TensorFlow Machine Learning Cookbook.:
"Explore machine learning concepts using the latest numerical computing library - TensorFlow - with the help of this comprehensive cookbook."--Cover.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham :
Packt Publishing,
2017.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Explore machine learning concepts using the latest numerical computing library - TensorFlow - with the help of this comprehensive cookbook."--Cover. |
Beschreibung: | 1 online resource (370 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781786466303 1786466309 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn974580416 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 170304s2017 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d IDEBK |d YDX |d TEFOD |d MERUC |d N$T |d COO |d OCLCQ |d VT2 |d OCLCF |d UOK |d UKMGB |d WYU |d OCLCQ |d ZCU |d AU@ |d UKAHL |d OCLCQ |d INTCL |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL | ||
016 | 7 | |a 018266691 |2 Uk | |
019 | |a 972990707 |a 973304338 |a 973371786 |a 973534072 |a 973757246 |a 973801237 |a 974683350 |a 974737486 |a 975019569 |a 983353887 |a 983689587 |a 994440010 |a 1078933268 |a 1259164036 |a 1264935402 | ||
020 | |a 9781786466303 |q (electronic bk.) | ||
020 | |a 1786466309 |q (electronic bk.) | ||
020 | |z 1786462168 | ||
020 | |z 9781786462169 | ||
035 | |a (OCoLC)974580416 |z (OCoLC)972990707 |z (OCoLC)973304338 |z (OCoLC)973371786 |z (OCoLC)973534072 |z (OCoLC)973757246 |z (OCoLC)973801237 |z (OCoLC)974683350 |z (OCoLC)974737486 |z (OCoLC)975019569 |z (OCoLC)983353887 |z (OCoLC)983689587 |z (OCoLC)994440010 |z (OCoLC)1078933268 |z (OCoLC)1259164036 |z (OCoLC)1264935402 | ||
037 | |a 993223 |b MIL | ||
037 | |a 2C89606E-A4EC-4AF8-852E-6CA22959512C |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a T55.4-60.8 | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
082 | 7 | |a 006.3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a McClure, Nick. | |
245 | 1 | 0 | |a TensorFlow Machine Learning Cookbook. |
260 | |a Birmingham : |b Packt Publishing, |c 2017. | ||
300 | |a 1 online resource (370 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Copyright; Credits; About the Author; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Getting Started with TensorFlow; Introduction; How TensorFlow Works; Declaring Tensors; Using Placeholders and Variables; Working with Matrices; Declaring Operations; Implementing Activation Functions; Working with Data Sources; Additional Resources; Chapter 2: The TensorFlow Way; Introduction; Operations in a Computational Graph; Layering Nested Operations; Working with Multiple Layers; Implementing Loss Functions; Implementing Back Propagation. | |
505 | 8 | |a Working with Batch and Stochastic TrainingCombining Everything Together; Evaluating Models; Chapter 3: Linear Regression; Introduction; Using the Matrix Inverse Method; Implementing a Decomposition Method; Learning The TensorFlow Way of Linear Regression; Understanding Loss Functions in Linear Regression; Implementing Deming regression; Implementing Lasso and Ridge Regression; Implementing Elastic Net Regression; Implementing Logistic Regression; Chapter 4: Support Vector Machines; Introduction; Working with a Linear SVM; Reduction to Linear Regression; Working with Kernels in TensorFlow. | |
505 | 8 | |a Implementing a Non-Linear SVMImplementing a Multi-Class SVM; Chapter 5: Nearest Neighbor Methods; Introduction; Working with Nearest Neighbors; Working with Text-Based Distances; Computing with Mixed Distance Functions; Using an Address Matching Example; Using Nearest Neighbors for Image Recognition; Chapter 6: Neural Networks; Introduction; Implementing Operational Gates; Working with Gates and Activation Functions; Implementing a One-Layer Neural Network; Implementing Different Layers; Using a Multilayer Neural Network; Improving the Predictions of Linear Models. | |
505 | 8 | |a Learning to Play Tic Tac ToeChapter 7: Natural Language Processing; Introduction; Working with bag of words; Implementing TF-IDF; Working with Skip-gram Embeddings; Working with CBOW Embeddings; Making Predictions with Word2vec; Using Doc2vec for Sentiment Analysis; Chapter 8: Convolutional Neural Networks; Introduction; Implementing a Simpler CNN; Implementing an Advanced CNN; Retraining Existing CNNs models; Applying Stylenet/Neural-Style; Implementing DeepDream; Chapter 9: Recurrent Neural Networks; Introduction; Implementing RNN for Spam Prediction; Implementing an LSTM Model. | |
505 | 8 | |a Stacking multiple LSTM LayersCreating Sequence-to-Sequence Models; Training a Siamese Similarity Measure; Chapter 10: Taking TensorFlow to Production; Introduction; Implementing unit tests; Using Multiple Executors; Parallelizing TensorFlow; Taking TensorFlow to Production; Productionalizing TensorFlow -- An Example; Chapter 11: More with TensorFlow; Introduction; Visualizing graphs in Tensorboard; There's more ... ; Working with a Genetic Algorithm; Clustering Using K-Means; Solving a System of ODEs; Index. | |
