Geometric measure theory :: a beginner's guide /
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam :
Elsevier Ltd.,
2016.
|
Ausgabe: | 5th edition. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | 1 online resource |
ISBN: | 9780128045275 0128045272 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn948810773 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 160506s2016 ne o 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d YDXCP |d EBLCP |d OCLCF |d OPELS |d TEFOD |d VGM |d IDB |d NLE |d DEBSZ |d OTZ |d U3W |d MERUC |d D6H |d OCLCQ |d LVT |d AU@ |d OCLCQ |d S2H |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
019 | |a 949326063 |a 953863634 |a 961153472 |a 963732933 | ||
020 | |a 9780128045275 |q (electronic bk.) | ||
020 | |a 0128045272 |q (electronic bk.) | ||
020 | |z 9780128044896 | ||
020 | |z 0128044896 | ||
035 | |a (OCoLC)948810773 |z (OCoLC)949326063 |z (OCoLC)953863634 |z (OCoLC)961153472 |z (OCoLC)963732933 | ||
037 | |a D55909F8-2656-4F7D-897B-054A9C5665B1 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA312 |b .M67 2016 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.42 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Morgan, Frank |c (Professor of Mathematics, Williams College), |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjFJ6MmjwY8xpVVY6JFFXb |0 http://id.loc.gov/authorities/names/no2016140969 | |
245 | 1 | 0 | |a Geometric measure theory : |b a beginner's guide / |c Frank Morgan ; illustrated by James F. Bredt. |
250 | |a 5th edition. | ||
264 | 1 | |a Amsterdam : |b Elsevier Ltd., |c 2016. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed May 11, 2016). | |
505 | 0 | |a Front Cover ; Dedication ; Geometric Measure Theory: A Beginner's Guide ; Copyright ; Contents; Preface; Part I: Basic Theory; Chapter 1: Geometric Measure Theory ; 1.1 Archetypical Problem; 1.2 Surfaces as Mappings; 1.3 The Direct Method; 1.4 Rectifiable Currents; 1.5 The Compactness Theorem; 1.6 Advantages of Rectifiable Currents; 1.7 The Regularity of Area-Minimizing Rectifiable Currents ; 1.8 More General Ambient Spaces; Chapter 2: Measures ; 2.1 Definitions; 2.2 Lebesgue Measure; 2.3 Hausdorff Measure ; 2.4 Integral-Geometric Measure; 2.5 Densities ; 2.6 Approximate Limits. | |
505 | 8 | |a 2.7 Besicovitch Covering Theorem 2.8 Corollary; 2.9 Corollary; 2.10 Corollary; Exercises; Chapter 3: Lipschitz Functions and Rectifiable Sets ; 3.1 Lipschitz Functions; 3.2 Rademacher's Theorem ; 3.3 Approximation of a Lipschitz Function by a C1 Funcation ; 3.4 Lemma (Whitney's Extension Theorem) ; 3.5 Proposition ; 3.6 Jacobians; 3.7 The Area Formula ; 3.8 The Coarea Formula ; 3.9 Tangent Cones; 3.10 Rectifiable Sets ; 3.11 Proposition ; 3.12 Proposition ; 3.13 General Area-Coarea Formula ; 3.14 Product of Measures ; 3.15 Orientation; 3.16 Crofton's Formula ; 3.17 Structure Theorem. | |
505 | 8 | |a ExercisesChapter 4: Normal and Rectifiable Currents ; 4.1 Vectors and Differential Forms ; 4.2 Currents ; 4.3 Important Spaces of Currents ; 4.3A Mapping Currents; 4.3B Currents Representable by Integration; 4.4 Theorem ; 4.5 Normal Currents ; 4.6 Proposition ; 4.7 Theorem ; 4.8 Theorem ; 4.9 Constancy Theorem ; 4.10 Cartesian Products; 4.11 Slicing ; 4.12 Lemma ; 4.13 Proposition ; Exercises; Chapter 5: The Compactness Theorem and the Existence of Area-Minimizing Surfaces ; 5.1 The Deformation Theorem ; 5.2 Corollary; 5.3 The Isoperimetric Inequality ; 5.4 The Closure Theorem. | |
