Simple lie algebras over fields of positive characteristic.: Volume 1, Structure theory /
The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long-standing one. Work on this question has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a fi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin :
Walter de Gruyter,
[2017]
|
Ausgabe: | 2nd edition. |
Schriftenreihe: | De Gruyter expositions in mathematics ;
38. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long-standing one. Work on this question has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p › 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p › 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p › 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic. This first volume is devoted to preparing the ground for the classification work to be performed in the second and third volumes. The concise presentation of the general theory underlying the subject matter and the presentation of classification results on a subclass of the simple Lie algebras for all odd primes will make this volume an invaluable source and reference for all research mathematicians and advanced graduate students in algebra. The second edition is corrected. Contents Toral subalgebras in p-envelopesLie algebras of special derivationsDerivation simple algebras and modulesSimple Lie algebrasRecognition theoremsThe isomorphism problemStructure of simple Lie algebrasPairings of induced modulesToral rank 1 Lie algebras. |
Beschreibung: | 1 online resource |
ISBN: | 9783110515237 3110515237 311051544X 9783110515442 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn987903130 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 170425s2017 gw o 000 0 eng d | ||
040 | |a YDX |b eng |e rda |e pn |c YDX |d OCLCO |d N$T |d OCLCF |d AGLDB |d IGB |d AUW |d BTN |d MHW |d INTCL |d SNK |d G3B |d S8I |d S8J |d S9I |d STF |d D6H |d OCLCQ |d U9X |d IDEBK |d COCUF |d LOA |d K6U |d VT2 |d U3W |d WYU |d LVT |d AU@ |d UKAHL |d AUD |d HS0 |d OCLCO |d OCLCQ |d DEGRU |d OCLCO |d OCLCL |d OCLCQ |d QGK |d SFB |d UEJ | ||
019 | |a 960032819 |a 984254809 |a 984635990 |a 985321601 |a 985401616 |a 985504499 |a 985647633 |a 985764887 |a 986026676 |a 986483323 |a 986592683 |a 986930103 |a 987768498 |a 988082095 |a 1066554353 |a 1164782283 |a 1227636827 |a 1228598441 |a 1446814321 | ||
020 | |a 9783110515237 |q (electronic bk.) | ||
020 | |a 3110515237 |q (electronic bk.) | ||
020 | |z 3110515164 | ||
020 | |z 9783110515169 | ||
020 | |a 311051544X |q (ebk) | ||
020 | |a 9783110515442 | ||
024 | 7 | |a 10.1515/9783110515442 |2 doi | |
035 | |a (OCoLC)987903130 |z (OCoLC)960032819 |z (OCoLC)984254809 |z (OCoLC)984635990 |z (OCoLC)985321601 |z (OCoLC)985401616 |z (OCoLC)985504499 |z (OCoLC)985647633 |z (OCoLC)985764887 |z (OCoLC)986026676 |z (OCoLC)986483323 |z (OCoLC)986592683 |z (OCoLC)986930103 |z (OCoLC)987768498 |z (OCoLC)988082095 |z (OCoLC)1066554353 |z (OCoLC)1164782283 |z (OCoLC)1227636827 |z (OCoLC)1228598441 |z (OCoLC)1446814321 | ||
037 | |a 1006394 |b MIL | ||
050 | 4 | |a QA252.3 |b .S78 2017 | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
082 | 7 | |a 512.55 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Strade, Helmut, |d 1942- |e author. |0 http://id.loc.gov/authorities/names/n86008393 | |
245 | 1 | 0 | |a Simple lie algebras over fields of positive characteristic. |n Volume 1, |p Structure theory / |c Helmut Strade. |
250 | |a 2nd edition. | ||
264 | 1 | |a Berlin : |b Walter de Gruyter, |c [2017] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics ; |v volume 38 | |
588 | 0 | |a Online resource; title from digital title page (viewed on May 23, 2017). | |
505 | 0 | 0 | |t Frontmatter -- |t Contents -- |t Introduction -- |t Chapter 1. Toral subalgebras in p-envelopes -- |t Chapter 2. Lie algebras of special derivations -- |t Chapter 3. Derivation simple algebras and modules -- |t Chapter 4. Simple Lie algebras -- |t Chapter 5. Recognition theorems -- |t Chapter 6. The isomorphism problem -- |t Chapter 7. Structure of simple Lie algebras -- |t Chapter 8. Pairings of induced modules -- |t Chapter 9. Toral rank 1 Lie algebras -- |t Notation -- |t Bibliography -- |t Index |
520 | |a The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long-standing one. Work on this question has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p › 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p › 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p › 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic. This first volume is devoted to preparing the ground for the classification work to be performed in the second and third volumes. The concise presentation of the general theory underlying the subject matter and the presentation of classification results on a subclass of the simple Lie algebras for all odd primes will make this volume an invaluable source and reference for all research mathematicians and advanced graduate students in algebra. The second edition is corrected. Contents Toral subalgebras in p-envelopesLie algebras of special derivationsDerivation simple algebras and modulesSimple Lie algebrasRecognition theoremsThe isomorphism problemStructure of simple Lie algebrasPairings of induced modulesToral rank 1 Lie algebras. | ||
