Probabilistic mechanics of quasibrittle structures :: strength, lifetime, and size effect /
This book presents an experimentally validated probabilistic strength theory of structures made of concrete, composites, ceramics and other quasibrittle materials.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2017.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents an experimentally validated probabilistic strength theory of structures made of concrete, composites, ceramics and other quasibrittle materials. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and author index. |
ISBN: | 9781108135184 1108135188 9781316585146 131658514X |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn986999744 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 170512s2017 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d YDX |d MERUC |d IDEBK |d EBLCP |d UIU |d NRC |d CSAIL |d MERER |d OCLCQ |d UPM |d U3W |d OCLCA |d OCLCQ |d QCL |d RRP |d OTZ |d WYU |d OCLCQ |d K6U |d OCLCO |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 987328676 |a 1020012215 |a 1167275866 |a 1433232765 | ||
020 | |a 9781108135184 |q (electronic bk.) | ||
020 | |a 1108135188 |q (electronic bk.) | ||
020 | |a 9781316585146 | ||
020 | |a 131658514X | ||
020 | |z 9781107151703 | ||
020 | |z 1107151708 | ||
035 | |a (OCoLC)986999744 |z (OCoLC)987328676 |z (OCoLC)1020012215 |z (OCoLC)1167275866 |z (OCoLC)1433232765 | ||
050 | 4 | |a TA409 |b .B39 2017eb | |
072 | 7 | |a TEC |x 009020 |2 bisacsh | |
082 | 7 | |a 624.1/76 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Bažant, Z. P., |e author. | |
245 | 1 | 0 | |a Probabilistic mechanics of quasibrittle structures : |b strength, lifetime, and size effect / |c Zdenek P. Bazant, Northwestern University, Jia-Liang Le, University of Minnesota. |
246 | 3 | |a Probabilistic mechanics of quasi brittle structures | |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2017. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and author index. | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed May 12, 2017). | |
520 | |a This book presents an experimentally validated probabilistic strength theory of structures made of concrete, composites, ceramics and other quasibrittle materials. | ||
505 | 0 | 0 | |g Machine generated contents note: |g 1. |t Introduction -- |g 1.1. |t The Problem of Tail of Probability Distribution -- |g 1.2. |t History in Brief -- |g 1.2.1. |t Classical History -- |g 1.2.2. |t Recent Developments -- |g 1.3. |t Safety Specifications in Concrete Design Codes and Embedded Obstacles to Probabilistic Analysis -- |g 1.4. |t Importance of Size Effect for Strength Statistics -- |g 1.5. |t Power-Law Scaling in the Absence of Characteristic Length -- |g 1.5.1. |t Nominal Strength of Structure and Size Effect -- |g 1.6. |t Statistical and Deterministic Size Effects -- |g 1.7. |t Simple Models for Deterministic Size Effects -- |g 1.7.1. |t Type 1 Size Effect for Failures at Crack Initiation -- |g 1.7.2. |t Type 2 Size Effect for Structures with Deep Cracks or Notches -- |g 1.8. |t Probability Distributions of Strength of Ductile and Brittle Structures -- |g 2. |t Review of Classical Statistical Theory of Structural Strength and Structural Safety, and of Statistics Fundamentals -- |g 2.1. |t Weakest-Link Model -- |g 2.2. |t Weibull Theory -- |g 2.3. |t Scaling of Weibull Theory and Pure Statistical Size Effect -- |g 2.4. |t Equivalent Number of Elements -- |g 2.5. |t Stability Postulate of Extreme Value Statistics -- |g 2.6. |t Distributions Ensuing from Stability Postulate -- |g 2.7. |t Central Limit Theorem and Strength Distribution of Ductile Structures -- |g 2.8. |t Failure Probability When Both the Strength and Load Are Random, and Freudenthal Integral -- |g 3. |t Review of Fracture Mechanics and Deterministic Size Effect in Quasibrittle Structures -- |g 3.1. |t Linear Elastic Fracture Mechanics -- |g 3.2. |t Cohesive Crack Model -- |g 3.3. |t Crack Band Model -- |g 3.4. |t Nonlocal Damage Models and Lattice-Particle Model -- |g 3.5. |t Overcoming Instability of Tests of Post-Peak Softening of Fiber-Polymer Composites -- |g 3.6. |t Dimensional Analysis of Asymptotic Size Effects -- |g 3.7. |t Second-Order Asymptotic Properties of Cohesive Crack or Crack Band Models -- |g 3.8. |t Types of Size Effect Distinguished by Asymptotic Properties -- |g 3.9. |t Derivation of Quasibrittle Deterministic Size Effect from Equivalent LEFM -- |g 3.9.1. |t Type 2 Size Effect -- |g 3.9.2. |t Type 1 Size Effect -- |g 3.10. |t Nonlocal Weibull Theory for Mean Response -- |g 3.11. |t Combined Energetic-Statistical Size Effect Law and Bridging of Type 1 and 2 Size Effects -- |g 4. |t Failure Statistics of Nanoscale Structures -- |g 4.1. |t Background of Modeling of Nanoscale Fracture -- |g 4.2. |t Stress-Driven Fracture of Nanoscale Structures -- |g 4.3. |t Probability Distribution of Fatigue Strength at Nanoscale -- |g 4.4. |t Random Walk Aspect of Failure of Nanoscale Structures -- |g 5. |t Nano -- Macroscale Bridging of Probability Distributions of Static and Fatigue Strengths -- |g 5.1. |t Chain Model -- |g 5.2. |t Fiber-Bundle Model for Static Strength -- |g 5.2.1. |t Brittle Bundle -- |g 5.2.2. |t Plastic Bundle -- |g 5.2.3. |t Softening Bundle with Linear Softening Behavior -- |g 5.2.4. |t Bundle with General Softening Behavior and Nonlocal Interaction -- |g 5.3. |t Fiber-Bundle Model for Fatigue Strength -- |g 5.4. |t Hierarchical Model for Static Strength -- |g 5.5. |t Hierarchical Model for Fatigue Strength -- |g 6. |t Multiscale Modeling of Fracture Kinetics and Size Effect under Static and Cyclic Fatigue -- |g 6.1. |t Previous Studies of Fracture Kinetics -- |g 6.2. |t Fracture Kinetics at Nanoscale -- |g 6.3. |t Multiscale Transition of Fracture Kinetics for Static Fatigue -- |g 6.4. |t Size Effect on Fracture Kinetics under Static Fatigue -- |g 6.5. |t Multiscale Transition of Fracture Kinetics under Cyclic Fatigue -- |g 6.6. |t Size Effect on Fatigue Crack Growth Rate and Experimental Evidence -- |g 6.7. |t Microplane Model for Size Effect on Fatigue Kinetics under General Loading -- |g 7. |t Size Effect on Probability Distributions of Strength and Lifetime of Quasibrittle Structures -- |g 7.1. |t Probability Distribution of Structural Strength -- |g 7.2. |t Probability Distribution of Structural Lifetime -- |g 7.2.1. |t Creep Lifetime -- |g 7.2.2. |t Fatigue Lifetime -- |g 7.3. |t Size Effect on Mean Structural Strength -- |g 7.4. |t Size Effects on Mean Structural Lifetimes and Stress-Life Curves -- |g 7.5. |t Effect of Temperature on Strength and Lifetime Distributions -- |g 8. |t Computation of Probability Distributions of Structural Strength and Lifetime -- |g 8.1. |t Nonlocal Boundary Layer Model for Strength and Lifetime Distributions -- |g 8.2. |t Computation by Pseudo-random Placing of RVEs -- |g 8.3. |t Approximate Closed-Form Expression for Strength and Lifetime Distributions -- |g 8.4. |t Analysis of Strength Statistics of Beams under Flexural Loading -- |g 8.5. |t Optimum Fits of Strength and Lifetime Histograms -- |g 8.5.1. |t Optimum Fits of Strength Histograms -- |g 8.5.2. |t Optimum Fits of Histograms of Creep Lifetime -- |g 8.5.3. |t Optimum Fits of Histograms of Fatigue Lifetime -- |g 9. |t Indirect Determination of Strength Statistics of Quasibrittle Structures -- |g 9.1. |t Relation between Mean Size Effect Curve and Probability Distribution of RVE Strength -- |g 9.2. |t Experimental Verification -- |g 9.2.1. |t Description of Experiments -- |g 9.2.2. |t Analysis of Test Results -- |g 9.3. |t Determination of Large-Size Asymptotic Properties of the Size Effect Curve -- |g 9.4. |t Comparison with the Histogram Testing Method -- |g 9.5. |t Problems with the Three-Parameter Weibull Distribution of Strength -- |g 9.5.1. |t Theoretical Argument -- |g 9.5.2. |t Evidence from Histogram Testing -- |g 9.5.3. |t Mean Size Effect Analysis -- |g 9.6. |t Alternative Proof of Strength Distribution of an RVE Based on Stability Postulate and Atomistic Analysis -- |g 10. |t Statistical Distribution and Size Effect on Residual Strength after Sustained Load -- |g 10.1. |t Nanomechanics Based Relation between Monotonic Strength and Residual Strength of One RVE -- |g 10.2. |t Analysis of Residual Strength Degradation for One RVE -- |g 10.3. |t Probability Distribution of Residual Strength -- |g 10.3.1. |t Formulation of Statistics of Residual Strength for One RVE -- |g 10.3.2. |t Formulation of Residual Strength cdf of Geometrically Similar Structures of Different Sizes -- |g 10.4. |t Comparison among Strength, Residual Strength, and Lifetime Distributions -- |g 10.5. |t Experimental Validation -- |g 10.5.1. |t Optimum Fits of Strength and Residual Strength Histograms of Borosilicate Glass -- |g 10.5.2. |t Optimum Fits of Strength Histograms and Prediction of Lifetime and Mean Residual Strength for Unidirectional Glass/Epoxy Composites -- |g 10.5.3. |t Prediction of Strength Degradation Curve for Soda-Lime Silicate Glasses -- |g 10.6. |t Comparison of Size Effects on Mean Strength, Residual Strength, and Lifetime -- |g 