Introduction to Fourier Analysis on Euclidean Spaces (PMS-32).:
The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more g...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton University Press,
2016.
|
Schriftenreihe: | Princeton mathematical series ;
32. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces. |
Beschreibung: | 1 online resource |
ISBN: | 140088389X 9781400883899 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn950698790 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 160527s2016 xx o 000 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d EBLCP |d N$T |d OCLCF |d YDXCP |d JSTOR |d OCLCQ |d DEBBG |d UIU |d COO |d OCLCQ |d IGB |d IOG |d AGLDB |d DEGRU |d D6H |d OCLCQ |d VTS |d EZ9 |d LVT |d S9I |d STF |d LEAUB |d M8D |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI | ||
019 | |a 951032146 |a 959032275 |a 979579224 | ||
020 | |a 140088389X |q (electronic bk.) | ||
020 | |a 9781400883899 |q (electronic bk.) | ||
020 | |z 069108078X | ||
020 | |z 9780691080789 | ||
024 | 7 | |a 10.1515/9781400883899 |2 doi | |
035 | |a (OCoLC)950698790 |z (OCoLC)951032146 |z (OCoLC)959032275 |z (OCoLC)979579224 | ||
037 | |a 923938 |b MIL | ||
050 | 4 | |a QA403 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Stein, Elias M. | |
245 | 1 | 0 | |a Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). |
260 | |b Princeton University Press, |c 2016. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
347 | |b PDF | ||
490 | 1 | |a Princeton mathematical series ; |v 32 | |
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |t Frontmatter -- |t Preface -- |t Contents -- |t I. The Fourier Transform -- |t II. Boundary Values of Harmonic Functions -- |t III. The Theory of H -- |t IV. Symmetry Properties o f the Fourier Transform -- |t V. Interpolation of Operators -- |t VI. Singular Integrals and Systems of Conjugate Harmonic Functions -- |t VII. Multiple Fourier Series -- |t Bibliography -- |t Index |
520 | |a The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces. | ||
546 | |a In English. | ||
650 | 0 | |a Harmonic analysis. |0 http://id.loc.gov/authorities/subjects/sh85058939 | |
650 | 0 | |a Fourier analysis. |0 http://id.loc.gov/authorities/subjects/sh85051088 | |
650 | 0 | |a Harmonic functions. |0 http://id.loc.gov/authorities/subjects/sh85058943 | |
650 | 2 | |a Fourier Analysis |0 https://id.nlm.nih.gov/mesh/D005583 | |
650 | 6 | |a Analyse harmonique. | |
650 | 6 | |a Analyse de Fourier. | |
650 | 6 | |a Fonctions harmoniques. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Fourier analysis |2 fast | |
650 | 7 | |a Harmonic analysis |2 fast | |
650 | 7 | |a Harmonic functions |2 fast | |
653 | |a Analytic continuation. | ||
653 | |a Analytic function. | ||
653 | |a Banach algebra. | ||
653 | |a Banach space. | ||
653 | |a Bessel function. | ||
653 | |a Borel measure. | ||
653 | |a Boundary value problem. | ||
653 | |a Bounded operator. | ||
653 | |a Bounded set (topological vector space). | ||
653 | |a Cartesian coordinate system. | ||
653 | |a Cauchy-Riemann equations. | ||
653 | |a Change of variables. | ||
653 | |a Characteristic function (probability theory). | ||
653 | |a Characterization (mathematics). | ||
653 | |a Complex plane. | ||
653 | |a Conformal map. | ||
653 | |a Conjugate transpose. | ||
653 | |a Continuous function (set theory). | ||
653 | |a Continuous function. | ||
653 | |a Convolution. | ||
653 | |a Differentiation of integrals. | ||
653 | |a Dimensional analysis. | ||
653 | |a Dirichlet problem. | ||
653 | |a Disk (mathematics). | ||
653 | |a Distribution (mathematics). | ||
653 | |a Equation. | ||
653 | |a Euclidean space. | ||
653 | |a Existential quantification. | ||
653 | |a Fourier analysis. | ||
653 | |a Fourier inversion theorem. | ||
653 | |a Fourier series. | ||
653 | |a Fourier transform. | ||
653 | |a Fubini's theorem. | ||
653 | |a Function (mathematics). | ||
653 | |a Function space. | ||
653 | |a Green's theorem. | ||
653 | |a Hardy's inequality. | ||
653 | |a Hardy-Littlewood maximal function. | ||
653 | |a Harmonic analysis. | ||
653 | |a Harmonic function. | ||
653 | |a Hermitian matrix. | ||
653 | |a Hilbert transform. | ||
653 | |a Holomorphic function. | ||
653 | |a Homogeneous function. | ||
653 | |a Inequality (mathematics). | ||
653 | |a Infimum and supremum. | ||
653 | |a Interpolation theorem. | ||
653 | |a Interval (mathematics). | ||
653 | |a Lebesgue integration. | ||
653 | |a Lebesgue measure. | ||
653 | |a Linear interpolation. | ||
653 | |a Linear map. | ||
653 | |a Linear space (geometry). | ||
653 | |a Line-line intersection. | ||
653 | |a Liouville's theorem (Hamiltonian). | ||
653 | |a Lipschitz continuity. | ||
653 | |a Locally integrable function. | ||
653 | |a Lp space. | ||
653 | |a Majorization. | ||
653 | |a Marcinkiewicz interpolation theorem. | ||
653 | |a Mean value theorem. | ||
653 | |a Measure (mathematics). | ||
653 | |a Mellin transform. | ||
653 | |a Monotonic function. | ||
653 | |a Multiplication operator. | ||
653 | |a Norm (mathematics). | ||
653 | |a Operator norm. | ||
653 | |a Orthogonal group. | ||
653 | |a Paley-Wiener theorem. | ||
653 | |a Partial derivative. | ||
653 | |a Partial differential equation. | ||
653 | |a Plancherel theorem. | ||
653 | |a Pointwise convergence. | ||
653 | |a Poisson kernel. | ||
653 | |a Poisson summation formula. | ||
653 | |a Polynomial. | ||
653 | |a Principal value. | ||
653 | |a Quadratic form. | ||
653 | |a Radial function. | ||
653 | |a Radon-Nikodym theorem. | ||
653 | |a Representation theorem. | ||
653 | |a Riesz transform. | ||
653 | |a Scientific notation. | ||
653 | |a Series expansion. | ||
653 | |a Singular integral. | ||
653 | |a Special case. | ||
653 | |a Subharmonic function. | ||
653 | |a Support (mathematics). | ||
653 | |a Theorem. | ||
653 | |a Topology. | ||
653 | |a Total variation. | ||
653 | |a Trigonometric polynomial. | ||
653 | |a Trigonometric series. | ||
653 | |a Two-dimensional space. | ||
653 | |a Union (set theory). | ||
653 | |a Unit disk. | ||
653 | |a Unit sphere. | ||
653 | |a Upper half-plane. | ||
653 | |a Variable (mathematics). | ||
653 | |a Vector space. | ||
758 | |i has work: |a Introduction to fourier analysis on euclidean spaces (Work) |1 https://id.oclc.org/worldcat/entity/E39PCFJtdR3y9rW3mHCb98Hf7b |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 069108078X |z 9780691080789 |w (DLC) 73106394 |w (OCoLC)213295 |
