Bounded variable logics and counting :: a study in finite models /
Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publ...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2017.
|
Schriftenreihe: | Lecture notes in logic ;
9. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publication in the 'Lecture Notes in Logic' series, Martin Otto gives an introduction to finite model theory that indicates the main ideas and lines of inquiry that motivate research in this area. Particular attention is paid to bounded variable infinitary logics, with and without counting quantifiers, related fixed-point logics, and the corresponding fragments of Ptime. The relations with Ptime exhibit the fruitful exchange between ideas from logic and from complexity theory that is characteristic of finite model theory. |
Beschreibung: | 1 online resource (183 pages) |
ISBN: | 9781316754719 1316754715 131675278X 9781316752784 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn982118534 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||||||| | ||
008 | 170411s2017 enk o 001 0 eng d | ||
040 | |a LGG |b eng |e rda |e pn |c LGG |d N$T |d EBLCP |d N$T |d IDEBK |d UIU |d OCLCF |d NOC |d UAB |d OTZ |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCL |d TMA |d OCLCQ | ||
019 | |a 983473186 | ||
020 | |a 9781316754719 |q (electronic bk.) | ||
020 | |a 1316754715 |q (electronic bk.) | ||
020 | |a 131675278X | ||
020 | |a 9781316752784 | ||
020 | |z 9781316716878 | ||
020 | |z 1316716872 | ||
020 | |z 9781107167940 | ||
020 | |z 1107167949 | ||
035 | |a (OCoLC)982118534 |z (OCoLC)983473186 | ||
037 | |a 1005918 |b MIL | ||
050 | 4 | |a QA9.7 | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.3/3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Otto, Martin, |d 1961- |e author. |0 http://id.loc.gov/authorities/names/n96112010 | |
245 | 1 | 0 | |a Bounded variable logics and counting : |b a study in finite models / |c Martin Otto. |
264 | 1 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2017. | |
300 | |a 1 online resource (183 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in logic ; |v 9 | |
520 | 8 | |a Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publication in the 'Lecture Notes in Logic' series, Martin Otto gives an introduction to finite model theory that indicates the main ideas and lines of inquiry that motivate research in this area. Particular attention is paid to bounded variable infinitary logics, with and without counting quantifiers, related fixed-point logics, and the corresponding fragments of Ptime. The relations with Ptime exhibit the fruitful exchange between ideas from logic and from complexity theory that is characteristic of finite model theory. | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Half-title; Series information; Title page; Copyright information; Preface; Table of contents; 0. Introduction; 0.1 Finite Models, Logic and Complexity; 0.1.1 Logics for Complexity Classes; 0.1.2 Semantically Defined Classes; 0.1.3 Which Logics Are Natural?; 0.2 Natural Levels of Expressiveness; 0.2.1 Fixed-Point Logics and Their Counting Extensions; 0.2.2 The Framework of Infinitary Logic; 0.2.3 The Role of Order and Canonization ; 0.3 Guide to the Exposition; 1. Definitions and Preliminaries; 1.1 Structures and Types; 1.1.1 Structures; 1.1.2 Queries and Global Relations; 1.1.3 Logics | |
505 | 8 | |a 1.1.4 Types1.2 Algorithms on Structures; 1.2.1 Complexity Classes and Presentations; 1.2.2 Logics for Complexity Classes; 1.3 Some Particular Logics; 1.3.1 First-Order Logic and Infinitary Logic; 1.3.2 Fragments of Infinitary Logic; 1.3.3 Fixed-Point Logics; 1.3.4 Fixed-Point Logics and the L[sup(k)sub([infty][textomega])] ; 1.4 Types and Definability in the L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 1.5 Interpretations; 1.5.1 Variants of Interpretations; 1.5.2 Examples; 1.5.3 Interpretations and Definability; 1.6 Lindstrom Quantifiers and Extensions ; 1.6.1 Cardinality Lindstrom Quantifiers | |