11. |t Size Effect on Reliability Indices and Safety Factors -- |g 11.1. |t Size Effect on the Cornell Reliability Index -- |g 11.2. |t Size Effect on the Hasofer-Lind Reliability Index -- |g 11.3. |t Approximate Equation for Scaling of Safety Factors -- |g 11.4. |t Analysis of Failure Statistics of the Malpasset Arch Dam -- |g 11.4.1. |t Model Description -- |g 11.4.2. |t Discussion of Cornell and Hasofer-Lind Indices -- |g 11.4.3. |t Discussion of Central and Nominal Safety Factors -- |g 12. |t Crack Length Effect on Scaling of Structural Strength and Type 1 to 2 Transition -- |g 12.1. |t Type 1 Size Effect in Terms of Boundary Strain Gradient -- |g 12.2. |t Universal Size Effect Law -- |g 12.3. |t Verification of the Universal Size Effect Law by Comprehensive Fracture Tests -- |g 13. |t Effect of Stress Singularities on Scaling of Structural Strength -- |g 13.1. |t Strength Scaling of Structures with a V-Notch under Mode 1 Loading -- |g 13.1.1. |t Energetic Scaling of Strength of Structures with Strong Stress Singularities -- |g 13.1.2. |t Generalized Finite Weakest-Link Model -- |g 13.2. |t Numerical Simulation of Mode I Fracture of Beams with a V-Notch -- |g 13.2.1. |t Model Description -- |g 13.2.2. |t Results and Discussion -- |g 13.3. |t Scaling of Fracture of Bimaterial Hybrid Structures -- |g 13.3.1. |t Energetic Scaling with Superposed Multiple Stress Singularities -- |g 13.3.2. |t Finite Weakest-Link Model for Failure of Bimaterial Interface -- |g 13.4. |t Numerical Analysis of Bimaterial Fracture -- |g 13.4.1. |t Description of Analysis -- |g 13.4.2. |t Results and Discussion -- |g 14. |t Lifetime of. |
505 | 0 | 0 | |t High-k Gate Dielectrics and Analogy with Failure Statistics of Quasibrittle Structures -- |g 14.1. |t Deviation of Lifetime Histograms of High-k Dielectrics from the Weibull Distribution -- |g 14.2. |t Breakdown Probability -- |g 14.2.1. |t Analogy with Strength of Quasibrittle Structures -- |g 14.2.2. |t Application to Dielectric Breakdown -- |g 14.2.3. |t Microscopic Statistical Models -- |g 14.2.4. |t Breakdown Voltage Distribution -- |g 14.3. |t Breakdown Lifetime under Constant Voltage -- |g 14.3.1. |t Relation between Lifetime and Breakdown Voltage -- |g 14.3.2. |t Microscopic Physics -- |g 14.3.3. |t Probability Distribution of Breakdown Lifetime -- |g 14.4. |t Breakdown Lifetime under Unipolar AC Voltage -- |g 14.5. |t Experimental Validation -- |g 14.5.1. |t Breakdown under Constant Gate Voltage Stress -- |g 14.5.2. |t Breakdown under Unipolar AC Voltage Stress -- |g 14.6. |t Size Effect on Mean Breakdown Lifetime. |
650 | 0 | |a Fracture mechanics. |0 http://id.loc.gov/authorities/subjects/sh85051154 | |
650 | 0 | |a Brittleness. |0 http://id.loc.gov/authorities/subjects/sh85016986 | |
650 | 0 | |a Elastic analysis (Engineering) |0 http://id.loc.gov/authorities/subjects/sh85041507 | |
650 | 0 | |a Structural analysis (Engineering) |0 http://id.loc.gov/authorities/subjects/sh85129216 | |
650 | 6 | |a Mécanique de la rupture. | |
650 | 6 | |a Fragilité. | |
650 | 6 | |a Analyse élastique (Ingénierie) | |
650 | 6 | |a Théorie des constructions. | |
650 | 7 | |a brittleness. |2 aat | |
650 | 7 | |a structural analysis. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Civil |x General. |2 bisacsh | |
650 | 7 | |a Brittleness |2 fast | |
650 | 7 | |a Elastic analysis (Engineering) |2 fast | |
650 | 7 | |a Fracture mechanics |2 fast | |
650 | 7 | |a Structural analysis (Engineering) |2 fast | |
700 | 1 | |a Le, Jia-Liang, |d 1980- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjMqGqWjJQFc4h9H9Xy9Kq |0 http://id.loc.gov/authorities/names/n2016049202 | |
758 | |i has work: |a Probabilistic mechanics of quasibrittle structures (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGhbdgP9WmYDXhDMx9v8Yd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bažant, Z.P. |t Probabilistic mechanics of quasibrittle structures. |d Cambridge : Cambridge University Press, 2017 |z 9781107151703 |z 1107151708 |w (DLC) 2016041636 |w (OCoLC)958876519 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512496 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34210852 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4857152 | ||
938 | |a EBSCOhost |b EBSC |n 1512496 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38222521 | ||
938 | |a YBP Library Services |b YANK |n 14681769 | ||
938 | |a YBP Library Services |b YANK |n 14417020 | ||
938 | |a YBP Library Services |b YANK |n 14576049 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn986999744 |
---|---|
_version_ | 1816882388927512576 |
adam_text | |
any_adam_object | |
author | Bažant, Z. P. Le, Jia-Liang, 1980- |
author_GND | http://id.loc.gov/authorities/names/n2016049202 |
author_facet | Bažant, Z. P. Le, Jia-Liang, 1980- |
author_role | aut aut |
author_sort | Bažant, Z. P. |
author_variant | z p b zp zpb j l l jll |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA409 |
callnumber-raw | TA409 .B39 2017eb |
callnumber-search | TA409 .B39 2017eb |
callnumber-sort | TA 3409 B39 42017EB |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | Introduction -- The Problem of Tail of Probability Distribution -- History in Brief -- Classical History -- Recent Developments -- Safety Specifications in Concrete Design Codes and Embedded Obstacles to Probabilistic Analysis -- Importance of Size Effect for Strength Statistics -- Power-Law Scaling in the Absence of Characteristic Length -- Nominal Strength of Structure and Size Effect -- Statistical and Deterministic Size Effects -- Simple Models for Deterministic Size Effects -- Type 1 Size Effect for Failures at Crack Initiation -- Type 2 Size Effect for Structures with Deep Cracks or Notches -- Probability Distributions of Strength of Ductile and Brittle Structures -- Review of Classical Statistical Theory of Structural Strength and Structural Safety, and of Statistics Fundamentals -- Weakest-Link Model -- Weibull Theory -- Scaling of Weibull Theory and Pure Statistical Size Effect -- Equivalent Number of Elements -- Stability Postulate of Extreme Value Statistics -- Distributions Ensuing from Stability Postulate -- Central Limit Theorem and Strength Distribution of Ductile Structures -- Failure Probability When Both the Strength and Load Are Random, and Freudenthal Integral -- Review of Fracture Mechanics and Deterministic Size Effect in Quasibrittle Structures -- Linear Elastic Fracture Mechanics -- Cohesive Crack Model -- Crack Band Model -- Nonlocal Damage Models and Lattice-Particle Model -- Overcoming Instability of Tests of Post-Peak Softening of Fiber-Polymer Composites -- Dimensional Analysis of Asymptotic Size Effects -- Second-Order Asymptotic Properties of Cohesive Crack or Crack Band Models -- Types of Size Effect Distinguished by Asymptotic Properties -- Derivation of Quasibrittle Deterministic Size Effect from Equivalent LEFM -- Type 2 Size Effect -- Type 1 Size Effect -- Nonlocal Weibull Theory for Mean Response -- Combined Energetic-Statistical Size Effect Law and Bridging of Type 1 and 2 Size Effects -- Failure Statistics of Nanoscale Structures -- Background of Modeling of Nanoscale Fracture -- Stress-Driven Fracture of Nanoscale Structures -- Probability Distribution of Fatigue Strength at Nanoscale -- Random Walk Aspect of Failure of Nanoscale Structures -- Nano -- Macroscale Bridging of Probability Distributions of Static and Fatigue Strengths -- Chain Model -- Fiber-Bundle Model for Static Strength -- Brittle Bundle -- Plastic Bundle -- Softening Bundle with Linear Softening Behavior -- Bundle with General Softening Behavior and Nonlocal Interaction -- Fiber-Bundle Model for Fatigue Strength -- Hierarchical Model for Static Strength -- Hierarchical Model for Fatigue Strength -- Multiscale Modeling of Fracture Kinetics and Size Effect under Static and Cyclic Fatigue -- Previous Studies of Fracture Kinetics -- Fracture Kinetics at Nanoscale -- Multiscale Transition of Fracture Kinetics for Static Fatigue -- Size Effect on Fracture Kinetics under Static Fatigue -- Multiscale Transition of Fracture Kinetics under Cyclic Fatigue -- Size Effect on Fatigue Crack Growth Rate and Experimental Evidence -- Microplane Model for Size Effect on Fatigue Kinetics under General Loading -- Size Effect on Probability Distributions of Strength and Lifetime of Quasibrittle Structures -- Probability Distribution of Structural Strength -- Probability Distribution of Structural Lifetime -- Creep Lifetime -- Fatigue Lifetime -- Size Effect on Mean Structural Strength -- Size Effects on Mean Structural Lifetimes and Stress-Life Curves -- Effect of Temperature on Strength and Lifetime Distributions -- Computation of Probability Distributions of Structural Strength and Lifetime -- Nonlocal Boundary Layer Model for Strength and Lifetime Distributions -- Computation by Pseudo-random Placing of RVEs -- Approximate Closed-Form Expression for Strength and Lifetime Distributions -- Analysis of Strength Statistics of Beams under Flexural Loading -- Optimum Fits of Strength and Lifetime Histograms -- Optimum Fits of Strength