830 | 0 | |a Princeton mathematical series ; |v 32. |0 http://id.loc.gov/authorities/names/n42019693 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1232567 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1232567 |3 Volltext | |
936 | |a BATCHLOAD | ||
938 | |a De Gruyter |b DEGR |n 9781400883899 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL4510790 | ||
938 | |a EBSCOhost |b EBSC |n 1232567 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis34537676 | ||
938 | |a YBP Library Services |b YANK |n 13000882 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn950698790 |
---|---|
_version_ | 1813903721562636288 |
adam_text | |
any_adam_object | |
author | Stein, Elias M. |
author_facet | Stein, Elias M. |
author_role | |
author_sort | Stein, Elias M. |
author_variant | e m s em ems |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA403 |
callnumber-raw | QA403 |
callnumber-search | QA403 |
callnumber-sort | QA 3403 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface -- Contents -- I. The Fourier Transform -- II. Boundary Values of Harmonic Functions -- III. The Theory of H -- IV. Symmetry Properties o f the Fourier Transform -- V. Interpolation of Operators -- VI. Singular Integrals and Systems of Conjugate Harmonic Functions -- VII. Multiple Fourier Series -- Bibliography -- Index |
ctrlnum | (OCoLC)950698790 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07349cam a2201909 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn950698790</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">160527s2016 xx o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBBG</subfield><subfield code="d">UIU</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IGB</subfield><subfield code="d">IOG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">DEGRU</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">EZ9</subfield><subfield code="d">LVT</subfield><subfield code="d">S9I</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">951032146</subfield><subfield code="a">959032275</subfield><subfield code="a">979579224</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">140088389X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400883899</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">069108078X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691080789</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400883899</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)950698790</subfield><subfield code="z">(OCoLC)951032146</subfield><subfield code="z">(OCoLC)959032275</subfield><subfield code="z">(OCoLC)979579224</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">923938</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA403</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stein, Elias M.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Fourier Analysis on Euclidean Spaces (PMS-32).</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Princeton University Press,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="b">PDF</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton mathematical series ;</subfield><subfield code="v">32</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Contents --</subfield><subfield code="t">I. The Fourier Transform --</subfield><subfield code="t">II. Boundary Values of Harmonic Functions --</subfield><subfield code="t">III. The Theory of H --</subfield><subfield code="t">IV. Symmetry Properties o f the Fourier Transform --</subfield><subfield code="t">V. Interpolation of Operators --</subfield><subfield code="t">VI. Singular Integrals and Systems of Conjugate Harmonic Functions --</subfield><subfield code="t">VII. Multiple Fourier Series --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Harmonic analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058939</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fourier analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051088</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Harmonic functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058943</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Fourier Analysis</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D005583</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse harmonique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse de Fourier.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions harmoniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytic continuation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Banach algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Banach space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bessel function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Borel measure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Boundary value problem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bounded operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bounded set (topological vector space).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cartesian coordinate system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cauchy-Riemann equations.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Change of variables.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Characteristic function (probability theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Characterization (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex plane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conformal map.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conjugate transpose.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Continuous function (set theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Continuous function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Convolution.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differentiation of integrals.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimensional analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dirichlet problem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Disk (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Distribution (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Euclidean space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Existential quantification.