505 | 8 | |a 1.6.2 Aside on Uniform Families of Quantifiers1.7 Miscellaneous; 1.7.1 Canonization and Invariants; 1.7.2 Orderings and Pre-Orderings; 1.7.3 Lexicographic Orderings; 2. The Games and Their Analysis; 2.1 The Pebble Games for L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 2.1.1 Examples and Applications; 2.1.2 Proof of Theorem 2.2; 2.1.3 Further Analysis of the C[sup(k)]-Game; 2.1.4 The Analogous Treatment for L[sup(k)]; 2.2 Colour Refinement and the Stable Colouring; 2.2.1 The Standard Case: Colourings of Finite Graphs; 2.2.2 Definability of the Stable Colouring | |
505 | 8 | |a 2.2.3 C[sup(2)sub([infty][textomega])] and the Stable Colouring 2.2.4 A Variant Without Counting; 2.3 Order in the Analysis of the Games; 2.3.1 The Internal View; 2.3.2 The External View; 2.3.3 The Analogous Treatment for L[sup(k)]; 3. The Invariants; 3.1 Complete Invariants for L[sup(k)] and C[sup(k)]; 3.2 The C[sup(k)]-Invariants; 3.3 The L[sup(k)]-Invariants; 3.4 Some Applications; 3.4.1 Fixed-Points and the Invariants; 3.4.2 The Abiteboul-Vianu Theorem; 3.4.3 Comparison of I[sub(C[sup(k)])] and I[sub(L[sup(k)])]; 3.5 A Partial Reduction to Two Variables; 4. Fixed-Point Logic with Counting | |
505 | 8 | |a 4.1 Definition of FP+C and PFP+C4.2 FP+C and the C[sup(k)]-Invariants; 4.3 The Separation from PTIME; 4.4 Other Characterizations of FP+C; 5. Related Lindstr[ddot(o)]m Extensions; 5.1 A Structural Padding Technique; 5.2 Cardinality Lindstrom Quantifiers ; 5.2.1 Proof of Theorem 5.1; 5.3 Aside on Further Applications; 6. Canonization Problems; 6.1 Canonization; 6.2 PTIME Canonization and Fragments of PTIME; 6.3 Canonization and Inversion of the Invariants; 6.4 A Reduction to Three Variables; 6.4.1 The Proof of Theorems 6.16 and 6.17; 6.4.2 Remarks on Further Reduction | |
650 | 0 | |a Model theory. |0 http://id.loc.gov/authorities/subjects/sh85086421 | |
650 | 0 | |a Computational complexity. |0 http://id.loc.gov/authorities/subjects/sh85029473 | |
650 | 6 | |a Théorie des modèles. | |
650 | 6 | |a Complexité de calcul (Informatique) | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Modelos matemáticos |2 embne | |
650 | 7 | |a Computational complexity |2 fast | |
650 | 7 | |a Model theory |2 fast | |
758 | |i has work: |a Bounded variable logics and counting (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGygyWCX4Q6Y9VgCf673FC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Otto, Martin. |t Bounded variable logics and counting. A study in finite models. |d Cambridge : Cambridge University Press 2016 |z 9781107167940 |w (OCoLC)962330962 |
830 | 0 | |a Lecture notes in logic ; |v 9. |0 http://id.loc.gov/authorities/names/n93082404 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475793 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL4812296 | ||
938 | |a EBSCOhost |b EBSC |n 1475793 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis38009334 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn982118534 |
---|---|
_version_ | 1816882385567875072 |
adam_text | |
any_adam_object | |
author | Otto, Martin, 1961- |
author_GND | http://id.loc.gov/authorities/names/n96112010 |
author_facet | Otto, Martin, 1961- |
author_role | aut |
author_sort | Otto, Martin, 1961- |
author_variant | m o mo |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.7 |
callnumber-search | QA9.7 |
