Learning IPython for interactive computing and data visualization :: get started with Python for data analysis and numerical computing in the Jupyter notebook /
Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2015.
|
Ausgabe: | Second edition. |
Schriftenreihe: | Community experience distilled.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook. |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource (1 volume) : illustrations |
ISBN: | 1783986999 9781783986996 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn928939971 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 151112s2015 enka o 001 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d N$T |d IDEBK |d YDXCP |d N$T |d OCLCF |d OCL |d COO |d TEFOD |d OCLCQ |d VT2 |d CEF |d WYU |d UAB |d OCLCA |d NJT |d OCLCO |d QGK |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 927160577 |a 927376736 |a 1259184306 | ||
020 | |a 1783986999 |q (electronic bk.) | ||
020 | |a 9781783986996 |q (electronic bk.) | ||
020 | |z 9781783986989 | ||
020 | |z 1783986980 | ||
035 | |a (OCoLC)928939971 |z (OCoLC)927160577 |z (OCoLC)927376736 |z (OCoLC)1259184306 | ||
037 | |a CL0500000672 |b Safari Books Online | ||
037 | |a 3FF7F480-633E-49F3-8A9E-95ECE6649802 |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA76.73.P98 | |
072 | 7 | |a COM |x 051360 |2 bisacsh | |
082 | 7 | |a 005.133 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Rossant, Cyrille, |e author. |0 http://id.loc.gov/authorities/names/no2013136929 | |
245 | 1 | 0 | |a Learning IPython for interactive computing and data visualization : |b get started with Python for data analysis and numerical computing in the Jupyter notebook / |c Cyrille Rossant. |
250 | |a Second edition. | ||
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2015. | |
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
490 | 1 | |a Community experience distilled | |
588 | 0 | |a Online resource; title from cover page (Safari, viewed November 11, 2015). | |
500 | |a Includes index. | ||
520 | |a Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook. | ||
546 | |a English. | ||
650 | 0 | |a Python (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh96008834 | |
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073 | |
650 | 0 | |a Information visualization. |0 http://id.loc.gov/authorities/subjects/sh2002000243 | |
650 | 0 | |a Computer graphics. | |
650 | 2 | |a Data Mining |0 https://id.nlm.nih.gov/mesh/D057225 | |
650 | 2 | |a Computer Graphics |0 https://id.nlm.nih.gov/mesh/D003196 | |
650 | 6 | |a Python (Langage de programmation) | |
650 | 6 | |a Exploration de données (Informatique) | |
650 | 6 | |a Visualisation de l'information. | |
650 | 6 | |a Infographie. | |
650 | 7 | |a computer graphics. |2 aat | |
650 | 7 | |a COMPUTERS |x Programming Languages |x Python. |2 bisacsh | |
650 | 7 | |a Computer graphics |2 fast | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a Information visualization |2 fast | |
650 | 7 | |a Python (Computer program language) |2 fast | |
758 | |i has work: |a Learning IPython for Interactive Computing and Data Visualization (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGx6y38g8PKMjRDwybB44m |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | |z 1783986980 | |
830 | 0 | |a Community experience distilled. |0 http://id.loc.gov/authorities/names/no2011030603 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1084592 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 1084592 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis32949744 | ||
938 | |a YBP Library Services |b YANK |n 12660603 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn928939971 |
---|---|
_version_ | 1816882329763708928 |
adam_text | |
any_adam_object | |
author | Rossant, Cyrille |
author_GND | http://id.loc.gov/authorities/names/no2013136929 |
author_facet | Rossant, Cyrille |
author_role | aut |
author_sort | Rossant, Cyrille |
author_variant | c r cr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.73.P98 |
callnumber-search | QA76.73.P98 |
callnumber-sort | QA 276.73 P98 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)928939971 |
dewey-full | 005.133 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.133 |
dewey-search | 005.133 |
dewey-sort | 15.133 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05721cam a2200709 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn928939971</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">151112s2015 enka o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCL</subfield><subfield code="d">COO</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">CEF</subfield><subfield code="d">WYU</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCA</subfield><subfield code="d">NJT</subfield><subfield code="d">OCLCO</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">927160577</subfield><subfield code="a">927376736</subfield><subfield code="a">1259184306</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1783986999</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783986996</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781783986989</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1783986980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)928939971</subfield><subfield code="z">(OCoLC)927160577</subfield><subfield code="z">(OCoLC)927376736</subfield><subfield code="z">(OCoLC)1259184306</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000672</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">3FF7F480-633E-49F3-8A9E-95ECE6649802</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.73.P98</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">051360</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.133</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rossant, Cyrille,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2013136929</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning IPython for interactive computing and data visualization :</subfield><subfield code="b">get started with Python for data analysis and numerical computing in the Jupyter notebook /</subfield><subfield code="c">Cyrille Rossant.