Histograms -- Optimum Fits of Histograms of Creep Lifetime -- Optimum Fits of Histograms of Fatigue Lifetime -- Indirect Determination of Strength Statistics of Quasibrittle Structures -- Relation between Mean Size Effect Curve and Probability Distribution of RVE Strength -- Experimental Verification -- Description of Experiments -- Analysis of Test Results -- Determination of Large-Size Asymptotic Properties of the Size Effect Curve -- Comparison with the Histogram Testing Method -- Problems with the Three-Parameter Weibull Distribution of Strength -- Theoretical Argument -- Evidence from Histogram Testing -- Mean Size Effect Analysis -- Alternative Proof of Strength Distribution of an RVE Based on Stability Postulate and Atomistic Analysis -- Statistical Distribution and Size Effect on Residual Strength after Sustained Load -- Nanomechanics Based Relation between Monotonic Strength and Residual Strength of One RVE -- Analysis of Residual Strength Degradation for One RVE -- Probability Distribution of Residual Strength -- Formulation of Statistics of Residual Strength for One RVE -- Formulation of Residual Strength cdf of Geometrically Similar Structures of Different Sizes -- Comparison among Strength, Residual Strength, and Lifetime Distributions -- Experimental Validation -- Optimum Fits of Strength and Residual Strength Histograms of Borosilicate Glass -- Optimum Fits of Strength Histograms and Prediction of Lifetime and Mean Residual Strength for Unidirectional Glass/Epoxy Composites -- Prediction of Strength Degradation Curve for Soda-Lime Silicate Glasses -- Comparison of Size Effects on Mean Strength, Residual Strength, and Lifetime -- Size Effect on Reliability Indices and Safety Factors -- Size Effect on the Cornell Reliability Index -- Size Effect on the Hasofer-Lind Reliability Index -- Approximate Equation for Scaling of Safety Factors -- Analysis of Failure Statistics of the Malpasset Arch Dam -- Model Description -- Discussion of Cornell and Hasofer-Lind Indices -- Discussion of Central and Nominal Safety Factors -- Crack Length Effect on Scaling of Structural Strength and Type 1 to 2 Transition -- Type 1 Size Effect in Terms of Boundary Strain Gradient -- Universal Size Effect Law -- Verification of the Universal Size Effect Law by Comprehensive Fracture Tests -- Effect of Stress Singularities on Scaling of Structural Strength -- Strength Scaling of Structures with a V-Notch under Mode 1 Loading -- Energetic Scaling of Strength of Structures with Strong Stress Singularities -- Generalized Finite Weakest-Link Model -- Numerical Simulation of Mode I Fracture of Beams with a V-Notch -- Results and Discussion -- Scaling of Fracture of Bimaterial Hybrid Structures -- Energetic Scaling with Superposed Multiple Stress Singularities -- Finite Weakest-Link Model for Failure of Bimaterial Interface -- Numerical Analysis of Bimaterial Fracture -- Description of Analysis -- Lifetime of. High-k Gate Dielectrics and Analogy with Failure Statistics of Quasibrittle Structures -- Deviation of Lifetime Histograms of High-k Dielectrics from the Weibull Distribution -- Breakdown Probability -- Analogy with Strength of Quasibrittle Structures -- Application to Dielectric Breakdown -- Microscopic Statistical Models -- Breakdown Voltage Distribution -- Breakdown Lifetime under Constant Voltage -- Relation between Lifetime and Breakdown Voltage -- Microscopic Physics -- Probability Distribution of Breakdown Lifetime -- Breakdown Lifetime under Unipolar AC Voltage -- Breakdown under Constant Gate Voltage Stress -- Breakdown under Unipolar AC Voltage Stress -- Size Effect on Mean Breakdown Lifetime. |
ctrlnum | (OCoLC)986999744 |
dewey-full | 624.1/76 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 624 - Civil engineering |
dewey-raw | 624.1/76 |
dewey-search | 624.1/76 |
dewey-sort | 3624.1 276 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12630cam a2200733 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn986999744</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">170512s2017 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">YDX</subfield><subfield code="d">MERUC</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">UIU</subfield><subfield code="d">NRC</subfield><subfield code="d">CSAIL</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UPM</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QCL</subfield><subfield code="d">RRP</subfield><subfield code="d">OTZ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">987328676</subfield><subfield code="a">1020012215</subfield><subfield code="a">1167275866</subfield><subfield code="a">1433232765</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108135184</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108135188</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316585146</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">131658514X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107151703</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107151708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)986999744</subfield><subfield code="z">(OCoLC)987328676</subfield><subfield code="z">(OCoLC)1020012215</subfield><subfield code="z">(OCoLC)1167275866</subfield><subfield code="z">(OCoLC)1433232765</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA409</subfield><subfield code="b">.B39 2017eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">624.1/76</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bažant, Z. P.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic mechanics of quasibrittle structures :</subfield><subfield code="b">strength, lifetime, and size effect /</subfield><subfield code="c">Zdenek P. Bazant, Northwestern University, Jia-Liang Le, University of Minnesota.</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Probabilistic mechanics of quasi brittle structures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and author index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed May 12, 2017).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents an experimentally validated probabilistic strength theory of structures made of concrete, composites, ceramics and other quasibrittle materials.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Machine generated contents note:</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">1.1.</subfield><subfield code="t">The Problem of Tail of Probability Distribution --</subfield><subfield code="g">1.2.</subfield><subfield code="t">History in Brief --</subfield><subfield code="g">1.2.1.</subfield><subfield code="t">Classical History --</subfield><subfield code="g">1.2.2.</subfield><subfield code="t">Recent Developments --</subfield><subfield code="g">1.3.</subfield><subfield code="t">Safety Specifications in Concrete Design Codes and Embedded Obstacles to Probabilistic Analysis --</subfield><subfield code="g">1.4.</subfield><subfield code="t">Importance of Size Effect for Strength Statistics --</subfield><subfield code="g">1.5.</subfield><subfield code="t">Power-Law Scaling in the Absence of Characteristic Length --</subfield><subfield code="g">1.5.1.</subfield><subfield code="t">Nominal Strength of Structure and Size Effect --</subfield><subfield code="g">1.6.</subfield><subfield code="t">Statistical and Deterministic Size Effects --</subfield><subfield code="g">1.7.</subfield><subfield code="t">Simple Models for Deterministic Size Effects --</subfield><subfield code="g">1.7.1.</subfield><subfield code="t">Type 1 Size Effect for Failures at Crack Initiation --</subfield><subfield code="g">1.7.2.</subfield><subfield code="t">Type 2 Size Effect for Structures with Deep Cracks or Notches --</subfield><subfield code="g">1.8.</subfield><subfield code="t">Probability Distributions of Strength of Ductile and Brittle Structures --</subfield><subfield code="g">2.</subfield><subfield code="t">Review of Classical Statistical Theory of Structural Strength and Structural Safety, and of Statistics Fundamentals --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Weakest-Link Model --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Weibull Theory --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Scaling of Weibull Theory and Pure Statistical Size Effect --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Equivalent Number of Elements --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Stability Postulate of Extreme Value Statistics --</subfield><subfield code="g">2.6.</subfield><subfield code="t">Distributions Ensuing from Stability Postulate --</subfield><subfield code="g">2.7.</subfield><subfield code="t">Central Limit Theorem and Strength Distribution of Ductile Structures --</subfield><subfield code="g">2.8.</subfield><subfield code="t">Failure Probability When Both the Strength and Load Are Random, and Freudenthal Integral --</subfield><subfield code="g">3.