callnumber-sort | QA 19.7 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Half-title; Series information; Title page; Copyright information; Preface; Table of contents; 0. Introduction; 0.1 Finite Models, Logic and Complexity; 0.1.1 Logics for Complexity Classes; 0.1.2 Semantically Defined Classes; 0.1.3 Which Logics Are Natural?; 0.2 Natural Levels of Expressiveness; 0.2.1 Fixed-Point Logics and Their Counting Extensions; 0.2.2 The Framework of Infinitary Logic; 0.2.3 The Role of Order and Canonization ; 0.3 Guide to the Exposition; 1. Definitions and Preliminaries; 1.1 Structures and Types; 1.1.1 Structures; 1.1.2 Queries and Global Relations; 1.1.3 Logics 1.1.4 Types1.2 Algorithms on Structures; 1.2.1 Complexity Classes and Presentations; 1.2.2 Logics for Complexity Classes; 1.3 Some Particular Logics; 1.3.1 First-Order Logic and Infinitary Logic; 1.3.2 Fragments of Infinitary Logic; 1.3.3 Fixed-Point Logics; 1.3.4 Fixed-Point Logics and the L[sup(k)sub([infty][textomega])] ; 1.4 Types and Definability in the L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 1.5 Interpretations; 1.5.1 Variants of Interpretations; 1.5.2 Examples; 1.5.3 Interpretations and Definability; 1.6 Lindstrom Quantifiers and Extensions ; 1.6.1 Cardinality Lindstrom Quantifiers 1.6.2 Aside on Uniform Families of Quantifiers1.7 Miscellaneous; 1.7.1 Canonization and Invariants; 1.7.2 Orderings and Pre-Orderings; 1.7.3 Lexicographic Orderings; 2. The Games and Their Analysis; 2.1 The Pebble Games for L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 2.1.1 Examples and Applications; 2.1.2 Proof of Theorem 2.2; 2.1.3 Further Analysis of the C[sup(k)]-Game; 2.1.4 The Analogous Treatment for L[sup(k)]; 2.2 Colour Refinement and the Stable Colouring; 2.2.1 The Standard Case: Colourings of Finite Graphs; 2.2.2 Definability of the Stable Colouring 2.2.3 C[sup(2)sub([infty][textomega])] and the Stable Colouring 2.2.4 A Variant Without Counting; 2.3 Order in the Analysis of the Games; 2.3.1 The Internal View; 2.3.2 The External View; 2.3.3 The Analogous Treatment for L[sup(k)]; 3. The Invariants; 3.1 Complete Invariants for L[sup(k)] and C[sup(k)]; 3.2 The C[sup(k)]-Invariants; 3.3 The L[sup(k)]-Invariants; 3.4 Some Applications; 3.4.1 Fixed-Points and the Invariants; 3.4.2 The Abiteboul-Vianu Theorem; 3.4.3 Comparison of I[sub(C[sup(k)])] and I[sub(L[sup(k)])]; 3.5 A Partial Reduction to Two Variables; 4. Fixed-Point Logic with Counting 4.1 Definition of FP+C and PFP+C4.2 FP+C and the C[sup(k)]-Invariants; 4.3 The Separation from PTIME; 4.4 Other Characterizations of FP+C; 5. Related Lindstr[ddot(o)]m Extensions; 5.1 A Structural Padding Technique; 5.2 Cardinality Lindstrom Quantifiers ; 5.2.1 Proof of Theorem 5.1; 5.3 Aside on Further Applications; 6. Canonization Problems; 6.1 Canonization; 6.2 PTIME Canonization and Fragments of PTIME; 6.3 Canonization and Inversion of the Invariants; 6.4 A Reduction to Three Variables; 6.4.1 The Proof of Theorems 6.16 and 6.17; 6.4.2 Remarks on Further Reduction |
ctrlnum | (OCoLC)982118534 |
dewey-full | 511.3/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/3 |
dewey-search | 511.3/3 |
dewey-sort | 3511.3 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06465cam a2200661 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn982118534</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">170411s2017 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LGG</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">LGG</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NOC</subfield><subfield code="d">UAB</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">983473186</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316754719</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1316754715</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">131675278X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316752784</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781316716878</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1316716872</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107167940</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107167949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)982118534</subfield><subfield code="z">(OCoLC)983473186</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">1005918</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.7</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Otto, Martin,</subfield><subfield code="d">1961-</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96112010</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bounded variable logics and counting :</subfield><subfield code="b">a study in finite models /</subfield><subfield code="c">Martin Otto.