504 | |a Includes bibliographical references and index. | ||
520 | |a "Explore machine learning concepts using the latest numerical computing library - TensorFlow - with the help of this comprehensive cookbook."--Cover. | ||
630 | 0 | 0 | |a TensorFlow (Electronic resource) |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Artificial intelligence. |0 http://id.loc.gov/authorities/subjects/sh85008180 | |
650 | 2 | |a Artificial Intelligence |0 https://id.nlm.nih.gov/mesh/D001185 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Intelligence artificielle. | |
650 | 7 | |a artificial intelligence. |2 aat | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
758 | |i has work: |a TensorFlow machine learning cookbook (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH7tvBRrHDh8vFvdyJ89Qm |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a McClure, Nick. |t TensorFlow Machine Learning Cookbook. |d Birmingham : Packt Publishing, ©2017 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1468761 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH30993276 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4806491 | ||
938 | |a EBSCOhost |b EBSC |n 1468761 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis35312900 | ||
938 | |a YBP Library Services |b YANK |n 13506466 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn974580416 |
---|---|
_version_ | 1816882380242157568 |
adam_text | |
any_adam_object | |
author | McClure, Nick |
author_facet | McClure, Nick |
author_role | |
author_sort | McClure, Nick |
author_variant | n m nm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | T55 |
callnumber-raw | T55.4-60.8 |
callnumber-search | T55.4-60.8 |
callnumber-sort | T 255.4 260.8 |
callnumber-subject | T - General Technology |
collection | ZDB-4-EBA |
contents | Cover; Copyright; Credits; About the Author; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Getting Started with TensorFlow; Introduction; How TensorFlow Works; Declaring Tensors; Using Placeholders and Variables; Working with Matrices; Declaring Operations; Implementing Activation Functions; Working with Data Sources; Additional Resources; Chapter 2: The TensorFlow Way; Introduction; Operations in a Computational Graph; Layering Nested Operations; Working with Multiple Layers; Implementing Loss Functions; Implementing Back Propagation. Working with Batch and Stochastic TrainingCombining Everything Together; Evaluating Models; Chapter 3: Linear Regression; Introduction; Using the Matrix Inverse Method; Implementing a Decomposition Method; Learning The TensorFlow Way of Linear Regression; Understanding Loss Functions in Linear Regression; Implementing Deming regression; Implementing Lasso and Ridge Regression; Implementing Elastic Net Regression; Implementing Logistic Regression; Chapter 4: Support Vector Machines; Introduction; Working with a Linear SVM; Reduction to Linear Regression; Working with Kernels in TensorFlow. Implementing a Non-Linear SVMImplementing a Multi-Class SVM; Chapter 5: Nearest Neighbor Methods; Introduction; Working with Nearest Neighbors; Working with Text-Based Distances; Computing with Mixed Distance Functions; Using an Address Matching Example; Using Nearest Neighbors for Image Recognition; Chapter 6: Neural Networks; Introduction; Implementing Operational Gates; Working with Gates and Activation Functions; Implementing a One-Layer Neural Network; Implementing Different Layers; Using a Multilayer Neural Network; Improving the Predictions of Linear Models. Learning to Play Tic Tac ToeChapter 7: Natural Language Processing; Introduction; Working with bag of words; Implementing TF-IDF; Working with Skip-gram Embeddings; Working with CBOW Embeddings; Making Predictions with Word2vec; Using Doc2vec for Sentiment Analysis; Chapter 8: Convolutional Neural Networks; Introduction; Implementing a Simpler CNN; Implementing an Advanced CNN; Retraining Existing CNNs models; Applying Stylenet/Neural-Style; Implementing DeepDream; Chapter 9: Recurrent Neural Networks; Introduction; Implementing RNN for Spam Prediction; Implementing an LSTM Model. Stacking multiple LSTM LayersCreating Sequence-to-Sequence Models; Training a Siamese Similarity Measure; Chapter 10: Taking TensorFlow to Production; Introduction; Implementing unit tests; Using Multiple Executors; Parallelizing TensorFlow; Taking TensorFlow to Production; Productionalizing TensorFlow -- An Example; Chapter 11: More with TensorFlow; Introduction; Visualizing graphs in Tensorboard; There's more ... ; Working with a Genetic Algorithm; Clustering Using K-Means; Solving a System of ODEs; Index. |