546 | |a In English. | ||
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 6 | |a Algèbres de Lie. | |
650 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh | |
650 | 7 | |a Lie algebras |2 fast | |
653 | |a Lie algebras, fields of positive characteristic, structure theory. | ||
758 | |i has work: |a Simple lie algebras over fields of positive characteristic Structure theory Volume 1 (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGXgWBF84Gjf3m4pKYxDD3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 3110515164 |z 9783110515169 |w (OCoLC)961937249 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 38. |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504961 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a De Gruyter |b DEGR |n 9783110515442 | ||
938 | |a EBSCOhost |b EBSC |n 1504961 | ||
938 | |a YBP Library Services |b YANK |n 14255972 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH31955346 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis36890240 | ||
938 | |a YBP Library Services |b YANK |n 13204357 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn987903130 |
---|---|
_version_ | 1816882389963505664 |
adam_text | |
any_adam_object | |
author | Strade, Helmut, 1942- |
author_GND | http://id.loc.gov/authorities/names/n86008393 |
author_facet | Strade, Helmut, 1942- |
author_role | aut |
author_sort | Strade, Helmut, 1942- |
author_variant | h s hs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 .S78 2017 |
callnumber-search | QA252.3 .S78 2017 |
callnumber-sort | QA 3252.3 S78 42017 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Contents -- Introduction -- Chapter 1. Toral subalgebras in p-envelopes -- Chapter 2. Lie algebras of special derivations -- Chapter 3. Derivation simple algebras and modules -- Chapter 4. Simple Lie algebras -- Chapter 5. Recognition theorems -- Chapter 6. The isomorphism problem -- Chapter 7. Structure of simple Lie algebras -- Chapter 8. Pairings of induced modules -- Chapter 9. Toral rank 1 Lie algebras -- Notation -- Bibliography -- Index |
ctrlnum | (OCoLC)987903130 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05966cam a2200685 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn987903130</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">170425s2017 gw o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">IGB</subfield><subfield code="d">AUW</subfield><subfield code="d">BTN</subfield><subfield code="d">MHW</subfield><subfield code="d">INTCL</subfield><subfield code="d">SNK</subfield><subfield code="d">G3B</subfield><subfield code="d">S8I</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">STF</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U9X</subfield><subfield code="d">IDEBK</subfield><subfield code="d">COCUF</subfield><subfield code="d">LOA</subfield><subfield code="d">K6U</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">AUD</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">SFB</subfield><subfield code="d">UEJ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">960032819</subfield><subfield code="a">984254809</subfield><subfield code="a">984635990</subfield><subfield code="a">985321601</subfield><subfield code="a">985401616</subfield><subfield code="a">985504499</subfield><subfield code="a">985647633</subfield><subfield code="a">985764887</subfield><subfield code="a">986026676</subfield><subfield code="a">986483323</subfield><subfield code="a">986592683</subfield><subfield code="a">986930103</subfield><subfield code="a">987768498</subfield><subfield code="a">988082095</subfield><subfield code="a">1066554353</subfield><subfield code="a">1164782283</subfield><subfield code="a">1227636827</subfield><subfield code="a">1228598441</subfield><subfield code="a">1446814321</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110515237</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110515237</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110515164</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110515169</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">311051544X</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110515442</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110515442</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)987903130</subfield><subfield code="z">(OCoLC)960032819</subfield><subfield code="z">(OCoLC)984254809</subfield><subfield code="z">(OCoLC)984635990</subfield><subfield