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (183 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in logic ;</subfield><subfield code="v">9</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publication in the 'Lecture Notes in Logic' series, Martin Otto gives an introduction to finite model theory that indicates the main ideas and lines of inquiry that motivate research in this area. Particular attention is paid to bounded variable infinitary logics, with and without counting quantifiers, related fixed-point logics, and the corresponding fragments of Ptime. The relations with Ptime exhibit the fruitful exchange between ideas from logic and from complexity theory that is characteristic of finite model theory.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half-title; Series information; Title page; Copyright information; Preface; Table of contents; 0. Introduction; 0.1 Finite Models, Logic and Complexity; 0.1.1 Logics for Complexity Classes; 0.1.2 Semantically Defined Classes; 0.1.3 Which Logics Are Natural?; 0.2 Natural Levels of Expressiveness; 0.2.1 Fixed-Point Logics and Their Counting Extensions; 0.2.2 The Framework of Infinitary Logic; 0.2.3 The Role of Order and Canonization ; 0.3 Guide to the Exposition; 1. Definitions and Preliminaries; 1.1 Structures and Types; 1.1.1 Structures; 1.1.2 Queries and Global Relations; 1.1.3 Logics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.1.4 Types1.2 Algorithms on Structures; 1.2.1 Complexity Classes and Presentations; 1.2.2 Logics for Complexity Classes; 1.3 Some Particular Logics; 1.3.1 First-Order Logic and Infinitary Logic; 1.3.2 Fragments of Infinitary Logic; 1.3.3 Fixed-Point Logics; 1.3.4 Fixed-Point Logics and the L[sup(k)sub([infty][textomega])] ; 1.4 Types and Definability in the L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 1.5 Interpretations; 1.5.1 Variants of Interpretations; 1.5.2 Examples; 1.5.3 Interpretations and Definability; 1.6 Lindstrom Quantifiers and Extensions ; 1.6.1 Cardinality Lindstrom Quantifiers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.6.2 Aside on Uniform Families of Quantifiers1.7 Miscellaneous; 1.7.1 Canonization and Invariants; 1.7.2 Orderings and Pre-Orderings; 1.7.3 Lexicographic Orderings; 2. The Games and Their Analysis; 2.1 The Pebble Games for L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 2.1.1 Examples and Applications; 2.1.2 Proof of Theorem 2.2; 2.1.3 Further Analysis of the C[sup(k)]-Game; 2.1.4 The Analogous Treatment for L[sup(k)]; 2.2 Colour Refinement and the Stable Colouring; 2.2.1 The Standard Case: Colourings of Finite Graphs; 2.2.2 Definability of the Stable Colouring</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.3 C[sup(2)sub([infty][textomega])] and the Stable Colouring 2.2.4 A Variant Without Counting; 2.3 Order in the Analysis of the Games; 2.3.1 The Internal View; 2.3.2 The External View; 2.3.3 The Analogous Treatment for L[sup(k)]; 3. The Invariants; 3.1 Complete Invariants for L[sup(k)] and C[sup(k)]; 3.2 The C[sup(k)]-Invariants; 3.3 The L[sup(k)]-Invariants; 3.4 Some Applications; 3.4.1 Fixed-Points and the Invariants; 3.4.2 The Abiteboul-Vianu Theorem; 3.4.3 Comparison of I[sub(C[sup(k)])] and I[sub(L[sup(k)])]; 3.5 A Partial Reduction to Two Variables; 4. Fixed-Point Logic with Counting</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1 Definition of FP+C and PFP+C4.2 FP+C and the C[sup(k)]-Invariants; 4.3 The Separation from PTIME; 4.4 Other Characterizations of FP+C; 5. Related Lindstr[ddot(o)]m