context -- Outline of Methods and Numerical Tools -- Integration and Optimization Environment -- MDA Procedures and Optimization Processes -- BEMT Analysis -- CFD Driven Analysis -- Blade Parameterization -- Airfoil Selection -- Surface Grid Generation -- Volume Grid Generation -- Background -- Case Study -- Description of Activities -- Baseline Geometry -- Optimization Objectives and Strategy -- Un-Morphed Blades -- Morphing Blades -- Blade Span Morphing and Variable Speed Rotor -- Blade Section Morphing -- Synergic Effects of Passive and Active Ice Protection Systems -- Pros and Cons of Considered IPS -- Thermoelectric IPS -- Low-Power Consuming Piezoelectric Deicing Systems -- Hydrophobic Coatings -- Alternative Strategy Based on a Hybrid Approach -- Design and Realization of the IPS -- Hydrophobic Coating Design and Process Assessment -- Thermoelectric System Design and Ice Shedding Prediction -- Piezoelectric IPS Sizing and Parameters Assessment -- Experimental Validation -- First WT Test Campaign -- Second WT Test Campaign -- Acknowledgment -- 27 Helicopter Vibration Reduction -- NextGen Vibration Levels -- Vibration Specifications -- Source of Helicopter Vibratory Loads -- How Do Vibratory Loads Get Into the Fuselage? -- What Is Used for Vibration Control Now? -- Why Not Isolation? -- Venerable Frahm -- Fuselage-Based Frahms -- Rotor-Based Frahms -- Frahms Are Heavy -- Active Vibration Control -- Dynamic Antiresonant Vibration Isolator -- More Problems With Frahms -- Active Counter-Force -- Higher Harmonic Control -- Hydraulic IBC -- Electrical IBC -- On-Blade Flaps -- Path Forward -- References. Airplanes Wings Design. Vertically rising aircraft Wings Design. Airplanes Wings. http://id.loc.gov/authorities/subjects/sh85002923 Vertically rising aircraft. http://id.loc.gov/authorities/subjects/sh85142914 Avions Ailes. Avions à décollage et atterrissage verticaux. vertical take-off and landing aircraft. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh Airplanes Wings Design fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85002923 http://id.loc.gov/authorities/subjects/sh85142914 |
title | Morphing wing technologies : large commercial aircraft and civil helicopters / |
title_alt | Historical Background and Current Scenario -- Introduction -- Components of a Wing Morphing Structural System -- Structural Skeleton -- Actuation Systems -- Skin -- Control System -- Cabling -- Assembly -- Main Challenges -- Skins -- Sensor Systems -- Back to the Past -- Wright's Flyer -- Plane and the Like for Aeroplanes -- Parker's Wing -- Modern Times -- NASA Studies -- DGLR Studies -- Mission Adaptive Wing -- Further NASA Studies -- Recent Activities-United States -- Adaptive Wing Reborn: SMAs -- DARPA Smart Wing Program -- DARPA Morphing Aircraft Structures Program -- Recent Activities-Europe -- ADIF -- Clean Sky -- Current Scenario -- Airbus-SARISTU (Smart Intelligent Aircraft Structures) -- Boeing-Adaptive Wing -- Flexsys and Gulfstream -- Tradition at the University of Napoli and CIRA -- Adaptive Airfoil -- Hinge-Less Wing -- Smartflap -- SADE -- Clean Sky-JTI-GRA-Low Noise -- EU-SARISTU -- Adaptive Aileron -- Future Perspectives -- Safe Design -- Skins and Fillers -- Direct Actuation: The Use of Smart Materials -- Wireless, Distributed Sensing -- Control System Architecture -- Cybernetics and Robotics -- Acknowledgments -- References -- University of Napoli and CIRA International Awards -- Aircraft Morphing-An Industry Vision -- Current Aircraft Capabilities -- Interest of Industry -- Some Considerations About Industry Aerodynamic Design Process -- Expected Performance Targets -- Manufacturing: New Materials and Controlled Industrial Processes -- Assembly and Quality: Automation and Integrated Parts -- Maintenance: Assessed Steps and Personnel Training -- Safety: Assessed Methods for Standard Architectures -- Current and Expected Needs -- Technology Transition -- Mission Configurable Wing -- Improved Flaps and Ailerons -- Morphing as a Solution -- Wing and Control Surface Feasible Solutions -- Some Specific Requirements -- Conclusions -- Development of Morphing Aircraft Benefit Assessment -- Experiments as Basis for Morphing Progress -- Advent of Transonic Methods -- Automated Methods as Enabler for Large Scale Studies -- Reintroduction of Flexible Materials -- Final Step to Industrial Application -- Span Morphing Concept: An Overview -- Effects of Span Increase -- Aerodynamic Effects -- Structural Effects -- Stability and Control Effects -- Span Morphing Concepts and Aircraft