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier inversion theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier transform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fubini's theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Function (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Function space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Green's theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardy's inequality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardy-Littlewood maximal function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Harmonic analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Harmonic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hermitian matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hilbert transform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Holomorphic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Homogeneous function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Inequality (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Infimum and supremum.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Interpolation theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Interval (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lebesgue integration.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lebesgue measure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear interpolation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear map.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear space (geometry).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Line-line intersection.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Liouville's theorem (Hamiltonian).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lipschitz continuity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Locally integrable function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lp space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Majorization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Marcinkiewicz interpolation theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mean value theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Measure (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mellin transform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Monotonic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Multiplication operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Norm (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Operator norm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthogonal group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Paley-Wiener theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partial derivative.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partial differential equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Plancherel theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Pointwise convergence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Poisson kernel.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Poisson summation formula.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Principal value.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quadratic form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Radial function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Radon-Nikodym theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Representation theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riesz transform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scientific notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Series expansion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Singular integral.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Special case.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subharmonic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Support (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Total variation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Trigonometric polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Trigonometric series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Two-dimensional space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Union (set theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit disk.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit sphere.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Upper half-plane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Variable (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector space.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Introduction to fourier analysis on euclidean spaces (Work)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFJtdR3y9rW3mHCb98Hf7b</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">069108078X</subfield><subfield code="z">9780691080789</subfield><subfield code="w">(DLC) 73106394</subfield><subfield code="w">(OCoLC)213295</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton mathematical series ;</subfield><subfield code="v">32.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42019693</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1232567</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1232567</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9781400883899</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4510790</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1232567</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis34537676</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13000882</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn950698790 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:23:11Z |
institution | BVB |
isbn | 140088389X 9781400883899 |
language | English |
oclc_num | 950698790 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Princeton University Press, |
record_format | marc |
series | Princeton mathematical series ; |
series2 | Princeton mathematical series ; |