</subfield><subfield code="t">Review of Fracture Mechanics and Deterministic Size Effect in Quasibrittle Structures --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Linear Elastic Fracture Mechanics --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Cohesive Crack Model --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Crack Band Model --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Nonlocal Damage Models and Lattice-Particle Model --</subfield><subfield code="g">3.5.</subfield><subfield code="t">Overcoming Instability of Tests of Post-Peak Softening of Fiber-Polymer Composites --</subfield><subfield code="g">3.6.</subfield><subfield code="t">Dimensional Analysis of Asymptotic Size Effects --</subfield><subfield code="g">3.7.</subfield><subfield code="t">Second-Order Asymptotic Properties of Cohesive Crack or Crack Band Models --</subfield><subfield code="g">3.8.</subfield><subfield code="t">Types of Size Effect Distinguished by Asymptotic Properties --</subfield><subfield code="g">3.9.</subfield><subfield code="t">Derivation of Quasibrittle Deterministic Size Effect from Equivalent LEFM --</subfield><subfield code="g">3.9.1.</subfield><subfield code="t">Type 2 Size Effect --</subfield><subfield code="g">3.9.2.</subfield><subfield code="t">Type 1 Size Effect --</subfield><subfield code="g">3.10.</subfield><subfield code="t">Nonlocal Weibull Theory for Mean Response --</subfield><subfield code="g">3.11.</subfield><subfield code="t">Combined Energetic-Statistical Size Effect Law and Bridging of Type 1 and 2 Size Effects --</subfield><subfield code="g">4.</subfield><subfield code="t">Failure Statistics of Nanoscale Structures --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Background of Modeling of Nanoscale Fracture --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Stress-Driven Fracture of Nanoscale Structures --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Probability Distribution of Fatigue Strength at Nanoscale --</subfield><subfield code="g">4.4.</subfield><subfield code="t">Random Walk Aspect of Failure of Nanoscale Structures --</subfield><subfield code="g">5.</subfield><subfield code="t">Nano -- Macroscale Bridging of Probability Distributions of Static and Fatigue Strengths --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Chain Model --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Fiber-Bundle Model for Static Strength --</subfield><subfield code="g">5.2.1.</subfield><subfield code="t">Brittle Bundle --</subfield><subfield code="g">5.2.2.</subfield><subfield code="t">Plastic Bundle --</subfield><subfield code="g">5.2.3.</subfield><subfield code="t">Softening Bundle with Linear Softening Behavior --</subfield><subfield code="g">5.2.4.</subfield><subfield code="t">Bundle with General Softening Behavior and Nonlocal Interaction --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Fiber-Bundle Model for Fatigue Strength --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Hierarchical Model for Static Strength --</subfield><subfield code="g">5.5.</subfield><subfield code="t">Hierarchical Model for Fatigue Strength --</subfield><subfield code="g">6.</subfield><subfield code="t">Multiscale Modeling of Fracture Kinetics and Size Effect under Static and Cyclic Fatigue --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Previous Studies of Fracture Kinetics --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Fracture Kinetics at Nanoscale --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Multiscale Transition of Fracture Kinetics for Static Fatigue --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Size Effect on Fracture Kinetics under Static Fatigue --</subfield><subfield code="g">6.5.</subfield><subfield code="t">Multiscale Transition of Fracture Kinetics under Cyclic Fatigue --</subfield><subfield code="g">6.6.</subfield><subfield code="t">Size Effect on Fatigue Crack Growth Rate and Experimental Evidence --</subfield><subfield code="g">6.7.</subfield><subfield code="t">Microplane Model for Size Effect on Fatigue Kinetics under General Loading --</subfield><subfield code="g">7.</subfield><subfield code="t">Size Effect on Probability Distributions of Strength and Lifetime of Quasibrittle Structures --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Probability Distribution of Structural Strength --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Probability Distribution of Structural Lifetime --</subfield><subfield code="g">7.2.1.</subfield><subfield code="t">Creep Lifetime --</subfield><subfield code="g">7.2.2.</subfield><subfield code="t">Fatigue Lifetime --</subfield><subfield code="g">7.3.</subfield><subfield code="t">Size Effect on Mean Structural Strength --</subfield><subfield code="g">7.4.</subfield><subfield code="t">Size Effects on Mean Structural Lifetimes and Stress-Life Curves --</subfield><subfield code="g">7.5.</subfield><subfield code="t">Effect of Temperature on Strength and Lifetime Distributions --</subfield><subfield code="g">8.</subfield><subfield code="t">Computation of Probability Distributions of Structural Strength and Lifetime --</subfield><subfield code="g">8.1.</subfield><subfield code="t">Nonlocal Boundary Layer Model for Strength and Lifetime Distributions --</subfield><subfield code="g">8.2.</subfield><subfield code="t">Computation by Pseudo-random Placing of RVEs --</subfield><subfield code="g">8.3.</subfield><subfield code="t">Approximate Closed-Form Expression for Strength and Lifetime Distributions --</subfield><subfield code="g">8.4.</subfield><subfield code="t">Analysis of Strength Statistics of Beams under Flexural Loading --</subfield><subfield code="g">8.5.</subfield><subfield code="t">Optimum Fits of Strength and Lifetime Histograms --</subfield><subfield code="g">8.5.1.</subfield><subfield code="t">Optimum Fits of Strength Histograms --</subfield><subfield code="g">8.5.2.</subfield><subfield code="t">Optimum Fits of Histograms of Creep Lifetime --</subfield><subfield code="g">8.5.3.</subfield><subfield code="t">Optimum Fits of Histograms of Fatigue Lifetime --</subfield><subfield code="g">9.</subfield><subfield code="t">Indirect Determination of Strength Statistics of Quasibrittle Structures --</subfield><subfield code="g">9.1.</subfield><subfield code="t">Relation between Mean Size Effect Curve and Probability Distribution of RVE Strength --</subfield><subfield code="g">9.2.</subfield><subfield code="t">Experimental Verification --</subfield><subfield code="g">9.2.1.</subfield><subfield code="t">Description of Experiments --</subfield><subfield code="g">9.2.2.</subfield><subfield code="t">Analysis of Test Results --</subfield><subfield code="g">9.3.</subfield><subfield code="t">Determination of Large-Size Asymptotic Properties of the Size Effect Curve --</subfield><subfield code="g">9.4.</subfield><subfield code="t">Comparison with the Histogram Testing Method --</subfield><subfield code="g">9.5.</subfield><subfield code="t">Problems with the Three-Parameter Weibull Distribution of Strength --</subfield><subfield code="g">9.5.1.</subfield><subfield code="t">Theoretical Argument --</subfield><subfield code="g">9.5.2.</subfield><subfield code="t">Evidence from Histogram Testing --</subfield><subfield code="g">9.5.3.</subfield><subfield code="t">Mean Size Effect Analysis --</subfield><subfield code="g">9.6.</subfield><subfield code="t">Alternative Proof of Strength Distribution of an RVE Based on Stability Postulate and Atomistic Analysis --</subfield><subfield code="g">10.</subfield><subfield code="t">Statistical Distribution and Size Effect on Residual Strength after Sustained Load --</subfield><subfield code="g">10.1.</subfield><subfield code="t">Nanomechanics Based Relation between Monotonic Strength and Residual Strength of One RVE --</subfield><subfield code="g">10.2.</subfield><subfield code="t">Analysis of Residual Strength Degradation for One RVE --</subfield><subfield code="g">10.3.</subfield><subfield code="t">Probability Distribution of Residual Strength --</subfield><subfield code="g">10.3.1.</subfield><subfield code="t">Formulation of Statistics of Residual Strength for One RVE --</subfield><subfield code="g">10.3.2.</subfield><subfield code="t">Formulation of Residual Strength cdf of Geometrically Similar Structures of Different Sizes --</subfield><subfield code="g">10.4.</subfield><subfield code="t">Comparison among Strength, Residual Strength, and Lifetime Distributions --</subfield><subfield code="g">10.5.</subfield><subfield code="t">Experimental Validation --</subfield><subfield code="g">10.5.1.</subfield><subfield code="t">Optimum Fits of Strength and Residual Strength Histograms of Borosilicate Glass --</subfield><subfield code="g">10.5.2.</subfield><subfield code="t">Optimum Fits of Strength Histograms and Prediction of Lifetime and Mean Residual Strength for Unidirectional Glass/Epoxy Composites --</subfield><subfield code="g">10.5.3.</subfield><subfield code="t">Prediction of Strength Degradation Curve for Soda-Lime Silicate Glasses --</subfield><subfield code="g">10.6.</subfield><subfield code="t">Comparison of Size Effects on Mean Strength, Residual Strength, and Lifetime --</subfield><subfield code="g">11.</subfield><subfield code="t">Size Effect on Reliability Indices and Safety Factors --</subfield><subfield code="g">11.1.