Performance -- Symmetric Span Morphing -- Asymmetric Span Morphing -- Implementation Challenges -- Telescopic Wings -- Hinged Structures -- Twin Spars -- Adjoint-Based Aerodynamic Shape Optimization Applied to Morphing Technology on a Regional Aircraft Wing -- Handling of Morphing Shape Changes in a CFD Context -- Context of the Study -- Discrete Model of Displacement Field at the Trailing Edge -- 3D CFD Mesh Deformation Technique -- CFD Evaluation and Far-Field Drag Analysis Over a Wing Equipped with a Morphing System -- Finite-Volume Solver for the RANS Equations in elsA -- Far-Field Drag Extraction Tool -- Sensitivity Analysis Using a Discrete Adjoint of the RANS Equations -- Residual and Objective Function Dependencies -- Discrete Adjoint Method in elsA -- Local Shape Optimization Technique -- Definition of the Problem -- Method of Feasible Directions -- 2D Example: The Rosenbrock's Function Constrained by a Disk -- Aerodynamic Shape Optimization of Morphing System: An Application Within the EU Project SARISTU -- Optimization Problem -- Optimization Loop Presentation -- First Optimization -- Second Optimization -- Expectations on Morphing Technology -- Conclusion -- Further Reading -- Expected Performances -- Reference Aircraft -- Active Camber Using Conventional Control Surfaces -- Five Panels Over the Flap Region -- Coupled Aerostructural Shape Optimization -- Morphing Leading Edge -- Morphing Trailing Edge -- Fuel Savings -- High-Fidelity Aerodynamic Analysis -- Leading Edge Morphing -- Trailing Edge Morphing -- Weight Saving -- Morphing Devices -- Benefit Exploitation in the Transport Aircraft Design -- Morphing Skin: Foams -- Design Principles -- Low Temperature Elastomers -- Material Properties of HYPERFLEX -- Properties of Bonded Joints -- Properties of Morphing Skin -- Skin Manufacturing -- Summary and Conclusions -- Design of Skin Panels for Morphing Wings in Lattice Materials -- Requirements for the Skin of a Morphing Wing -- Methodology for Nonlinear Homogenization of Periodic Structures -- Mechanical Properties of Skin Panels in Lattice Material -- Analysis of Selected Lattice Topologies -- Design Space of the Chevron Lattice -- Composite Corrugated Laminates for Morphing Applications -- Types of Corrugated Laminates -- Anisotropy and Stiffness Properties in Morphing Direction -- Anisotropy Indices of Stiffness Properties -- Compliance in Morphing Directions of Different Types of Composite Corrugated Laminates -- Strength and Stiffness Contributions in Nonmorphing Directions -- Failure Modes of Composite Corrugated Laminates and Strain Limits -- Evaluation of Structural Stiffness Contribution in Nonmorphing Directions -- Manufacturing of Composite Corrugated Laminates -- Development of Aerodynamically Efficient Morphing Skins -- Aerodynamic Issues in the Application of Composite Corrugated Laminates -- Performance Index Based on Ratio Between Bending and Axial Compliance -- Integration of an Elastomertic Cover on a Square-Shaped Corrugated Laminate -- Active Metal Structures -- Morphing Oriented Kinematic Chains: Working Principles and Design Approaches -- Spar Caps Section Area at Generic Cross-section -- Spars Webs, Skin Panels, Rib Plate Thickness at Generic Cross-Section -- Compliant Mechanisms: Working Principles and Design Approaches -- Applications of Morphing Oriented Kinematic Chains -- Morphing Concept Overview -- Structural Analyses -- Applications of the Compliant Mechanism Approach -- Arc-Based Flap, Actuated by SMA Active Elements -- X-Cell Architecture for a Single Slotted Flap -- 11 Sensor Systems for Smart Architectures -- Strain Sensors -- Strain Gauge Foils -- Piezoelectric Devices -- Graphene-Based Polymers -- Fiber Optics -- Sensor Systems for Large Scale Integration -- Wireless Technology -- Sprayed Technology -- Distributed Technology -- Some Installation Issues -- Case Studies -- Shape Reconstruction of a Variable Camber Wing Trailing Edge -- Damage and Load Monitoring -- Rotation Angle Monitoring -- Conclusions and Perspectives -- Control Techniques for a Smart Actuated Morphing Wing Model: Design, Numerical Simulation and Experimental Validation -- Project Background -- General Structures of the Open Loop and Closed Loop Control Architectures -- Open Loop Controllers -- Fuzzy Logic PD Controller -- Combined On-Off and PID Fuzzy Logic Controller -- Combined On-Off and Cascade PD-PI Fuzzy Logic Controller -- Combined On-Off and Self-Tuning Fuzzy Logic Controller -- Optimized Closed Loop Control Method -- Influence of the Elastic Constraint