code="z">(OCoLC)985321601</subfield><subfield code="z">(OCoLC)985401616</subfield><subfield code="z">(OCoLC)985504499</subfield><subfield code="z">(OCoLC)985647633</subfield><subfield code="z">(OCoLC)985764887</subfield><subfield code="z">(OCoLC)986026676</subfield><subfield code="z">(OCoLC)986483323</subfield><subfield code="z">(OCoLC)986592683</subfield><subfield code="z">(OCoLC)986930103</subfield><subfield code="z">(OCoLC)987768498</subfield><subfield code="z">(OCoLC)988082095</subfield><subfield code="z">(OCoLC)1066554353</subfield><subfield code="z">(OCoLC)1164782283</subfield><subfield code="z">(OCoLC)1227636827</subfield><subfield code="z">(OCoLC)1228598441</subfield><subfield code="z">(OCoLC)1446814321</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">1006394</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA252.3</subfield><subfield code="b">.S78 2017</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">023000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strade, Helmut,</subfield><subfield code="d">1942-</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86008393</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simple lie algebras over fields of positive characteristic.</subfield><subfield code="n">Volume 1,</subfield><subfield code="p">Structure theory /</subfield><subfield code="c">Helmut Strade.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin :</subfield><subfield code="b">Walter de Gruyter,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">volume 38</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed on May 23, 2017).</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Introduction --</subfield><subfield code="t">Chapter 1. Toral subalgebras in p-envelopes --</subfield><subfield code="t">Chapter 2. Lie algebras of special derivations --</subfield><subfield code="t">Chapter 3. Derivation simple algebras and modules --</subfield><subfield code="t">Chapter 4. Simple Lie algebras --</subfield><subfield code="t">Chapter 5. Recognition theorems --</subfield><subfield code="t">Chapter 6. The isomorphism problem --</subfield><subfield code="t">Chapter 7. Structure of simple Lie algebras --</subfield><subfield code="t">Chapter 8. Pairings of induced modules --</subfield><subfield code="t">Chapter 9. Toral rank 1 Lie algebras --</subfield><subfield code="t">Notation --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long-standing one. Work on this question has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p › 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p › 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p › 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic. This first volume is devoted to preparing the ground for the classification work to be performed in the second and third volumes. The concise presentation of the general theory underlying the subject matter and the presentation of classification results on a subclass of the simple Lie algebras for all odd primes will make this volume an invaluable source and reference for all research mathematicians and advanced graduate students in algebra. The second edition is corrected. Contents Toral subalgebras in p-envelopesLie algebras of special derivationsDerivation simple algebras and modulesSimple Lie algebrasRecognition theoremsThe isomorphism problemStructure of simple Lie algebrasPairings of induced modulesToral rank 1 Lie algebras.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Essays.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Pre-Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lie algebras, fields of positive characteristic, structure theory.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Simple lie algebras over fields of positive characteristic Structure theory Volume 1 (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGXgWBF84Gjf3m4pKYxDD3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">3110515164</subfield><subfield code="z">9783110515169</subfield><subfield code="w">(OCoLC)961937249</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">38.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504961</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110515442</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1504961</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14255972</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH31955346</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis36890240</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13204357</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn987903130 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:51Z |
institution | BVB |
isbn | 9783110515237 3110515237 311051544X 9783110515442 |
language | English |
oclc_num | 987903130 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Walter de Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter expositions in mathematics ; |