</subfield><subfield code="t">Size Effect on the Cornell Reliability Index --</subfield><subfield code="g">11.2.</subfield><subfield code="t">Size Effect on the Hasofer-Lind Reliability Index --</subfield><subfield code="g">11.3.</subfield><subfield code="t">Approximate Equation for Scaling of Safety Factors --</subfield><subfield code="g">11.4.</subfield><subfield code="t">Analysis of Failure Statistics of the Malpasset Arch Dam --</subfield><subfield code="g">11.4.1.</subfield><subfield code="t">Model Description --</subfield><subfield code="g">11.4.2.</subfield><subfield code="t">Discussion of Cornell and Hasofer-Lind Indices --</subfield><subfield code="g">11.4.3.</subfield><subfield code="t">Discussion of Central and Nominal Safety Factors --</subfield><subfield code="g">12.</subfield><subfield code="t">Crack Length Effect on Scaling of Structural Strength and Type 1 to 2 Transition --</subfield><subfield code="g">12.1.</subfield><subfield code="t">Type 1 Size Effect in Terms of Boundary Strain Gradient --</subfield><subfield code="g">12.2.</subfield><subfield code="t">Universal Size Effect Law --</subfield><subfield code="g">12.3.</subfield><subfield code="t">Verification of the Universal Size Effect Law by Comprehensive Fracture Tests --</subfield><subfield code="g">13.</subfield><subfield code="t">Effect of Stress Singularities on Scaling of Structural Strength --</subfield><subfield code="g">13.1.</subfield><subfield code="t">Strength Scaling of Structures with a V-Notch under Mode 1 Loading --</subfield><subfield code="g">13.1.1.</subfield><subfield code="t">Energetic Scaling of Strength of Structures with Strong Stress Singularities --</subfield><subfield code="g">13.1.2.</subfield><subfield code="t">Generalized Finite Weakest-Link Model --</subfield><subfield code="g">13.2.</subfield><subfield code="t">Numerical Simulation of Mode I Fracture of Beams with a V-Notch --</subfield><subfield code="g">13.2.1.</subfield><subfield code="t">Model Description --</subfield><subfield code="g">13.2.2.</subfield><subfield code="t">Results and Discussion --</subfield><subfield code="g">13.3.</subfield><subfield code="t">Scaling of Fracture of Bimaterial Hybrid Structures --</subfield><subfield code="g">13.3.1.</subfield><subfield code="t">Energetic Scaling with Superposed Multiple Stress Singularities --</subfield><subfield code="g">13.3.2.</subfield><subfield code="t">Finite Weakest-Link Model for Failure of Bimaterial Interface --</subfield><subfield code="g">13.4.</subfield><subfield code="t">Numerical Analysis of Bimaterial Fracture --</subfield><subfield code="g">13.4.1.</subfield><subfield code="t">Description of Analysis --</subfield><subfield code="g">13.4.2.</subfield><subfield code="t">Results and Discussion --</subfield><subfield code="g">14.</subfield><subfield code="t">Lifetime of.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">High-k Gate Dielectrics and Analogy with Failure Statistics of Quasibrittle Structures --</subfield><subfield code="g">14.1.</subfield><subfield code="t">Deviation of Lifetime Histograms of High-k Dielectrics from the Weibull Distribution --</subfield><subfield code="g">14.2.</subfield><subfield code="t">Breakdown Probability --</subfield><subfield code="g">14.2.1.</subfield><subfield code="t">Analogy with Strength of Quasibrittle Structures --</subfield><subfield code="g">14.2.2.</subfield><subfield code="t">Application to Dielectric Breakdown --</subfield><subfield code="g">14.2.3.</subfield><subfield code="t">Microscopic Statistical Models --</subfield><subfield code="g">14.2.4.</subfield><subfield code="t">Breakdown Voltage Distribution --</subfield><subfield code="g">14.3.</subfield><subfield code="t">Breakdown Lifetime under Constant Voltage --</subfield><subfield code="g">14.3.1.</subfield><subfield code="t">Relation between Lifetime and Breakdown Voltage --</subfield><subfield code="g">14.3.2.</subfield><subfield code="t">Microscopic Physics --</subfield><subfield code="g">14.3.3.</subfield><subfield code="t">Probability Distribution of Breakdown Lifetime --</subfield><subfield code="g">14.4.</subfield><subfield code="t">Breakdown Lifetime under Unipolar AC Voltage --</subfield><subfield code="g">14.5.</subfield><subfield code="t">Experimental Validation --</subfield><subfield code="g">14.5.1.</subfield><subfield code="t">Breakdown under Constant Gate Voltage Stress --</subfield><subfield code="g">14.5.2.</subfield><subfield code="t">Breakdown under Unipolar AC Voltage Stress --</subfield><subfield code="g">14.6.</subfield><subfield code="t">Size Effect on Mean Breakdown Lifetime.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fracture mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051154</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Brittleness.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85016986</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Elastic analysis (Engineering)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85041507</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85129216</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique de la rupture.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fragilité.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse élastique (Ingénierie)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des constructions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">brittleness.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">structural analysis.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Civil</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Brittleness</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elastic analysis (Engineering)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fracture mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Le, Jia-Liang,</subfield><subfield code="d">1980-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjMqGqWjJQFc4h9H9Xy9Kq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2016049202</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Probabilistic mechanics of quasibrittle structures (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGhbdgP9WmYDXhDMx9v8Yd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bažant, Z.P.</subfield><subfield code="t">Probabilistic mechanics of quasibrittle structures.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2017</subfield><subfield code="z">9781107151703</subfield><subfield code="z">1107151708</subfield><subfield code="w">(DLC) 2016041636</subfield><subfield code="w">(OCoLC)958876519</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512496</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34210852</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4857152</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1512496</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38222521</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14681769</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14417020</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14576049</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn986999744 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:49Z |
institution | BVB |
isbn | 9781108135184 1108135188 9781316585146 131658514X |
language | English |
oclc_num | 986999744 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Bažant, Z. P., author. Probabilistic mechanics of quasibrittle structures : strength, lifetime, and size effect / Zdenek P. Bazant, Northwestern University, Jia-Liang Le, University of Minnesota. Probabilistic mechanics of quasi brittle structures Cambridge : Cambridge University Press, 2017. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and author index. Online resource; title from PDF title page (EBSCO, viewed May 12, 2017). This book presents an experimentally validated probabilistic strength theory of structures made of concrete, composites, ceramics and other quasibrittle materials. Machine generated contents note: 1. Introduction -- 1.1. The Problem of Tail of Probability Distribution -- 1.2. History in Brief -- 1.2.1. Classical History -- 1.2.2. Recent Developments -- 1.3. Safety Specifications in Concrete Design Codes and Embedded Obstacles to Probabilistic Analysis -- 1.4. Importance of Size Effect for Strength Statistics -- 1.5. Power-Law Scaling in the Absence of Characteristic Length -- 1.5.1. Nominal Strength of Structure and Size Effect -- 1.6. Statistical and Deterministic Size Effects -- 1.7. Simple Models for Deterministic Size Effects -- 1.7.1. Type 1 Size Effect for Failures at Crack Initiation -- 1.7.2. Type 2 Size Effect for Structures with Deep Cracks or Notches -- 1.8. Probability Distributions of Strength of Ductile and Brittle Structures -- 2. Review of Classical Statistical Theory of Structural Strength and Structural Safety, and of Statistics Fundamentals -- 2.1. Weakest-Link Model -- 2.2. Weibull Theory -- 2.3. Scaling of Weibull Theory and Pure Statistical Size Effect -- 2.4. Equivalent Number of Elements -- 2.5. Stability Postulate of Extreme Value Statistics -- 