spelling | Stein, Elias M. Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). Princeton University Press, 2016. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Princeton mathematical series ; 32 Print version record. Frontmatter -- Preface -- Contents -- I. The Fourier Transform -- II. Boundary Values of Harmonic Functions -- III. The Theory of H -- IV. Symmetry Properties o f the Fourier Transform -- V. Interpolation of Operators -- VI. Singular Integrals and Systems of Conjugate Harmonic Functions -- VII. Multiple Fourier Series -- Bibliography -- Index The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces. In English. Harmonic analysis. http://id.loc.gov/authorities/subjects/sh85058939 Fourier analysis. http://id.loc.gov/authorities/subjects/sh85051088 Harmonic functions. http://id.loc.gov/authorities/subjects/sh85058943 Fourier Analysis https://id.nlm.nih.gov/mesh/D005583 Analyse harmonique. Analyse de Fourier. Fonctions harmoniques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fourier analysis fast Harmonic analysis fast Harmonic functions fast Analytic continuation. Analytic function. Banach algebra. Banach space. Bessel function. Borel measure. Boundary value problem. Bounded operator. Bounded set (topological vector space). Cartesian coordinate system. Cauchy-Riemann equations. Change of variables. Characteristic function (probability theory). Characterization (mathematics). Complex plane. Conformal map. Conjugate transpose. Continuous function (set theory). Continuous function. Convolution. Differentiation of integrals. Dimensional analysis. Dirichlet problem. Disk (mathematics). Distribution (mathematics). Equation. Euclidean space. Existential quantification. Fourier analysis. Fourier inversion theorem. Fourier series. Fourier transform. Fubini's theorem. Function (mathematics). Function space. Green's theorem. Hardy's inequality. Hardy-Littlewood maximal function. Harmonic analysis. Harmonic function. Hermitian matrix. Hilbert transform. Holomorphic function. Homogeneous function. Inequality (mathematics). Infimum and supremum. Interpolation theorem. Interval (mathematics). Lebesgue integration. Lebesgue measure. Linear interpolation. Linear map. Linear space (geometry). Line-line intersection. Liouville's theorem (Hamiltonian). Lipschitz continuity. Locally integrable function. Lp space. Majorization. Marcinkiewicz interpolation theorem. Mean value theorem. Measure (mathematics). Mellin transform. Monotonic function. Multiplication operator. Norm (mathematics). Operator norm. Orthogonal group. Paley-Wiener theorem. Partial derivative. Partial differential equation. Plancherel theorem. Pointwise convergence. Poisson kernel. Poisson summation formula. Polynomial. Principal value. Quadratic form. Radial function. Radon-Nikodym theorem. Representation theorem. Riesz transform. Scientific notation. Series expansion. Singular integral. Special case. Subharmonic function. Support (mathematics). Theorem. Topology. Total variation. Trigonometric polynomial. Trigonometric series. Two-dimensional space. Union (set theory). Unit disk. Unit sphere. Upper half-plane. Variable (mathematics). Vector space. has work: Introduction to fourier analysis on euclidean spaces (Work) https://id.oclc.org/worldcat/entity/E39PCFJtdR3y9rW3mHCb98Hf7b https://id.oclc.org/worldcat/ontology/hasWork Print version: 069108078X 9780691080789 (DLC) 73106394 (OCoLC)213295 Princeton mathematical series ; 32. http://id.loc.gov/authorities/names/n42019693 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1232567 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1232567 Volltext |
spellingShingle | Stein, Elias M. Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). Princeton mathematical series ; Frontmatter -- Preface -- Contents -- I. The Fourier Transform -- II. Boundary Values of Harmonic Functions -- III. The Theory of H -- IV. Symmetry Properties o f the Fourier Transform -- V. Interpolation of Operators -- VI. Singular Integrals and Systems of Conjugate Harmonic Functions -- VII. Multiple Fourier Series -- Bibliography -- Index Harmonic analysis. http://id.loc.gov/authorities/subjects/sh85058939 Fourier analysis. http://id.loc.gov/authorities/subjects/sh85051088 Harmonic functions. http://id.loc.gov/authorities/subjects/sh85058943 Fourier Analysis https://id.nlm.nih.gov/mesh/D005583 Analyse harmonique. Analyse de Fourier. Fonctions harmoniques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fourier analysis fast Harmonic analysis fast Harmonic functions fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85058939 http://id.loc.gov/authorities/subjects/sh85051088 http://id.loc.gov/authorities/subjects/sh85058943 https://id.nlm.nih.gov/mesh/D005583 |
title | Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). |
title_alt | Frontmatter -- Preface -- Contents -- I. The Fourier Transform -- II. Boundary Values of Harmonic Functions -- III. The Theory of H -- IV. Symmetry Properties o f the Fourier Transform -- V. Interpolation of Operators -- VI. Singular Integrals and Systems of Conjugate Harmonic Functions -- VII. Multiple Fourier Series -- Bibliography -- Index |
title_auth | Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). |
title_exact_search | Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). |
title_full | Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). |
title_fullStr | Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). |
title_full_unstemmed | Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). |
title_short | Introduction to Fourier Analysis on Euclidean Spaces (PMS-32). |
title_sort | introduction to fourier analysis on euclidean spaces pms 32 |
topic | Harmonic analysis. http://id.loc.gov/authorities/subjects/sh85058939 Fourier analysis. http://id.loc.gov/authorities/subjects/sh85051088 Harmonic functions. http://id.loc.gov/authorities/subjects/sh85058943 Fourier Analysis https://id.nlm.nih.gov/mesh/D005583 Analyse harmonique. Analyse de Fourier. Fonctions harmoniques. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fourier analysis fast Harmonic analysis fast Harmonic functions fast |
topic_facet | Harmonic analysis. Fourier analysis. Harmonic functions. Fourier Analysis Analyse harmonique. Analyse de Fourier. Fonctions harmoniques. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Fourier analysis Harmonic analysis Harmonic functions |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1232567 |
work_keys_str_mv | AT steineliasm introductiontofourieranalysisoneuclideanspacespms32 |