ctrlnum | (OCoLC)974580416 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06205cam a2200697Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn974580416</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">170304s2017 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDX</subfield><subfield code="d">TEFOD</subfield><subfield code="d">MERUC</subfield><subfield code="d">N$T</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UOK</subfield><subfield code="d">UKMGB</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INTCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">018266691</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">972990707</subfield><subfield code="a">973304338</subfield><subfield code="a">973371786</subfield><subfield code="a">973534072</subfield><subfield code="a">973757246</subfield><subfield code="a">973801237</subfield><subfield code="a">974683350</subfield><subfield code="a">974737486</subfield><subfield code="a">975019569</subfield><subfield code="a">983353887</subfield><subfield code="a">983689587</subfield><subfield code="a">994440010</subfield><subfield code="a">1078933268</subfield><subfield code="a">1259164036</subfield><subfield code="a">1264935402</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781786466303</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1786466309</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1786462168</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781786462169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)974580416</subfield><subfield code="z">(OCoLC)972990707</subfield><subfield code="z">(OCoLC)973304338</subfield><subfield code="z">(OCoLC)973371786</subfield><subfield code="z">(OCoLC)973534072</subfield><subfield code="z">(OCoLC)973757246</subfield><subfield code="z">(OCoLC)973801237</subfield><subfield code="z">(OCoLC)974683350</subfield><subfield code="z">(OCoLC)974737486</subfield><subfield code="z">(OCoLC)975019569</subfield><subfield code="z">(OCoLC)983353887</subfield><subfield code="z">(OCoLC)983689587</subfield><subfield code="z">(OCoLC)994440010</subfield><subfield code="z">(OCoLC)1078933268</subfield><subfield code="z">(OCoLC)1259164036</subfield><subfield code="z">(OCoLC)1264935402</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">993223</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">2C89606E-A4EC-4AF8-852E-6CA22959512C</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McClure, Nick.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TensorFlow Machine Learning Cookbook.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Birmingham :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (370 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Copyright; Credits; About the Author; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Getting Started with TensorFlow; Introduction; How TensorFlow Works; Declaring Tensors; Using Placeholders and Variables; Working with Matrices; Declaring Operations; Implementing Activation Functions; Working with Data Sources; Additional Resources; Chapter 2: The TensorFlow Way; Introduction; Operations in a Computational Graph; Layering Nested Operations; Working with Multiple Layers; Implementing Loss Functions; Implementing Back Propagation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Working with Batch and Stochastic TrainingCombining Everything Together; Evaluating Models; Chapter 3: Linear Regression; Introduction; Using the Matrix Inverse Method; Implementing a Decomposition Method; Learning The TensorFlow Way of Linear Regression; Understanding Loss Functions in Linear Regression; Implementing Deming regression; Implementing Lasso and Ridge Regression; Implementing Elastic Net Regression; Implementing Logistic Regression; Chapter 4: Support Vector Machines; Introduction; Working with a Linear SVM; Reduction to Linear Regression; Working with Kernels in TensorFlow.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Implementing a Non-Linear SVMImplementing a Multi-Class SVM; Chapter 5: Nearest Neighbor Methods; Introduction; Working with Nearest Neighbors; Working with Text-Based Distances; Computing with Mixed Distance Functions; Using an Address Matching Example; Using Nearest Neighbors for Image Recognition; Chapter 6: Neural Networks; Introduction; Implementing Operational Gates; Working with Gates and Activation Functions; Implementing a One-Layer Neural Network; Implementing Different Layers; Using a Multilayer Neural Network; Improving the Predictions of Linear Models.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Learning to Play Tic Tac ToeChapter 7: Natural Language Processing; Introduction; Working with bag of words; Implementing TF-IDF; Working with Skip-gram Embeddings; Working with CBOW Embeddings; Making Predictions with Word2vec; Using Doc2vec for Sentiment Analysis; Chapter 8: Convolutional Neural Networks; Introduction; Implementing a Simpler CNN; Implementing an Advanced CNN; Retraining Existing CNNs models; Applying Stylenet/Neural-Style; Implementing DeepDream; Chapter 9: Recurrent Neural Networks; Introduction; Implementing RNN for Spam Prediction; Implementing an LSTM Model.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Stacking multiple LSTM LayersCreating Sequence-to-Sequence Models; Training a Siamese Similarity Measure; Chapter 10: Taking TensorFlow to Production; Introduction; Implementing unit tests; Using Multiple Executors; Parallelizing TensorFlow; Taking TensorFlow to Production; Productionalizing TensorFlow -- An Example; Chapter 11: More with TensorFlow; Introduction; Visualizing graphs in Tensorboard; There's more ... ; Working with a Genetic Algorithm; Clustering Using K-Means; Solving a System of ODEs; Index.