2.6. Distributions Ensuing from Stability Postulate -- 2.7. Central Limit Theorem and Strength Distribution of Ductile Structures -- 2.8. Failure Probability When Both the Strength and Load Are Random, and Freudenthal Integral -- 3. Review of Fracture Mechanics and Deterministic Size Effect in Quasibrittle Structures -- 3.1. Linear Elastic Fracture Mechanics -- 3.2. Cohesive Crack Model -- 3.3. Crack Band Model -- 3.4. Nonlocal Damage Models and Lattice-Particle Model -- 3.5. Overcoming Instability of Tests of Post-Peak Softening of Fiber-Polymer Composites -- 3.6. Dimensional Analysis of Asymptotic Size Effects -- 3.7. Second-Order Asymptotic Properties of Cohesive Crack or Crack Band Models -- 3.8. Types of Size Effect Distinguished by Asymptotic Properties -- 3.9. Derivation of Quasibrittle Deterministic Size Effect from Equivalent LEFM -- 3.9.1. Type 2 Size Effect -- 3.9.2. Type 1 Size Effect -- 3.10. Nonlocal Weibull Theory for Mean Response -- 3.11. Combined Energetic-Statistical Size Effect Law and Bridging of Type 1 and 2 Size Effects -- 4. Failure Statistics of Nanoscale Structures -- 4.1. Background of Modeling of Nanoscale Fracture -- 4.2. Stress-Driven Fracture of Nanoscale Structures -- 4.3. Probability Distribution of Fatigue Strength at Nanoscale -- 4.4. Random Walk Aspect of Failure of Nanoscale Structures -- 5. Nano -- Macroscale Bridging of Probability Distributions of Static and Fatigue Strengths -- 5.1. Chain Model -- 5.2. Fiber-Bundle Model for Static Strength -- 5.2.1. Brittle Bundle -- 5.2.2. Plastic Bundle -- 5.2.3. Softening Bundle with Linear Softening Behavior -- 5.2.4. Bundle with General Softening Behavior and Nonlocal Interaction -- 5.3. Fiber-Bundle Model for Fatigue Strength -- 5.4. Hierarchical Model for Static Strength -- 5.5. Hierarchical Model for Fatigue Strength -- 6. Multiscale Modeling of Fracture Kinetics and Size Effect under Static and Cyclic Fatigue -- 6.1. Previous Studies of Fracture Kinetics -- 6.2. Fracture Kinetics at Nanoscale -- 6.3. Multiscale Transition of Fracture Kinetics for Static Fatigue -- 6.4. Size Effect on Fracture Kinetics under Static Fatigue -- 6.5. Multiscale Transition of Fracture Kinetics under Cyclic Fatigue -- 6.6. Size Effect on Fatigue Crack Growth Rate and Experimental Evidence -- 6.7. Microplane Model for Size Effect on Fatigue Kinetics under General Loading -- 7. Size Effect on Probability Distributions of Strength and Lifetime of Quasibrittle Structures -- 7.1. Probability Distribution of Structural Strength -- 7.2. Probability Distribution of Structural Lifetime -- 7.2.1. Creep Lifetime -- 7.2.2. Fatigue Lifetime -- 7.3. Size Effect on Mean Structural Strength -- 7.4. Size Effects on Mean Structural Lifetimes and Stress-Life Curves -- 7.5. Effect of Temperature on Strength and Lifetime Distributions -- 8. Computation of Probability Distributions of Structural Strength and Lifetime -- 8.1. Nonlocal Boundary Layer Model for Strength and Lifetime Distributions -- 8.2. Computation by Pseudo-random Placing of RVEs -- 8.3. Approximate Closed-Form Expression for Strength and Lifetime Distributions -- 8.4. Analysis of Strength Statistics of Beams under Flexural Loading -- 8.5. Optimum Fits of Strength and Lifetime Histograms -- 8.5.1. Optimum Fits of Strength Histograms -- 8.5.2. Optimum Fits of Histograms of Creep Lifetime -- 8.5.3. Optimum Fits of Histograms of Fatigue Lifetime -- 9. Indirect Determination of Strength Statistics of Quasibrittle Structures -- 9.1. Relation between Mean Size Effect Curve and Probability Distribution of RVE Strength -- 9.2. Experimental Verification -- 9.2.1. Description of Experiments -- 9.2.2. Analysis of Test Results -- 9.3. Determination of Large-Size Asymptotic Properties of the Size Effect Curve -- 9.4. Comparison with the Histogram Testing Method -- 9.5. Problems with the Three-Parameter Weibull Distribution of Strength -- 9.5.1. Theoretical Argument -- 9.5.2. Evidence from Histogram Testing -- 9.5.3. Mean Size Effect Analysis -- 9.6. Alternative Proof of Strength Distribution of an RVE Based on Stability Postulate and Atomistic Analysis -- 10. Statistical Distribution and Size Effect on Residual Strength after Sustained Load -- 10.1. Nanomechanics Based Relation between Monotonic Strength and Residual Strength of One RVE -- 10.2. Analysis of Residual Strength Degradation for One RVE -- 10.3. Probability Distribution of Residual Strength -- 10.3.1. Formulation of Statistics of Residual Strength for One RVE -- 10.3.2. Formulation of Residual Strength cdf of Geometrically Similar Structures of Different Sizes -- 10.4. Comparison among Strength, Residual Strength, and Lifetime Distributions -- 10.5. Experimental Validation -- 10.5.1. Optimum Fits of Strength and Residual Strength Histograms of Borosilicate Glass -- 10.5.2. Optimum Fits of Strength Histograms and Prediction of Lifetime and Mean Residual Strength for Unidirectional Glass/Epoxy Composites -- 10.5.3. Prediction of Strength Degradation Curve for Soda-Lime Silicate Glasses -- 10.6. Comparison of Size Effects on Mean Strength, Residual Strength, and Lifetime -- 11. Size Effect on Reliability Indices and Safety Factors -- 11.1. Size Effect on the Cornell Reliability Index -- 11.2. Size Effect on the Hasofer-Lind Reliability Index -- 11.3. Approximate Equation for Scaling of Safety Factors -- 11.4. Analysis of Failure Statistics of the Malpasset Arch Dam -- 11.4.1. Model Description -- 11.4.2. Discussion of Cornell and Hasofer-Lind Indices -- 11.4.3. Discussion of Central and Nominal Safety Factors -- 12. Crack Length Effect on Scaling of Structural Strength and Type 1 to 2 Transition -- 12.1. Type 1 Size Effect in Terms of Boundary Strain Gradient -- 12.2. Universal Size Effect Law -- 12.3. Verification of the Universal Size Effect Law by Comprehensive Fracture Tests -- 13. Effect of Stress Singularities on Scaling of Structural Strength -- 13.1. Strength Scaling of Structures with a V-Notch under Mode 1 Loading -- 13.1.1. Energetic Scaling of Strength of Structures with Strong Stress Singularities -- 13.1.2. Generalized Finite Weakest-Link Model -- 13.2. Numerical Simulation of Mode I Fracture of Beams with a V-Notch -- 13.2.1. Model Description -- 13.2.2. Results and Discussion -- 13.3. Scaling of Fracture of Bimaterial Hybrid Structures -- 13.3.1. Energetic Scaling with Superposed Multiple Stress Singularities -- 13.3.2. Finite Weakest-Link Model for Failure of Bimaterial Interface -- 13.4. Numerical Analysis of Bimaterial Fracture -- 13.4.1. Description of Analysis -- 13.4.2. Results and Discussion -- 14. Lifetime of. High-k Gate Dielectrics and Analogy with Failure Statistics of Quasibrittle Structures -- 14.1. Deviation of Lifetime Histograms of High-k Dielectrics from the Weibull Distribution -- 14.2. Breakdown Probability -- 14.2.1. Analogy with Strength of Quasibrittle Structures -- 14.2.2. Application to Dielectric Breakdown -- 14.2.3. Microscopic Statistical Models -- 14.2.4. Breakdown Voltage Distribution -- 14.3. Breakdown Lifetime under Constant Voltage -- 14.3.1. Relation between Lifetime and Breakdown Voltage -- 14.3.2. Microscopic Physics -- 14.3.3. Probability Distribution of Breakdown Lifetime -- 14.4. Breakdown Lifetime under Unipolar AC Voltage -- 14.5. Experimental Validation -- 14.5.1. Breakdown under Constant Gate Voltage Stress -- 14.5.2. Breakdown under Unipolar AC Voltage Stress -- 14.6. Size Effect on Mean Breakdown Lifetime. Fracture mechanics. http://id.loc.gov/authorities/subjects/sh85051154 Brittleness. http://id.loc.gov/authorities/subjects/sh85016986 Elastic analysis (Engineering) http://id.loc.gov/authorities/subjects/sh85041507 Structural analysis (Engineering) http://id.loc.gov/authorities/subjects/sh85129216 Mécanique de la rupture. Fragilité. Analyse élastique (Ingénierie) Théorie des constructions. brittleness. aat structural analysis. aat TECHNOLOGY & ENGINEERING Civil General. bisacsh Brittleness fast Elastic analysis (Engineering) fast Fracture mechanics fast Structural analysis (Engineering) fast Le, Jia-Liang, 1980- author. https://id.oclc.org/worldcat/entity/E39PCjMqGqWjJQFc4h9H9Xy9Kq http://id.loc.gov/authorities/names/n2016049202 has work: Probabilistic mechanics of quasibrittle structures (Text) https://id.oclc.org/worldcat/entity/E39PCGhbdgP9WmYDXhDMx9v8Yd https://id.oclc.org/worldcat/ontology/hasWork Print version: Bažant, Z.P. Probabilistic mechanics of quasibrittle structures. Cambridge : Cambridge University Press, 2017 9781107151703 1107151708 (DLC) 2016041636 (OCoLC)958876519 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512496 Volltext |