on the Functionality of Integrated Morphing Devices -- Features of the FE Models -- LE Modeling Strategy -- TE Modeling Strategy -- WL Modeling Strategy -- Isolated Devices Behavior -- Global Stiffness of the Outer Wing Box -- Effects of the Actuation of the Morphing Devices -- Cross Effects -- Effects on the Wing Box -- Conclusions and Further Steps -- Application of the Extra-Modes Method to the Aeroelastic Analysis of Morphing Wing Structures -- Aeroelastic Equilibrium Equation and Stability -- Extra-Modes Formulation -- Aeroelastic Analyses of Morphing Wings Using the Extra-Modes Method -- Effectiveness of Wing Twist Morphing as Roll Control Strategy -- Trade-Off Flutter Analysis of a Morphing Wing Trailing Edge -- Bibliography -- Stress Analysis of a Morphing System -- Design of a Morphing Structure. Finite Element Modeling of Morphing Structures -- Rib and Spars -- Fasteners -- Actuation System -- Design Loads and Constraints -- Structural Design and Simulations -- Static Analysis at Limit and Ultimate Loads: Linear and Nonlinear Analysis -- Stress Analysis -- Buckling Analysis -- Modal Analysis -- Stress Margins of Safety -- Solid Parts -- Internal Connections -- Further Readings -- Morphing of the Leading Edge -- Summary -- Conceptual Approach to the Morphing of the Leading Edge -- Working Principle of the Architecture Selected to Produce the Drop Nose Effect -- Architecture Design -- Identification of the Kinematic Chain in the Rib Plane -- Topologic Optimization of the In-Plane Rib Architecture -- Spanwise Architecture and Actuation Design -- Modelling and Working Simulation of the Complete Architecture -- Prototyping -- Experimental Campaign -- Setup -- Experimental Results -- Numerical-Experimental Comparison -- Adaptive Trailing Edge -- Concept -- Layout -- Design -- Design Loads -- Structural Sizing -- Actuator Selection -- Results -- Safety and Reliability Aspects -- Generalities -- Distributed Actuation -- ATED Function -- Fault Hazard Assessment -- Functional Hazard Assessment -- Discussion: Implementation on Real Aircraft -- System Development -- Operational Aspects -- Aeroelastic Issues -- Conclusions and Future Developments -- Morphing Aileron -- Conceptual Approach -- Working Principle and T/A Architecture -- Actuation System Design -- Numerical Simulations -- Interface Load -- Experimental Tests and Main Outcome -- GVT and Numerical Correlation -- Functionality Test -- Experimental Shapes -- Wind Tunnel Tests -- Morphing Technology for Advanced Future Commercial Aircrafts -- ATED Manufacturing -- Morphing System -- Manufacturing -- Test Campaign -- Other Experiences -- 3AS Project -- CURVED Project -- Future Studies-The Morphing Rudder -- Synthesis -- Manufacturing Challenges -- Lateral Directional Stability Analysis -- Morphing Wing Integration -- Demonstrator Components -- Wing Box Primary Structure -- Leading Edge -- Trailing Edge -- Winglet -- Conditions of Assembly -- Jig -- Equipment and Tooling -- Demonstrator Assembly -- Assembly of the Wing Box -- Morphing Systems Installation: The Leading Edge -- Morphing Systems Installation: The Trailing Edge -- Morphing Systems Installation: The Winglet -- FBG Sensor Network -- Morphing Devices: Safety, Reliability, and Certification Prospects -- System Level Approaches to the Certification of Morphing Wing Devices -- Adaptive Droop Nose -- Adaptive Trailing Edge Device -- Morphing Winglet -- Defining the System Level Functions of Morphing Devices -- Dual Level Safety -- Dual-Level Approach for the FTA of a Morphing Wing -- Common Cause Analyses -- Particular Risk Analysis -- Common Mode Analysis -- Zonal Safety Analysis -- On the Experimental Characterization of Morphing Structures -- Testing Practices for Morphing Systems -- Morphing Trailing Edge Device -- Unit Tests: From Component to Morphing System Verification -- Skin Over Dummy -- Actuators Over Dummy -- Control System Over Dummy -- Control System Over Skinned Dummy -- Complete System -- System Integration Test Bench for Morphing Systems -- Full-Scale Testing -- Shape Control of Adaptive Wings -- Wing Shape Controller Strategies and Experimental Verification -- Wind Tunnel Testing of Adaptive Wing Structures -- General Test Procedure for the Morphing Item -- 3AS -- Requirements for the EURAM and Experimental Facilities -- Model Design and Manufacture -- Laboratory Tests -- Aeroelastic Wing Tip Controls Concept -- All-Movable Vertical Tail Concept -- Selective Deformable Structure Concept -- Wing Demonstrator -- Videogrammetry Method of Deformation