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Explore machine learning concepts using the latest numerical computing library - TensorFlow - with the help of this comprehensive cookbook."--Cover.</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">TensorFlow (Electronic resource)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85008180</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D001185</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intelligence artificielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">artificial intelligence.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">TensorFlow machine learning cookbook (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH7tvBRrHDh8vFvdyJ89Qm</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">McClure, Nick.</subfield><subfield code="t">TensorFlow Machine Learning Cookbook.</subfield><subfield code="d">Birmingham : Packt Publishing, ©2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1468761</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH30993276</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4806491</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1468761</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis35312900</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13506466</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn974580416 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:41Z |
institution | BVB |
isbn | 9781786466303 1786466309 |
language | English |
oclc_num | 974580416 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (370 pages) |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Packt Publishing, |
record_format | marc |
spelling | McClure, Nick. TensorFlow Machine Learning Cookbook. Birmingham : Packt Publishing, 2017. 1 online resource (370 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Print version record. Cover; Copyright; Credits; About the Author; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Getting Started with TensorFlow; Introduction; How TensorFlow Works; Declaring Tensors; Using Placeholders and Variables; Working with Matrices; Declaring Operations; Implementing Activation Functions; Working with Data Sources; Additional Resources; Chapter 2: The TensorFlow Way; Introduction; Operations in a Computational Graph; Layering Nested Operations; Working with Multiple Layers; Implementing Loss Functions; Implementing Back Propagation. Working with Batch and Stochastic TrainingCombining Everything Together; Evaluating Models; Chapter 3: Linear Regression; Introduction; Using the Matrix Inverse Method; Implementing a Decomposition Method; Learning The TensorFlow Way of Linear Regression; Understanding Loss Functions in Linear Regression; Implementing Deming regression; Implementing Lasso and Ridge Regression; Implementing Elastic Net Regression; Implementing Logistic Regression; Chapter 4: Support Vector Machines; Introduction; Working with a Linear SVM; Reduction to Linear Regression; Working with Kernels in TensorFlow. Implementing a Non-Linear SVMImplementing a Multi-Class SVM; Chapter 5: Nearest Neighbor Methods; Introduction; Working with Nearest Neighbors; Working with Text-Based Distances; Computing with Mixed Distance Functions; Using an Address Matching Example; Using Nearest Neighbors for Image Recognition; Chapter 6: Neural Networks; Introduction; Implementing Operational Gates; Working with Gates and Activation Functions; Implementing a One-Layer Neural Network; Implementing Different Layers; Using a Multilayer Neural Network; Improving the Predictions of Linear Models. Learning to Play Tic Tac ToeChapter 7: Natural Language Processing; Introduction; Working with bag of words; Implementing TF-IDF; Working with Skip-gram Embeddings; Working with CBOW Embeddings; Making Predictions with Word2vec; Using Doc2vec for Sentiment Analysis; Chapter 8: Convolutional Neural Networks; Introduction; Implementing a Simpler CNN; Implementing an Advanced CNN; Retraining Existing CNNs models; Applying Stylenet/Neural-Style; Implementing DeepDream; Chapter 9: Recurrent Neural Networks; Introduction; Implementing RNN for Spam Prediction; Implementing an LSTM Model. Stacking multiple LSTM LayersCreating Sequence-to-Sequence Models; Training a Siamese Similarity Measure; Chapter 10: Taking TensorFlow to Production; Introduction; Implementing unit tests; Using Multiple Executors; Parallelizing TensorFlow; Taking TensorFlow to Production; Productionalizing TensorFlow -- An Example; Chapter 11: More with TensorFlow; Introduction; Visualizing graphs in Tensorboard; There's more ... ; Working with a Genetic Algorithm; Clustering Using K-Means; Solving a System of ODEs; Index. Includes bibliographical references and index. "Explore machine learning concepts using the latest numerical computing library - TensorFlow - with the help of this comprehensive cookbook."--Cover. TensorFlow (Electronic resource) Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. artificial intelligence. aat COMPUTERS General. bisacsh Artificial intelligence fast Machine learning fast has work: TensorFlow machine learning cookbook (Text) https://id.oclc.org/worldcat/entity/E39PCH7tvBRrHDh8vFvdyJ89Qm https://id.oclc.org/worldcat/ontology/hasWork Print version: McClure, Nick. TensorFlow Machine Learning Cookbook. Birmingham : Packt Publishing, ©2017 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1468761 Volltext |