Extensions; 5.1 A Structural Padding Technique; 5.2 Cardinality Lindstrom Quantifiers ; 5.2.1 Proof of Theorem 5.1; 5.3 Aside on Further Applications; 6. Canonization Problems; 6.1 Canonization; 6.2 PTIME Canonization and Fragments of PTIME; 6.3 Canonization and Inversion of the Invariants; 6.4 A Reduction to Three Variables; 6.4.1 The Proof of Theorems 6.16 and 6.17; 6.4.2 Remarks on Further Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Model theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85086421</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computational complexity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029473</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des modèles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Complexité de calcul (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modelos matemáticos</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational complexity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Bounded variable logics and counting (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGygyWCX4Q6Y9VgCf673FC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Otto, Martin.</subfield><subfield code="t">Bounded variable logics and counting. A study in finite models.</subfield><subfield code="d">Cambridge : Cambridge University Press 2016</subfield><subfield code="z">9781107167940</subfield><subfield code="w">(OCoLC)962330962</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in logic ;</subfield><subfield code="v">9.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93082404</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475793</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4812296</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1475793</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis38009334</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn982118534 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:46Z |
institution | BVB |
isbn | 9781316754719 1316754715 131675278X 9781316752784 |
language | English |
oclc_num | 982118534 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (183 pages) |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press, |
record_format | marc |
series | Lecture notes in logic ; |
series2 | Lecture notes in logic ; |
spelling | Otto, Martin, 1961- author. http://id.loc.gov/authorities/names/n96112010 Bounded variable logics and counting : a study in finite models / Martin Otto. Cambridge ; New York : Cambridge University Press, 2017. 1 online resource (183 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Lecture notes in logic ; 9 Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publication in the 'Lecture Notes in Logic' series, Martin Otto gives an introduction to finite model theory that indicates the main ideas and lines of inquiry that motivate research in this area. Particular attention is paid to bounded variable infinitary logics, with and without counting quantifiers, related fixed-point logics, and the corresponding fragments of Ptime. The relations with Ptime exhibit the fruitful exchange between ideas from logic and from complexity theory that is characteristic of finite model theory. Print version record. Cover; Half-title; Series information; Title page; Copyright information; Preface; Table of contents; 0. Introduction; 0.1 Finite Models, Logic and Complexity; 0.1.1 Logics for Complexity Classes; 0.1.2 Semantically Defined Classes; 0.1.3 Which Logics Are Natural?; 0.2 Natural Levels of Expressiveness; 0.2.1 Fixed-Point Logics and Their Counting Extensions; 0.2.2 The Framework of Infinitary Logic; 0.2.3 The Role of Order and Canonization ; 0.3 Guide to the Exposition; 1. Definitions and Preliminaries; 1.1 Structures and Types; 1.1.1 Structures; 1.1.2 Queries and Global Relations; 1.1.3 Logics 1.1.4 Types1.2 Algorithms on Structures; 1.2.1 Complexity Classes and Presentations; 