Measuring -- Test Object and Experimental Facility -- Measuring Process and Data Handling -- SARISTU -- Objectives of the Wind Tunnel Test -- Ground Vibration Test and Flutter Expansion Test -- Load Measurements -- Calculations of Wing Demo Aerodynamics in T-104 WT -- Deformations Measurements of the Wing with Elastic Controls in WT T-104 Flow -- Rotary Wings Morphing Technologies: State of the Art and Perspectives -- Overview of Rotor Morphing Technologies -- Trailing Edge Flaps -- Active and Variable Twist -- Variable Span -- Emerging Rotor Morphing Technologies -- Critical Review of Some Significant Efforts -- Active Trailing and Leading Edge Devices -- Individual Blade Control -- Active Twist -- Slowed/Stopped Rotor -- Aerodynamic Analyses of Tiltrotor Morphing Blades -- Aim and Structure of the Chapter -- Research Context -- Outline of Methods and Numerical Tools -- Integration and Optimization Environment -- MDA Procedures and Optimization Processes -- BEMT Analysis -- CFD Driven Analysis -- Blade Parameterization -- Airfoil Selection -- Surface Grid Generation -- Volume Grid Generation -- Background -- Case Study -- Description of Activities -- Baseline Geometry -- Optimization Objectives and Strategy -- Un-Morphed Blades -- Morphing Blades -- Blade Span Morphing and Variable Speed Rotor -- Blade Section Morphing -- Synergic Effects of Passive and Active Ice Protection Systems -- Pros and Cons of Considered IPS -- Thermoelectric IPS -- Low-Power Consuming Piezoelectric Deicing Systems -- Hydrophobic Coatings -- Alternative Strategy Based on a Hybrid Approach -- Design and Realization of the IPS -- Hydrophobic Coating Design and Process Assessment -- Thermoelectric System Design and Ice Shedding Prediction -- Piezoelectric IPS Sizing and Parameters Assessment -- Experimental Validation -- First WT Test Campaign -- Second WT Test Campaign -- Acknowledgment -- 27 Helicopter Vibration Reduction -- NextGen Vibration Levels -- Vibration Specifications -- Source of Helicopter Vibratory Loads -- How Do Vibratory Loads Get Into the Fuselage? -- What Is Used for Vibration Control Now? -- Why Not Isolation? -- Venerable Frahm -- Fuselage-Based Frahms -- Rotor-Based Frahms -- Frahms Are Heavy -- Active Vibration Control -- Dynamic Antiresonant Vibration Isolator -- More Problems With Frahms -- Active Counter-Force -- Higher Harmonic Control -- Hydraulic IBC -- Electrical IBC -- On-Blade Flaps -- Path Forward -- References. |
title_auth | Morphing wing technologies : large commercial aircraft and civil helicopters / |
title_exact_search | Morphing wing technologies : large commercial aircraft and civil helicopters / |
title_full | Morphing wing technologies : large commercial aircraft and civil helicopters / edited by Antonio Concilio, Ignazio Dimino, Leonardo Lecce, Rosario Pecora. |
title_fullStr | Morphing wing technologies : large commercial aircraft and civil helicopters / edited by Antonio Concilio, Ignazio Dimino, Leonardo Lecce, Rosario Pecora. |
title_full_unstemmed | Morphing wing technologies : large commercial aircraft and civil helicopters / edited by Antonio Concilio, Ignazio Dimino, Leonardo Lecce, Rosario Pecora. |
title_short | Morphing wing technologies : |
title_sort | morphing wing technologies large commercial aircraft and civil helicopters |
title_sub | large commercial aircraft and civil helicopters / |
topic | Airplanes Wings Design. Vertically rising aircraft Wings Design. Airplanes Wings. http://id.loc.gov/authorities/subjects/sh85002923 Vertically rising aircraft. http://id.loc.gov/authorities/subjects/sh85142914 Avions Ailes. Avions à décollage et atterrissage verticaux. vertical take-off and landing aircraft. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh Airplanes Wings Design fast |
topic_facet | Airplanes Wings Design. Vertically rising aircraft Wings Design. Airplanes Wings. Vertically rising aircraft. Avions Ailes. Avions à décollage et atterrissage verticaux. vertical take-off and landing aircraft. TECHNOLOGY & ENGINEERING Engineering (General) Airplanes Wings Design |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1144990 https://www.sciencedirect.com/science/book/9780081009642 |
work_keys_str_mv | AT concilioantonio morphingwingtechnologieslargecommercialaircraftandcivilhelicopters AT diminoignazio morphingwingtechnologieslargecommercialaircraftandcivilhelicopters AT lecceleonardo morphingwingtechnologieslargecommercialaircraftandcivilhelicopters AT pecorarosario morphingwingtechnologieslargecommercialaircraftandcivilhelicopters |