spellingShingle | McClure, Nick TensorFlow Machine Learning Cookbook. Cover; Copyright; Credits; About the Author; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Getting Started with TensorFlow; Introduction; How TensorFlow Works; Declaring Tensors; Using Placeholders and Variables; Working with Matrices; Declaring Operations; Implementing Activation Functions; Working with Data Sources; Additional Resources; Chapter 2: The TensorFlow Way; Introduction; Operations in a Computational Graph; Layering Nested Operations; Working with Multiple Layers; Implementing Loss Functions; Implementing Back Propagation. Working with Batch and Stochastic TrainingCombining Everything Together; Evaluating Models; Chapter 3: Linear Regression; Introduction; Using the Matrix Inverse Method; Implementing a Decomposition Method; Learning The TensorFlow Way of Linear Regression; Understanding Loss Functions in Linear Regression; Implementing Deming regression; Implementing Lasso and Ridge Regression; Implementing Elastic Net Regression; Implementing Logistic Regression; Chapter 4: Support Vector Machines; Introduction; Working with a Linear SVM; Reduction to Linear Regression; Working with Kernels in TensorFlow. Implementing a Non-Linear SVMImplementing a Multi-Class SVM; Chapter 5: Nearest Neighbor Methods; Introduction; Working with Nearest Neighbors; Working with Text-Based Distances; Computing with Mixed Distance Functions; Using an Address Matching Example; Using Nearest Neighbors for Image Recognition; Chapter 6: Neural Networks; Introduction; Implementing Operational Gates; Working with Gates and Activation Functions; Implementing a One-Layer Neural Network; Implementing Different Layers; Using a Multilayer Neural Network; Improving the Predictions of Linear Models. Learning to Play Tic Tac ToeChapter 7: Natural Language Processing; Introduction; Working with bag of words; Implementing TF-IDF; Working with Skip-gram Embeddings; Working with CBOW Embeddings; Making Predictions with Word2vec; Using Doc2vec for Sentiment Analysis; Chapter 8: Convolutional Neural Networks; Introduction; Implementing a Simpler CNN; Implementing an Advanced CNN; Retraining Existing CNNs models; Applying Stylenet/Neural-Style; Implementing DeepDream; Chapter 9: Recurrent Neural Networks; Introduction; Implementing RNN for Spam Prediction; Implementing an LSTM Model. Stacking multiple LSTM LayersCreating Sequence-to-Sequence Models; Training a Siamese Similarity Measure; Chapter 10: Taking TensorFlow to Production; Introduction; Implementing unit tests; Using Multiple Executors; Parallelizing TensorFlow; Taking TensorFlow to Production; Productionalizing TensorFlow -- An Example; Chapter 11: More with TensorFlow; Introduction; Visualizing graphs in Tensorboard; There's more ... ; Working with a Genetic Algorithm; Clustering Using K-Means; Solving a System of ODEs; Index. TensorFlow (Electronic resource) Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. artificial intelligence. aat COMPUTERS General. bisacsh Artificial intelligence fast Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh85008180 https://id.nlm.nih.gov/mesh/D001185 https://id.nlm.nih.gov/mesh/D000069550 |
title | TensorFlow Machine Learning Cookbook. |
title_auth | TensorFlow Machine Learning Cookbook. |
title_exact_search | TensorFlow Machine Learning Cookbook. |
title_full | TensorFlow Machine Learning Cookbook. |
title_fullStr | TensorFlow Machine Learning Cookbook. |
title_full_unstemmed | TensorFlow Machine Learning Cookbook. |
title_short | TensorFlow Machine Learning Cookbook. |
title_sort | tensorflow machine learning cookbook |
topic | TensorFlow (Electronic resource) Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Artificial intelligence. http://id.loc.gov/authorities/subjects/sh85008180 Artificial Intelligence https://id.nlm.nih.gov/mesh/D001185 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Intelligence artificielle. artificial intelligence. aat COMPUTERS General. bisacsh Artificial intelligence fast Machine learning fast |
topic_facet | TensorFlow (Electronic resource) Machine learning. Artificial intelligence. Artificial Intelligence Machine Learning Apprentissage automatique. Intelligence artificielle. artificial intelligence. COMPUTERS General. Artificial intelligence Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1468761 |
work_keys_str_mv | AT mcclurenick tensorflowmachinelearningcookbook |