spellingShingle | Bažant, Z. P. Le, Jia-Liang, 1980- Probabilistic mechanics of quasibrittle structures : strength, lifetime, and size effect / Introduction -- The Problem of Tail of Probability Distribution -- History in Brief -- Classical History -- Recent Developments -- Safety Specifications in Concrete Design Codes and Embedded Obstacles to Probabilistic Analysis -- Importance of Size Effect for Strength Statistics -- Power-Law Scaling in the Absence of Characteristic Length -- Nominal Strength of Structure and Size Effect -- Statistical and Deterministic Size Effects -- Simple Models for Deterministic Size Effects -- Type 1 Size Effect for Failures at Crack Initiation -- Type 2 Size Effect for Structures with Deep Cracks or Notches -- Probability Distributions of Strength of Ductile and Brittle Structures -- Review of Classical Statistical Theory of Structural Strength and Structural Safety, and of Statistics Fundamentals -- Weakest-Link Model -- Weibull Theory -- Scaling of Weibull Theory and Pure Statistical Size Effect -- Equivalent Number of Elements -- Stability Postulate of Extreme Value Statistics -- Distributions Ensuing from Stability Postulate -- Central Limit Theorem and Strength Distribution of Ductile Structures -- Failure Probability When Both the Strength and Load Are Random, and Freudenthal Integral -- Review of Fracture Mechanics and Deterministic Size Effect in Quasibrittle Structures -- Linear Elastic Fracture Mechanics -- Cohesive Crack Model -- Crack Band Model -- Nonlocal Damage Models and Lattice-Particle Model -- Overcoming Instability of Tests of Post-Peak Softening of Fiber-Polymer Composites -- Dimensional Analysis of Asymptotic Size Effects -- Second-Order Asymptotic Properties of Cohesive Crack or Crack Band Models -- Types of Size Effect Distinguished by Asymptotic Properties -- Derivation of Quasibrittle Deterministic Size Effect from Equivalent LEFM -- Type 2 Size Effect -- Type 1 Size Effect -- Nonlocal Weibull Theory for Mean Response -- Combined Energetic-Statistical Size Effect Law and Bridging of Type 1 and 2 Size Effects -- Failure Statistics of Nanoscale Structures -- Background of Modeling of Nanoscale Fracture -- Stress-Driven Fracture of Nanoscale Structures -- Probability Distribution of Fatigue Strength at Nanoscale -- Random Walk Aspect of Failure of Nanoscale Structures -- Nano -- Macroscale Bridging of Probability Distributions of Static and Fatigue Strengths -- Chain Model -- Fiber-Bundle Model for Static Strength -- Brittle Bundle -- Plastic Bundle -- Softening Bundle with Linear Softening Behavior -- Bundle with General Softening Behavior and Nonlocal Interaction -- Fiber-Bundle Model for Fatigue Strength -- Hierarchical Model for Static Strength -- Hierarchical Model for Fatigue Strength -- Multiscale Modeling of Fracture Kinetics and Size Effect under Static and Cyclic Fatigue -- Previous Studies of Fracture Kinetics -- Fracture Kinetics at Nanoscale -- Multiscale Transition of Fracture Kinetics for Static Fatigue -- Size Effect on Fracture Kinetics under Static Fatigue -- Multiscale Transition of Fracture Kinetics under Cyclic Fatigue -- Size Effect on Fatigue Crack Growth Rate and Experimental Evidence -- Microplane Model for Size Effect on Fatigue Kinetics under General Loading -- Size Effect on Probability Distributions of Strength and Lifetime of Quasibrittle Structures -- Probability Distribution of Structural Strength -- Probability Distribution of Structural Lifetime -- Creep Lifetime -- Fatigue Lifetime -- Size Effect on Mean Structural Strength -- Size Effects on Mean Structural Lifetimes and Stress-Life Curves -- Effect of Temperature on Strength and Lifetime Distributions -- Computation of Probability Distributions of Structural Strength and Lifetime -- Nonlocal Boundary Layer Model for Strength and Lifetime Distributions -- Computation by Pseudo-random Placing of RVEs -- Approximate Closed-Form Expression for Strength and Lifetime Distributions -- Analysis of Strength Statistics of Beams under Flexural Loading -- Optimum Fits of Strength and Lifetime Histograms -- Optimum Fits of Strength Histograms -- Optimum Fits of Histograms of Creep Lifetime -- Optimum Fits of Histograms of Fatigue Lifetime -- Indirect Determination of Strength Statistics of Quasibrittle Structures -- Relation between Mean Size Effect Curve and Probability Distribution of RVE Strength -- Experimental Verification -- Description of Experiments -- Analysis of Test Results -- Determination of Large-Size Asymptotic Properties of the Size Effect Curve -- Comparison with the Histogram Testing Method -- Problems with the Three-Parameter Weibull Distribution of Strength -- Theoretical Argument -- Evidence from Histogram Testing -- Mean Size Effect Analysis -- Alternative Proof of Strength Distribution of an RVE Based on Stability Postulate and Atomistic Analysis -- Statistical Distribution and Size Effect on Residual Strength after Sustained Load -- Nanomechanics Based Relation between Monotonic Strength and Residual Strength of One RVE -- Analysis of Residual Strength Degradation for One RVE -- Probability Distribution of Residual Strength -- Formulation of Statistics of Residual Strength for One RVE -- Formulation of Residual Strength cdf of Geometrically Similar Structures of Different Sizes -- Comparison among Strength, Residual Strength, and Lifetime Distributions -- Experimental Validation -- Optimum Fits of Strength and Residual Strength Histograms of Borosilicate Glass -- Optimum Fits of Strength Histograms and Prediction of Lifetime and Mean Residual Strength for Unidirectional Glass/Epoxy Composites -- Prediction of Strength Degradation Curve for Soda-Lime Silicate Glasses -- Comparison of Size Effects on Mean Strength, Residual Strength, and Lifetime -- Size Effect on Reliability Indices and Safety Factors -- Size Effect on the Cornell Reliability Index -- Size Effect on the Hasofer-Lind Reliability Index -- Approximate Equation for Scaling of Safety Factors -- Analysis of Failure Statistics of the Malpasset Arch Dam -- Model Description -- Discussion of Cornell and Hasofer-Lind Indices -- Discussion of Central and Nominal Safety Factors -- Crack Length Effect on Scaling of Structural Strength and Type 1 to 2 Transition -- Type 1 Size Effect in Terms of Boundary Strain Gradient -- Universal Size Effect Law -- Verification of the Universal Size Effect Law by Comprehensive Fracture Tests -- Effect of Stress Singularities on Scaling of Structural Strength -- Strength Scaling of Structures with a V-Notch under Mode 1 Loading -- Energetic Scaling of Strength of Structures with Strong Stress Singularities -- Generalized Finite Weakest-Link Model -- Numerical Simulation of Mode I Fracture of Beams with a V-Notch -- Results and Discussion -- Scaling of Fracture of Bimaterial Hybrid Structures -- Energetic Scaling with Superposed Multiple Stress Singularities -- Finite Weakest-Link Model for Failure of Bimaterial Interface -- Numerical Analysis of Bimaterial Fracture -- Description of Analysis -- Lifetime of. High-k Gate Dielectrics and Analogy with Failure Statistics of Quasibrittle Structures -- Deviation of Lifetime Histograms of High-k Dielectrics from the Weibull Distribution -- Breakdown Probability -- Analogy with Strength of Quasibrittle Structures -- Application to Dielectric Breakdown -- Microscopic Statistical Models -- Breakdown Voltage Distribution -- Breakdown Lifetime under Constant Voltage -- Relation between Lifetime and Breakdown Voltage -- Microscopic Physics -- Probability Distribution of Breakdown Lifetime -- Breakdown Lifetime under Unipolar AC Voltage -- Breakdown under Constant Gate Voltage Stress -- Breakdown under Unipolar AC Voltage Stress -- Size Effect on Mean Breakdown Lifetime. Fracture mechanics. http://id.loc.gov/authorities/subjects/sh85051154 Brittleness. http://id.loc.gov/authorities/subjects/sh85016986 Elastic analysis (Engineering) http://id.loc.gov/authorities/subjects/sh85041507 Structural analysis (Engineering) http://id.loc.gov/authorities/subjects/sh85129216 Mécanique de la rupture. Fragilité. Analyse élastique (Ingénierie) Théorie des constructions. brittleness. aat structural analysis. aat TECHNOLOGY & ENGINEERING Civil General. bisacsh Brittleness fast Elastic analysis (Engineering) fast Fracture mechanics fast Structural analysis (Engineering) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85051154 http://id.loc.gov/authorities/subjects/sh85016986 http://id.loc.gov/authorities/subjects/sh85041507 http://id.loc.gov/authorities/subjects/sh85129216 |
title | Probabilistic mechanics of quasibrittle structures : strength, lifetime, and size effect / |