505 | 8 | |a 5.5 The Compactness Theorem 5.6 The Existence of Area-Minimizing Surfaces; 5.7 The Existence of Absolutely and Homologically Minimizing Surfaces in Manifolds ; Exercises; Chapter 6: Examples of Area-Minimizing Surfaces ; 6.1 The Minimal Surface Equation ; 6.2 Remarks on Higher Dimensions; 6.3 Complex Analytic Varieties ; 6.4 Fundamental Theorem of Calibrations; 6.5 History of Calibrations ; Exercises; Chapter 7: The Approximation Theorem ; 7.1 The Approximation Theorem ; Chapter 8: Survey of Regularity Results ; 8.1 Theorem ; 8.2 Theorem ; 8.3 Theorem ; 8.4 Boundary Regularity. | |
505 | 8 | |a 8.5 General Ambients, Volume Constraints, and Other IntegrandsExercises; Chapter 9: Monotonicity and Oriented Tangent Cones ; 9.1 Locally Integral Flat Chains ; 9.2 Monotonicity of the Mass Ratio; 9.3 Theorem ; 9.4 Corollary; 9.5 Corollary; 9.6 Corollary; 9.7 Oriented Tangent Cones ; 9.8 Theorem ; 9.9 Theorem; Exercises; Chapter 10: The Regularity of Area-Minimizing Hypersurfaces ; 10.1 Theorem; 10.2 Regularity for Area-Minimizing Hypersurfaces Theorem ; 10.3 Lemma ; 10.4 Maximum Principle; 10.5 Simons's Lemma ; 10.6 Lemma ; 10.7 Remarks; Exercises. | |
650 | 0 | |a Geometric measure theory. |0 http://id.loc.gov/authorities/subjects/sh85054124 | |
650 | 6 | |a Théorie de la mesure géométrique. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Geometric measure theory |2 fast | |
655 | 4 | |a Electronic book. | |
700 | 1 | |a Bredt, James F., |e illustrator. | |
758 | |i has work: |a Geometric measure theory (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG633bqwgqMDbvM4MM68vd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version : |z 9780128044896 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1158631 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780128044896 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL4518941 | ||
938 | |a EBSCOhost |b EBSC |n 1158631 | ||
938 | |a YBP Library Services |b YANK |n 12978874 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn948810773 |
---|---|
_version_ | 1816882348072894464 |
adam_text | |
any_adam_object | |
author | Morgan, Frank (Professor of Mathematics, Williams College) |
author2 | Bredt, James F. |
author2_role | ill |
author2_variant | j f b jf jfb |
author_GND | http://id.loc.gov/authorities/names/no2016140969 |
author_facet | Morgan, Frank (Professor of Mathematics, Williams College) Bredt, James F. |
author_role | aut |
author_sort | Morgan, Frank (Professor of Mathematics, Williams College) |
author_variant | f m fm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA312 |
callnumber-raw | QA312 .M67 2016 |
callnumber-search | QA312 .M67 2016 |
callnumber-sort | QA 3312 M67 42016 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover ; Dedication ; Geometric Measure Theory: A Beginner's Guide ; Copyright ; Contents; Preface; Part I: Basic Theory; Chapter 1: Geometric Measure Theory ; 1.1 Archetypical Problem; 1.2 Surfaces as Mappings; 1.3 The Direct Method; 1.4 Rectifiable Currents; 1.5 The Compactness Theorem; 1.6 Advantages of Rectifiable Currents; 1.7 The Regularity of Area-Minimizing Rectifiable Currents ; 1.8 More General Ambient Spaces; Chapter 2: Measures ; 2.1 Definitions; 2.2 Lebesgue Measure; 2.3 Hausdorff Measure ; 2.4 Integral-Geometric Measure; 2.5 Densities ; 2.6 Approximate Limits. 