spelling | Strade, Helmut, 1942- author. http://id.loc.gov/authorities/names/n86008393 Simple lie algebras over fields of positive characteristic. Volume 1, Structure theory / Helmut Strade. 2nd edition. Berlin : Walter de Gruyter, [2017] 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter expositions in mathematics ; volume 38 Online resource; title from digital title page (viewed on May 23, 2017). Frontmatter -- Contents -- Introduction -- Chapter 1. Toral subalgebras in p-envelopes -- Chapter 2. Lie algebras of special derivations -- Chapter 3. Derivation simple algebras and modules -- Chapter 4. Simple Lie algebras -- Chapter 5. Recognition theorems -- Chapter 6. The isomorphism problem -- Chapter 7. Structure of simple Lie algebras -- Chapter 8. Pairings of induced modules -- Chapter 9. Toral rank 1 Lie algebras -- Notation -- Bibliography -- Index The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long-standing one. Work on this question has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p › 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p › 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p › 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic. This first volume is devoted to preparing the ground for the classification work to be performed in the second and third volumes. The concise presentation of the general theory underlying the subject matter and the presentation of classification results on a subclass of the simple Lie algebras for all odd primes will make this volume an invaluable source and reference for all research mathematicians and advanced graduate students in algebra. The second edition is corrected. Contents Toral subalgebras in p-envelopesLie algebras of special derivationsDerivation simple algebras and modulesSimple Lie algebrasRecognition theoremsThe isomorphism problemStructure of simple Lie algebrasPairings of induced modulesToral rank 1 Lie algebras. In English. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Lie algebras fast Lie algebras, fields of positive characteristic, structure theory. has work: Simple lie algebras over fields of positive characteristic Structure theory Volume 1 (Text) https://id.oclc.org/worldcat/entity/E39PCGXgWBF84Gjf3m4pKYxDD3 https://id.oclc.org/worldcat/ontology/hasWork Print version: 3110515164 9783110515169 (OCoLC)961937249 De Gruyter expositions in mathematics ; 38. http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504961 Volltext |
spellingShingle | Strade, Helmut, 1942- Simple lie algebras over fields of positive characteristic. De Gruyter expositions in mathematics ; Frontmatter -- Contents -- Introduction -- Chapter 1. Toral subalgebras in p-envelopes -- Chapter 2. Lie algebras of special derivations -- Chapter 3. Derivation simple algebras and modules -- Chapter 4. Simple Lie algebras -- Chapter 5. Recognition theorems -- Chapter 6. The isomorphism problem -- Chapter 7. Structure of simple Lie algebras -- Chapter 8. Pairings of induced modules -- Chapter 9. Toral rank 1 Lie algebras -- Notation -- Bibliography -- Index Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Lie algebras fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076782 |
title | Simple lie algebras over fields of positive characteristic. |
title_alt | Frontmatter -- Contents -- Introduction -- Chapter 1. Toral subalgebras in p-envelopes -- Chapter 2. Lie algebras of special derivations -- Chapter 3. Derivation simple algebras and modules -- Chapter 4. Simple Lie algebras -- Chapter 5. Recognition theorems -- Chapter 6. The isomorphism problem -- Chapter 7. Structure of simple Lie algebras -- Chapter 8. Pairings of induced modules -- Chapter 9. Toral rank 1 Lie algebras -- Notation -- Bibliography -- Index |
title_auth | Simple lie algebras over fields of positive characteristic. |
title_exact_search | Simple lie algebras over fields of positive characteristic. |
title_full | Simple lie algebras over fields of positive characteristic. Volume 1, Structure theory / Helmut Strade. |
title_fullStr | Simple lie algebras over fields of positive characteristic. Volume 1, Structure theory / Helmut Strade. |
title_full_unstemmed | Simple lie algebras over fields of positive characteristic. Volume 1, Structure theory / Helmut Strade. |
title_short | Simple lie algebras over fields of positive characteristic. |
title_sort | simple lie algebras over fields of positive characteristic structure theory |
topic | Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Lie algebras fast |
topic_facet | Lie algebras. Algèbres de Lie. MATHEMATICS Essays. MATHEMATICS Pre-Calculus. MATHEMATICS Reference. Lie algebras |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504961 |
work_keys_str_mv | AT stradehelmut simpleliealgebrasoverfieldsofpositivecharacteristicvolume1 |