1.2.2 Logics for Complexity Classes; 1.3 Some Particular Logics; 1.3.1 First-Order Logic and Infinitary Logic; 1.3.2 Fragments of Infinitary Logic; 1.3.3 Fixed-Point Logics; 1.3.4 Fixed-Point Logics and the L[sup(k)sub([infty][textomega])] ; 1.4 Types and Definability in the L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 1.5 Interpretations; 1.5.1 Variants of Interpretations; 1.5.2 Examples; 1.5.3 Interpretations and Definability; 1.6 Lindstrom Quantifiers and Extensions ; 1.6.1 Cardinality Lindstrom Quantifiers 1.6.2 Aside on Uniform Families of Quantifiers1.7 Miscellaneous; 1.7.1 Canonization and Invariants; 1.7.2 Orderings and Pre-Orderings; 1.7.3 Lexicographic Orderings; 2. The Games and Their Analysis; 2.1 The Pebble Games for L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 2.1.1 Examples and Applications; 2.1.2 Proof of Theorem 2.2; 2.1.3 Further Analysis of the C[sup(k)]-Game; 2.1.4 The Analogous Treatment for L[sup(k)]; 2.2 Colour Refinement and the Stable Colouring; 2.2.1 The Standard Case: Colourings of Finite Graphs; 2.2.2 Definability of the Stable Colouring 2.2.3 C[sup(2)sub([infty][textomega])] and the Stable Colouring 2.2.4 A Variant Without Counting; 2.3 Order in the Analysis of the Games; 2.3.1 The Internal View; 2.3.2 The External View; 2.3.3 The Analogous Treatment for L[sup(k)]; 3. The Invariants; 3.1 Complete Invariants for L[sup(k)] and C[sup(k)]; 3.2 The C[sup(k)]-Invariants; 3.3 The L[sup(k)]-Invariants; 3.4 Some Applications; 3.4.1 Fixed-Points and the Invariants; 3.4.2 The Abiteboul-Vianu Theorem; 3.4.3 Comparison of I[sub(C[sup(k)])] and I[sub(L[sup(k)])]; 3.5 A Partial Reduction to Two Variables; 4. Fixed-Point Logic with Counting 4.1 Definition of FP+C and PFP+C4.2 FP+C and the C[sup(k)]-Invariants; 4.3 The Separation from PTIME; 4.4 Other Characterizations of FP+C; 5. Related Lindstr[ddot(o)]m Extensions; 5.1 A Structural Padding Technique; 5.2 Cardinality Lindstrom Quantifiers ; 5.2.1 Proof of Theorem 5.1; 5.3 Aside on Further Applications; 6. Canonization Problems; 6.1 Canonization; 6.2 PTIME Canonization and Fragments of PTIME; 6.3 Canonization and Inversion of the Invariants; 6.4 A Reduction to Three Variables; 6.4.1 The Proof of Theorems 6.16 and 6.17; 6.4.2 Remarks on Further Reduction Model theory. http://id.loc.gov/authorities/subjects/sh85086421 Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Théorie des modèles. Complexité de calcul (Informatique) MATHEMATICS General. bisacsh Modelos matemáticos embne Computational complexity fast Model theory fast has work: Bounded variable logics and counting (Text) https://id.oclc.org/worldcat/entity/E39PCGygyWCX4Q6Y9VgCf673FC https://id.oclc.org/worldcat/ontology/hasWork Print version: Otto, Martin. Bounded variable logics and counting. A study in finite models. Cambridge : Cambridge University Press 2016 9781107167940 (OCoLC)962330962 Lecture notes in logic ; 9. http://id.loc.gov/authorities/names/n93082404 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475793 Volltext |
spellingShingle | Otto, Martin, 1961- Bounded variable logics and counting : a study in finite models / Lecture notes in logic ; Cover; Half-title; Series information; Title page; Copyright information; Preface; Table of contents; 0. Introduction; 0.1 Finite Models, Logic and Complexity; 0.1.1 Logics for Complexity Classes; 0.1.2 Semantically Defined Classes; 0.1.3 Which Logics Are Natural?; 0.2 Natural Levels of Expressiveness; 0.2.1 Fixed-Point Logics and Their Counting Extensions; 0.2.2 The Framework of Infinitary Logic; 0.2.3 The Role of Order and Canonization ; 0.3 Guide to the Exposition; 1. Definitions and Preliminaries; 1.1 Structures and Types; 1.1.1 Structures; 1.1.2 Queries and Global Relations; 1.1.3 Logics 1.1.4 Types1.2 Algorithms on Structures; 1.2.1 Complexity Classes and Presentations; 1.2.2 Logics for Complexity Classes; 1.3 Some Particular Logics; 1.3.1 