2.7 Besicovitch Covering Theorem 2.8 Corollary; 2.9 Corollary; 2.10 Corollary; Exercises; Chapter 3: Lipschitz Functions and Rectifiable Sets ; 3.1 Lipschitz Functions; 3.2 Rademacher's Theorem ; 3.3 Approximation of a Lipschitz Function by a C1 Funcation ; 3.4 Lemma (Whitney's Extension Theorem) ; 3.5 Proposition ; 3.6 Jacobians; 3.7 The Area Formula ; 3.8 The Coarea Formula ; 3.9 Tangent Cones; 3.10 Rectifiable Sets ; 3.11 Proposition ; 3.12 Proposition ; 3.13 General Area-Coarea Formula ; 3.14 Product of Measures ; 3.15 Orientation; 3.16 Crofton's Formula ; 3.17 Structure Theorem. ExercisesChapter 4: Normal and Rectifiable Currents ; 4.1 Vectors and Differential Forms ; 4.2 Currents ; 4.3 Important Spaces of Currents ; 4.3A Mapping Currents; 4.3B Currents Representable by Integration; 4.4 Theorem ; 4.5 Normal Currents ; 4.6 Proposition ; 4.7 Theorem ; 4.8 Theorem ; 4.9 Constancy Theorem ; 4.10 Cartesian Products; 4.11 Slicing ; 4.12 Lemma ; 4.13 Proposition ; Exercises; Chapter 5: The Compactness Theorem and the Existence of Area-Minimizing Surfaces ; 5.1 The Deformation Theorem ; 5.2 Corollary; 5.3 The Isoperimetric Inequality ; 5.4 The Closure Theorem. 5.5 The Compactness Theorem 5.6 The Existence of Area-Minimizing Surfaces; 5.7 The Existence of Absolutely and Homologically Minimizing Surfaces in Manifolds ; Exercises; Chapter 6: Examples of Area-Minimizing Surfaces ; 6.1 The Minimal Surface Equation ; 6.2 Remarks on Higher Dimensions; 6.3 Complex Analytic Varieties ; 6.4 Fundamental Theorem of Calibrations; 6.5 History of Calibrations ; Exercises; Chapter 7: The Approximation Theorem ; 7.1 The Approximation Theorem ; Chapter 8: Survey of Regularity Results ; 8.1 Theorem ; 8.2 Theorem ; 8.3 Theorem ; 8.4 Boundary Regularity. 8.5 General Ambients, Volume Constraints, and Other IntegrandsExercises; Chapter 9: Monotonicity and Oriented Tangent Cones ; 9.1 Locally Integral Flat Chains ; 9.2 Monotonicity of the Mass Ratio; 9.3 Theorem ; 9.4 Corollary; 9.5 Corollary; 9.6 Corollary; 9.7 Oriented Tangent Cones ; 9.8 Theorem ; 9.9 Theorem; Exercises; Chapter 10: The Regularity of Area-Minimizing Hypersurfaces ; 10.1 Theorem; 10.2 Regularity for Area-Minimizing Hypersurfaces Theorem ; 10.3 Lemma ; 10.4 Maximum Principle; 10.5 Simons's Lemma ; 10.6 Lemma ; 10.7 Remarks; Exercises. |
ctrlnum | (OCoLC)948810773 |
dewey-full | 515/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.42 |
dewey-search | 515/.42 |
dewey-sort | 3515 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 5th edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05530cam a2200601 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn948810773</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">160506s2016 ne o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OPELS</subfield><subfield code="d">TEFOD</subfield><subfield code="d">VGM</subfield><subfield code="d">IDB</subfield><subfield code="d">NLE</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OTZ</subfield><subfield code="d">U3W</subfield><subfield code="d">MERUC</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">949326063</subfield><subfield code="a">953863634</subfield><subfield code="a">961153472</subfield><subfield code="a">963732933</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128045275</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128045272</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780128044896</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0128044896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)948810773</subfield><subfield code="z">(OCoLC)949326063</subfield><subfield