title_alt | Probabilistic mechanics of quasi brittle structures Introduction -- The Problem of Tail of Probability Distribution -- History in Brief -- Classical History -- Recent Developments -- Safety Specifications in Concrete Design Codes and Embedded Obstacles to Probabilistic Analysis -- Importance of Size Effect for Strength Statistics -- Power-Law Scaling in the Absence of Characteristic Length -- Nominal Strength of Structure and Size Effect -- Statistical and Deterministic Size Effects -- Simple Models for Deterministic Size Effects -- Type 1 Size Effect for Failures at Crack Initiation -- Type 2 Size Effect for Structures with Deep Cracks or Notches -- Probability Distributions of Strength of Ductile and Brittle Structures -- Review of Classical Statistical Theory of Structural Strength and Structural Safety, and of Statistics Fundamentals -- Weakest-Link Model -- Weibull Theory -- Scaling of Weibull Theory and Pure Statistical Size Effect -- Equivalent Number of Elements -- Stability Postulate of Extreme Value Statistics -- Distributions Ensuing from Stability Postulate -- Central Limit Theorem and Strength Distribution of Ductile Structures -- Failure Probability When Both the Strength and Load Are Random, and Freudenthal Integral -- Review of Fracture Mechanics and Deterministic Size Effect in Quasibrittle Structures -- Linear Elastic Fracture Mechanics -- Cohesive Crack Model -- Crack Band Model -- Nonlocal Damage Models and Lattice-Particle Model -- Overcoming Instability of Tests of Post-Peak Softening of Fiber-Polymer Composites -- Dimensional Analysis of Asymptotic Size Effects -- Second-Order Asymptotic Properties of Cohesive Crack or Crack Band Models -- Types of Size Effect Distinguished by Asymptotic Properties -- Derivation of Quasibrittle Deterministic Size Effect from Equivalent LEFM -- Type 2 Size Effect -- Type 1 Size Effect -- Nonlocal Weibull Theory for Mean Response -- Combined Energetic-Statistical Size Effect Law and Bridging of Type 1 and 2 Size Effects -- Failure Statistics of Nanoscale Structures -- Background of Modeling of Nanoscale Fracture -- Stress-Driven Fracture of Nanoscale Structures -- Probability Distribution of Fatigue Strength at Nanoscale -- Random Walk Aspect of Failure of Nanoscale Structures -- Nano -- Macroscale Bridging of Probability Distributions of Static and Fatigue Strengths -- Chain Model -- Fiber-Bundle Model for Static Strength -- Brittle Bundle -- Plastic Bundle -- Softening Bundle with Linear Softening Behavior -- Bundle with General Softening Behavior and Nonlocal Interaction -- Fiber-Bundle Model for Fatigue Strength -- Hierarchical Model for Static Strength -- Hierarchical Model for Fatigue Strength -- Multiscale Modeling of Fracture Kinetics and Size Effect under Static and Cyclic Fatigue -- Previous Studies of Fracture Kinetics -- Fracture Kinetics at Nanoscale -- Multiscale Transition of Fracture Kinetics for Static Fatigue -- Size Effect on Fracture Kinetics under Static Fatigue -- Multiscale Transition of Fracture Kinetics under Cyclic Fatigue -- Size Effect on Fatigue Crack Growth Rate and Experimental Evidence -- Microplane Model for Size Effect on Fatigue Kinetics under General Loading -- Size Effect on Probability Distributions of Strength and Lifetime of Quasibrittle Structures -- Probability Distribution of Structural Strength -- Probability Distribution of Structural Lifetime -- Creep Lifetime -- Fatigue Lifetime -- Size Effect on Mean Structural Strength -- Size Effects on Mean Structural Lifetimes and Stress-Life Curves -- Effect of Temperature on Strength and Lifetime Distributions -- Computation of Probability Distributions of Structural Strength and Lifetime -- Nonlocal Boundary Layer Model for Strength and Lifetime Distributions -- Computation by Pseudo-random Placing of RVEs -- Approximate Closed-Form Expression for Strength and Lifetime Distributions -- Analysis of Strength Statistics of Beams under Flexural Loading -- Optimum Fits of Strength and Lifetime Histograms -- Optimum Fits of Strength Histograms -- Optimum Fits of Histograms of Creep Lifetime -- Optimum Fits of Histograms of Fatigue Lifetime -- Indirect Determination of Strength Statistics of Quasibrittle Structures -- Relation between Mean Size Effect Curve and Probability Distribution of RVE Strength -- Experimental Verification -- Description of Experiments -- Analysis of Test Results -- Determination of Large-Size Asymptotic Properties of the Size Effect Curve -- Comparison with the Histogram Testing Method -- Problems with the Three-Parameter Weibull Distribution of Strength -- Theoretical Argument -- Evidence from Histogram Testing -- Mean Size Effect Analysis -- Alternative Proof of Strength Distribution of an RVE Based on Stability Postulate and Atomistic Analysis -- Statistical Distribution and Size Effect on Residual Strength after Sustained Load -- Nanomechanics Based Relation between Monotonic Strength and Residual Strength of One RVE -- Analysis of Residual Strength Degradation for One RVE -- Probability Distribution of Residual Strength -- Formulation of Statistics of Residual Strength for One RVE -- Formulation of Residual Strength cdf of Geometrically Similar Structures of Different Sizes -- Comparison among Strength, Residual Strength, and Lifetime Distributions -- Experimental Validation -- Optimum Fits of Strength and Residual Strength Histograms of Borosilicate Glass -- Optimum Fits of Strength Histograms and Prediction of Lifetime and Mean Residual Strength for Unidirectional Glass/Epoxy Composites -- Prediction of Strength Degradation Curve for Soda-Lime Silicate Glasses -- Comparison of Size Effects on Mean Strength, Residual Strength, and Lifetime -- Size Effect on Reliability Indices and Safety Factors -- Size Effect on the Cornell Reliability Index -- Size Effect on the Hasofer-Lind Reliability Index -- Approximate Equation for Scaling of Safety Factors -- Analysis of Failure Statistics of the Malpasset Arch Dam -- Model Description -- Discussion of Cornell and Hasofer-Lind Indices -- Discussion of Central and Nominal Safety Factors -- Crack Length Effect on Scaling of Structural Strength and Type 1 to 2 Transition -- Type 1 Size Effect in Terms of Boundary Strain Gradient -- Universal Size Effect Law -- Verification of the Universal Size Effect Law by Comprehensive Fracture Tests -- Effect of Stress Singularities on Scaling of Structural Strength -- Strength Scaling of Structures with a V-Notch under Mode 1 Loading -- Energetic Scaling of Strength of Structures with Strong Stress Singularities -- Generalized Finite Weakest-Link Model -- Numerical Simulation of Mode I Fracture of Beams with a V-Notch -- Results and Discussion -- Scaling of Fracture of Bimaterial Hybrid Structures -- Energetic Scaling with Superposed Multiple Stress Singularities -- Finite Weakest-Link Model for Failure of Bimaterial Interface -- Numerical Analysis of Bimaterial Fracture -- Description of Analysis -- Lifetime of. High-k Gate Dielectrics and Analogy with Failure Statistics of Quasibrittle Structures -- Deviation of Lifetime Histograms of High-k Dielectrics from the Weibull Distribution -- Breakdown Probability -- Analogy with Strength of Quasibrittle Structures -- Application to Dielectric Breakdown -- Microscopic Statistical Models -- Breakdown Voltage Distribution -- Breakdown Lifetime under Constant Voltage -- Relation between Lifetime and Breakdown Voltage -- Microscopic Physics -- Probability Distribution of Breakdown Lifetime -- Breakdown Lifetime under Unipolar AC Voltage -- Breakdown under Constant Gate Voltage Stress -- Breakdown under Unipolar AC Voltage Stress -- Size Effect on Mean Breakdown Lifetime. |
title_auth | Probabilistic mechanics of quasibrittle structures : strength, lifetime, and size effect / |
title_exact_search | Probabilistic mechanics of quasibrittle structures : strength, lifetime, and size effect / |
title_full | Probabilistic mechanics of quasibrittle structures : strength, lifetime, and size effect / Zdenek P. Bazant, Northwestern University, Jia-Liang Le, University of Minnesota. |
title_fullStr | Probabilistic mechanics of quasibrittle structures : strength, lifetime, and size effect / Zdenek P. Bazant, Northwestern University, Jia-Liang Le, University of Minnesota. |
title_full_unstemmed | Probabilistic mechanics of quasibrittle structures : strength, lifetime, and size effect / Zdenek P. Bazant, Northwestern University, Jia-Liang Le, University of Minnesota. |
title_short | Probabilistic mechanics of quasibrittle structures : |
title_sort | probabilistic mechanics of quasibrittle structures strength lifetime and size effect |
title_sub | strength, lifetime, and size effect / |
topic | Fracture mechanics. http://id.loc.gov/authorities/subjects/sh85051154 Brittleness. http://id.loc.gov/authorities/subjects/sh85016986 Elastic analysis (Engineering) http://id.loc.gov/authorities/subjects/sh85041507 Structural analysis (Engineering) http://id.loc.gov/authorities/subjects/sh85129216 Mécanique de la rupture. Fragilité. Analyse élastique (Ingénierie) Théorie des constructions. brittleness. aat structural analysis. aat TECHNOLOGY & ENGINEERING Civil General. bisacsh Brittleness fast Elastic analysis (Engineering) fast Fracture mechanics fast Structural analysis (Engineering) fast |
topic_facet | Fracture mechanics. Brittleness. Elastic analysis (Engineering) Structural analysis (Engineering) Mécanique de la rupture. Fragilité. Analyse élastique (Ingénierie) Théorie des constructions. brittleness. structural analysis. TECHNOLOGY & ENGINEERING Civil General. Brittleness Fracture mechanics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1512496 |
work_keys_str_mv | AT bazantzp probabilisticmechanicsofquasibrittlestructuresstrengthlifetimeandsizeeffect AT lejialiang probabilisticmechanicsofquasibrittlestructuresstrengthlifetimeandsizeeffect AT bazantzp probabilisticmechanicsofquasibrittlestructures AT lejialiang probabilisticmechanicsofquasibrittlestructures |