First-Order Logic and Infinitary Logic; 1.3.2 Fragments of Infinitary Logic; 1.3.3 Fixed-Point Logics; 1.3.4 Fixed-Point Logics and the L[sup(k)sub([infty][textomega])] ; 1.4 Types and Definability in the L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 1.5 Interpretations; 1.5.1 Variants of Interpretations; 1.5.2 Examples; 1.5.3 Interpretations and Definability; 1.6 Lindstrom Quantifiers and Extensions ; 1.6.1 Cardinality Lindstrom Quantifiers 1.6.2 Aside on Uniform Families of Quantifiers1.7 Miscellaneous; 1.7.1 Canonization and Invariants; 1.7.2 Orderings and Pre-Orderings; 1.7.3 Lexicographic Orderings; 2. The Games and Their Analysis; 2.1 The Pebble Games for L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 2.1.1 Examples and Applications; 2.1.2 Proof of Theorem 2.2; 2.1.3 Further Analysis of the C[sup(k)]-Game; 2.1.4 The Analogous Treatment for L[sup(k)]; 2.2 Colour Refinement and the Stable Colouring; 2.2.1 The Standard Case: Colourings of Finite Graphs; 2.2.2 Definability of the Stable Colouring 2.2.3 C[sup(2)sub([infty][textomega])] and the Stable Colouring 2.2.4 A Variant Without Counting; 2.3 Order in the Analysis of the Games; 2.3.1 The Internal View; 2.3.2 The External View; 2.3.3 The Analogous Treatment for L[sup(k)]; 3. The Invariants; 3.1 Complete Invariants for L[sup(k)] and C[sup(k)]; 3.2 The C[sup(k)]-Invariants; 3.3 The L[sup(k)]-Invariants; 3.4 Some Applications; 3.4.1 Fixed-Points and the Invariants; 3.4.2 The Abiteboul-Vianu Theorem; 3.4.3 Comparison of I[sub(C[sup(k)])] and I[sub(L[sup(k)])]; 3.5 A Partial Reduction to Two Variables; 4. Fixed-Point Logic with Counting 4.1 Definition of FP+C and PFP+C4.2 FP+C and the C[sup(k)]-Invariants; 4.3 The Separation from PTIME; 4.4 Other Characterizations of FP+C; 5. Related Lindstr[ddot(o)]m Extensions; 5.1 A Structural Padding Technique; 5.2 Cardinality Lindstrom Quantifiers ; 5.2.1 Proof of Theorem 5.1; 5.3 Aside on Further Applications; 6. Canonization Problems; 6.1 Canonization; 6.2 PTIME Canonization and Fragments of PTIME; 6.3 Canonization and Inversion of the Invariants; 6.4 A Reduction to Three Variables; 6.4.1 The Proof of Theorems 6.16 and 6.17; 6.4.2 Remarks on Further Reduction Model theory. http://id.loc.gov/authorities/subjects/sh85086421 Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Théorie des modèles. Complexité de calcul (Informatique) MATHEMATICS General. bisacsh Modelos matemáticos embne Computational complexity fast Model theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85086421 http://id.loc.gov/authorities/subjects/sh85029473 |
title | Bounded variable logics and counting : a study in finite models / |
title_auth | Bounded variable logics and counting : a study in finite models / |
title_exact_search | Bounded variable logics and counting : a study in finite models / |
title_full | Bounded variable logics and counting : a study in finite models / Martin Otto. |
title_fullStr | Bounded variable logics and counting : a study in finite models / Martin Otto. |
title_full_unstemmed | Bounded variable logics and counting : a study in finite models / Martin Otto. |
title_short | Bounded variable logics and counting : |
title_sort | bounded variable logics and counting a study in finite models |
title_sub | a study in finite models / |
topic | Model theory. http://id.loc.gov/authorities/subjects/sh85086421 Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Théorie des modèles. Complexité de calcul (Informatique) MATHEMATICS General. bisacsh Modelos matemáticos embne Computational complexity fast Model theory fast |
topic_facet | Model theory. Computational complexity. Théorie des modèles. Complexité de calcul (Informatique) MATHEMATICS General. Modelos matemáticos Computational complexity Model theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475793 |
work_keys_str_mv | AT ottomartin boundedvariablelogicsandcountingastudyinfinitemodels |