code="z">(OCoLC)953863634</subfield><subfield code="z">(OCoLC)961153472</subfield><subfield code="z">(OCoLC)963732933</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">D55909F8-2656-4F7D-897B-054A9C5665B1</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA312</subfield><subfield code="b">.M67 2016</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.42</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morgan, Frank</subfield><subfield code="c">(Professor of Mathematics, Williams College),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjFJ6MmjwY8xpVVY6JFFXb</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2016140969</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric measure theory :</subfield><subfield code="b">a beginner's guide /</subfield><subfield code="c">Frank Morgan ; illustrated by James F. Bredt.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5th edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam :</subfield><subfield code="b">Elsevier Ltd.,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (EBSCO, viewed May 11, 2016).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover ; Dedication ; Geometric Measure Theory: A Beginner's Guide ; Copyright ; Contents; Preface; Part I: Basic Theory; Chapter 1: Geometric Measure Theory ; 1.1 Archetypical Problem; 1.2 Surfaces as Mappings; 1.3 The Direct Method; 1.4 Rectifiable Currents; 1.5 The Compactness Theorem; 1.6 Advantages of Rectifiable Currents; 1.7 The Regularity of Area-Minimizing Rectifiable Currents ; 1.8 More General Ambient Spaces; Chapter 2: Measures ; 2.1 Definitions; 2.2 Lebesgue Measure; 2.3 Hausdorff Measure ; 2.4 Integral-Geometric Measure; 2.5 Densities ; 2.6 Approximate Limits.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.7 Besicovitch Covering Theorem 2.8 Corollary; 2.9 Corollary; 2.10 Corollary; Exercises; Chapter 3: Lipschitz Functions and Rectifiable Sets ; 3.1 Lipschitz Functions; 3.2 Rademacher's Theorem ; 3.3 Approximation of a Lipschitz Function by a C1 Funcation ; 3.4 Lemma (Whitney's Extension Theorem) ; 3.5 Proposition ; 3.6 Jacobians; 3.7 The Area Formula ; 3.8 The Coarea Formula ; 3.9 Tangent Cones; 3.10 Rectifiable Sets ; 3.11 Proposition ; 3.12 Proposition ; 3.13 General Area-Coarea Formula ; 3.14 Product of Measures ; 3.15 Orientation; 3.16 Crofton's Formula ; 3.17 Structure Theorem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">ExercisesChapter 4: Normal and Rectifiable Currents ; 4.1 Vectors and Differential Forms ; 4.2 Currents ; 4.3 Important Spaces of Currents ; 4.3A Mapping Currents; 4.3B Currents Representable by Integration; 4.4 Theorem ; 4.5 Normal Currents ; 4.6 Proposition ; 4.7 Theorem ; 4.8 Theorem ; 4.9 Constancy Theorem ; 4.10 Cartesian Products; 4.11 Slicing ; 4.12 Lemma ; 4.13 Proposition ; Exercises; Chapter 5: The Compactness Theorem and the Existence of Area-Minimizing Surfaces ; 5.1 The Deformation Theorem ; 5.2 Corollary; 5.3 The Isoperimetric Inequality ; 5.4 The Closure Theorem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5 The Compactness Theorem 5.6 The Existence of Area-Minimizing Surfaces; 5.7 The Existence of Absolutely and Homologically Minimizing Surfaces in Manifolds ; Exercises; Chapter 6: Examples of Area-Minimizing Surfaces ; 6.1 The Minimal Surface Equation ; 6.2 Remarks on Higher Dimensions; 6.3 Complex Analytic Varieties ; 6.4 Fundamental Theorem of Calibrations; 6.5 History of Calibrations ; Exercises; Chapter 7: The Approximation Theorem ; 7.1 The Approximation Theorem ; Chapter 8: Survey of Regularity Results ; 8.1 Theorem ; 8.2 Theorem ; 8.3 Theorem ; 8.4 Boundary Regularity.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.5 General Ambients, Volume Constraints, and Other IntegrandsExercises; Chapter 9: Monotonicity and Oriented Tangent Cones ; 9.1 Locally Integral Flat Chains ; 9.2 Monotonicity of the Mass Ratio; 9.3 Theorem ; 9.4 Corollary; 9.5 Corollary; 9.6 Corollary; 9.7 Oriented Tangent Cones ; 9.8 Theorem ; 9.9 Theorem; Exercises; Chapter 10: The Regularity of Area-Minimizing Hypersurfaces ; 10.1 Theorem; 10.2 Regularity for Area-Minimizing Hypersurfaces Theorem ; 10.3 Lemma ; 10.4 Maximum Principle; 10.5 Simons's Lemma ; 10.6 Lemma ; 10.7 Remarks; Exercises.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometric measure theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054124</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la mesure géométrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric measure theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bredt, James F.,</subfield><subfield code="e">illustrator.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Geometric measure theory (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG633bqwgqMDbvM4MM68vd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version :</subfield><subfield code="z">9780128044896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1158631</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780128044896</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4518941</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1158631</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12978874</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-ocn948810773 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:11Z |
institution | BVB |
isbn | 9780128045275 0128045272 |
language | English |
oclc_num | 948810773 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Elsevier Ltd., |
record_format | marc |
spelling | Morgan, Frank (Professor of Mathematics, Williams College), author. https://id.oclc.org/worldcat/entity/E39PCjFJ6MmjwY8xpVVY6JFFXb http://id.loc.gov/authorities/names/no2016140969 Geometric measure theory : a beginner's guide / Frank Morgan ; illustrated by James F. Bredt. 5th edition. Amsterdam : Elsevier Ltd., 2016. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from PDF title page (EBSCO, viewed May 11, 2016). Front Cover ; Dedication ; Geometric Measure Theory: A Beginner's Guide ; Copyright ; Contents; Preface; Part I: Basic Theory; Chapter 1: Geometric Measure Theory ; 1.1 Archetypical Problem; 1.2 Surfaces as Mappings; 1.3 The Direct Method; 1.4 Rectifiable Currents; 1.5 The Compactness Theorem; 1.6 Advantages of Rectifiable Currents; 1.7 The Regularity of Area-Minimizing Rectifiable Currents ; 1.8 More General Ambient Spaces; Chapter 2: Measures ; 2.1 Definitions; 2.2 Lebesgue Measure; 2.3 Hausdorff Measure ; 2.4 Integral-Geometric Measure; 2.5 Densities ; 2.6 Approximate Limits. 2.7 Besicovitch Covering Theorem 2.8 Corollary; 2.9 Corollary; 2.10 Corollary; Exercises; Chapter 3: Lipschitz Functions and Rectifiable Sets ; 3.1 Lipschitz Functions; 3.2 Rademacher's Theorem ; 3.3 Approximation of a Lipschitz Function by a C1 Funcation ; 3.4 Lemma (Whitney's Extension Theorem) ; 3.5 Proposition ; 3.6 Jacobians; 3.7 The Area Formula ; 3.8 The Coarea Formula ; 3.9 Tangent Cones; 3.10 Rectifiable Sets ; 3.11 Proposition ; 3.12 Proposition ; 3.13 General Area-Coarea Formula ; 3.14 Product of Measures ; 3.15 Orientation; 3.16 Crofton's Formula ; 3.17 Structure Theorem. ExercisesChapter 4: Normal and Rectifiable Currents ; 4.1 Vectors and Differential Forms ; 4.2 Currents ; 4.3 Important Spaces of Currents ; 4.3A Mapping Currents; 4.3B Currents Representable by Integration; 4.4 Theorem ; 4.5 Normal Currents ; 4.6 Proposition ; 4.7 Theorem ; 4.8 Theorem ; 4.9 Constancy Theorem ; 4.10 Cartesian Products; 4.11 Slicing ; 4.12 Lemma ; 4.13 Proposition ; Exercises; Chapter 5: The Compactness Theorem and the Existence of Area-Minimizing Surfaces ; 5.1 The Deformation Theorem ; 5.2 Corollary; 5.3 The Isoperimetric Inequality ; 5.4 The Closure Theorem. 5.5 The Compactness Theorem 5.6 The Existence of Area-Minimizing Surfaces; 5.7 The Existence of Absolutely and Homologically Minimizing Surfaces in Manifolds ; Exercises; Chapter 6: Examples of Area-Minimizing Surfaces ; 6.1 The Minimal Surface Equation ; 6.2 Remarks on Higher Dimensions; 6.3 Complex Analytic Varieties ; 6.4 Fundamental Theorem of Calibrations; 6.5 History of Calibrations ; Exercises; Chapter 7: The Approximation Theorem ; 7.1 The Approximation Theorem ; Chapter 8: Survey of Regularity Results ; 8.1 Theorem ; 8.2 Theorem ; 8.3 Theorem ; 8.4 Boundary Regularity. 8.5 General Ambients, Volume Constraints, and Other IntegrandsExercises; Chapter 9: Monotonicity and Oriented Tangent Cones ; 9.1 Locally Integral Flat Chains ; 9.2 Monotonicity of the Mass Ratio; 9.3 Theorem ; 9.4 Corollary; 9.5 Corollary; 9.6 Corollary; 9.7 Oriented Tangent Cones ; 9.8 Theorem ; 9.9 Theorem; Exercises; Chapter 10: The Regularity of Area-Minimizing Hypersurfaces ; 10.1 Theorem; 10.2 Regularity for Area-Minimizing Hypersurfaces Theorem ; 10.3 Lemma ; 10.4 Maximum Principle; 10.5 Simons's Lemma ; 10.6 Lemma ; 10.7 Remarks; Exercises. Geometric measure theory. http://id.loc.gov/authorities/subjects/sh85054124 Théorie de la mesure géométrique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Geometric measure theory fast Electronic book. Bredt, James F., illustrator. has work: Geometric measure theory (Text) https://id.oclc.org/worldcat/entity/E39PCG633bqwgqMDbvM4MM68vd https://id.oclc.org/worldcat/ontology/hasWork Print version : 9780128044896 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1158631 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780128044896 Volltext |
spellingShingle | Morgan, Frank (Professor of Mathematics, Williams College) Geometric measure theory : a beginner's guide / Front Cover ; Dedication ; Geometric Measure Theory: A Beginner's Guide ; Copyright ; Contents; Preface; Part I: Basic Theory; Chapter 1: Geometric Measure Theory ; 1.1 Archetypical Problem; 1.2 Surfaces as Mappings; 1.3 The Direct Method; 1.4 Rectifiable Currents; 1.5 The Compactness Theorem; 1.6 Advantages of Rectifiable Currents; 1.7 The Regularity of Area-Minimizing Rectifiable Currents ; 1.8 More General Ambient Spaces; Chapter 2: Measures ; 2.1 Definitions; 2.2 Lebesgue Measure; 2.3 Hausdorff Measure ; 2.4 Integral-Geometric Measure; 2.5 Densities ; 2.6 Approximate Limits. 2.7 Besicovitch Covering Theorem 2.8 Corollary; 2.9 Corollary; 2.10 Corollary; Exercises; Chapter 3: Lipschitz Functions and Rectifiable Sets ; 3.1 Lipschitz Functions; 3.2 Rademacher's Theorem ; 3.3 Approximation of a Lipschitz Function by a C1 Funcation ; 3.4 Lemma (Whitney's Extension Theorem) ; 3.5 Proposition ; 3.6 Jacobians; 3.7 The Area Formula ; 3.8 The Coarea Formula ; 3.9 Tangent Cones; 3.10 Rectifiable Sets ; 3.11 Proposition ; 3.12 Proposition ; 3.13 General Area-Coarea Formula ; 3.14 Product of Measures ; 3.15 Orientation; 3.16 Crofton's Formula ; 3.17 Structure Theorem. ExercisesChapter 4: Normal and Rectifiable Currents ; 4.1 Vectors and Differential Forms ; 4.2 Currents ; 4.3 Important Spaces of Currents ; 4.3A Mapping Currents; 4.3B Currents Representable by Integration; 4.4 Theorem ; 4.5 Normal Currents ; 4.6 Proposition ; 4.7 Theorem ; 4.8 Theorem ; 4.9 Constancy Theorem ; 4.10 Cartesian Products; 4.11 Slicing ; 4.12 Lemma ; 4.13 Proposition ; Exercises; Chapter 5: The Compactness Theorem and the Existence of Area-Minimizing Surfaces ; 5.1 The Deformation Theorem ; 5.2 Corollary; 5.3 The Isoperimetric Inequality ; 5.4 The Closure Theorem. 5.5 The Compactness Theorem 5.6 The Existence of Area-Minimizing Surfaces; 5.7 The Existence of Absolutely and Homologically Minimizing Surfaces in Manifolds ; Exercises; Chapter 6: Examples of Area-Minimizing Surfaces ; 6.1 The Minimal Surface Equation ; 6.2 Remarks on Higher Dimensions; 6.3 Complex Analytic Varieties ; 6.4 Fundamental Theorem of Calibrations; 6.5 History of Calibrations ; Exercises; Chapter 7: The Approximation Theorem ; 7.1 The Approximation Theorem ; Chapter 8: Survey of Regularity Results ; 8.1 Theorem ; 8.2 Theorem ; 8.3 Theorem ; 8.4 Boundary Regularity. 8.5 General Ambients, Volume Constraints, and Other IntegrandsExercises; Chapter 9: Monotonicity and Oriented Tangent Cones ; 9.1 Locally Integral Flat Chains ; 9.2 Monotonicity of the Mass Ratio; 9.3 Theorem ; 9.4 Corollary; 9.5 Corollary; 9.6 Corollary; 9.7 Oriented Tangent Cones ; 9.8 Theorem ; 9.9 Theorem; Exercises; Chapter 10: The Regularity of Area-Minimizing Hypersurfaces ; 10.1 Theorem; 10.2 Regularity for Area-Minimizing Hypersurfaces Theorem ; 10.3 Lemma ; 10.4 Maximum Principle; 10.5 Simons's Lemma ; 10.6 Lemma ; 10.7 Remarks; Exercises. Geometric measure theory. http://id.loc.gov/authorities/subjects/sh85054124 Théorie de la mesure géométrique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Geometric measure theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054124 |
title | Geometric measure theory : a beginner's guide / |
title_auth | Geometric measure theory : a beginner's guide / |
title_exact_search | Geometric measure theory : a beginner's guide / |
title_full | Geometric measure theory : a beginner's guide / Frank Morgan ; illustrated by James F. Bredt. |
title_fullStr | Geometric measure theory : a beginner's guide / Frank Morgan ; illustrated by James F. Bredt. |
title_full_unstemmed | Geometric measure theory : a beginner's guide / Frank Morgan ; illustrated by James F. Bredt. |
title_short | Geometric measure theory : |
title_sort | geometric measure theory a beginner s guide |
title_sub | a beginner's guide / |
topic | Geometric measure theory. http://id.loc.gov/authorities/subjects/sh85054124 Théorie de la mesure géométrique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Geometric measure theory fast |
topic_facet | Geometric measure theory. Théorie de la mesure géométrique. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Geometric measure theory Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1158631 https://www.sciencedirect.com/science/book/9780128044896 |
work_keys_str_mv | AT morganfrank geometricmeasuretheoryabeginnersguide AT bredtjamesf geometricmeasuretheoryabeginnersguide |