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Community experience distilled</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from cover page (Safari, viewed November 11, 2015).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96008834</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97002073</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information visualization.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002000243</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer graphics.</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D057225</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Computer Graphics</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D003196</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Visualisation de l'information.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Infographie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">computer graphics.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Programming Languages</subfield><subfield code="x">Python.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer graphics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information visualization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Learning IPython for Interactive Computing and Data Visualization (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGx6y38g8PKMjRDwybB44m</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">1783986980</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Community experience distilled.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011030603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1084592</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1084592</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis32949744</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12660603</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn928939971 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:26:53Z |
institution | BVB |
isbn | 1783986999 9781783986996 |
language | English |
oclc_num | 928939971 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Packt Publishing, |
record_format | marc |
series | Community experience distilled. |
series2 | Community experience distilled |
spelling | Rossant, Cyrille, author. http://id.loc.gov/authorities/names/no2013136929 Learning IPython for interactive computing and data visualization : get started with Python for data analysis and numerical computing in the Jupyter notebook / Cyrille Rossant. Second edition. Birmingham, UK : Packt Publishing, 2015. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Community experience distilled Online resource; title from cover page (Safari, viewed November 11, 2015). Includes index. Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook. English. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Information visualization. http://id.loc.gov/authorities/subjects/sh2002000243 Computer graphics. Data Mining https://id.nlm.nih.gov/mesh/D057225 Computer Graphics https://id.nlm.nih.gov/mesh/D003196 Python (Langage de programmation) Exploration de données (Informatique) Visualisation de l'information. Infographie. computer graphics. aat COMPUTERS Programming Languages Python. bisacsh Computer graphics fast Data mining fast Information visualization fast Python (Computer program language) fast has work: Learning IPython for Interactive Computing and Data Visualization (Text) https://id.oclc.org/worldcat/entity/E39PCGx6y38g8PKMjRDwybB44m https://id.oclc.org/worldcat/ontology/hasWork 1783986980 Community experience distilled. http://id.loc.gov/authorities/names/no2011030603 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1084592 Volltext |
spellingShingle | Rossant, Cyrille Learning IPython for interactive computing and data visualization : get started with Python for data analysis and numerical computing in the Jupyter notebook / Community experience distilled. Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Information visualization. http://id.loc.gov/authorities/subjects/sh2002000243 Computer graphics. Data Mining https://id.nlm.nih.gov/mesh/D057225 Computer Graphics https://id.nlm.nih.gov/mesh/D003196 Python (Langage de programmation) Exploration de données (Informatique) Visualisation de l'information. Infographie. computer graphics. aat COMPUTERS Programming Languages Python. bisacsh Computer graphics fast Data mining fast Information visualization fast Python (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh96008834 http://id.loc.gov/authorities/subjects/sh97002073 http://id.loc.gov/authorities/subjects/sh2002000243 https://id.nlm.nih.gov/mesh/D057225 https://id.nlm.nih.gov/mesh/D003196 |
title | Learning IPython for interactive computing and data visualization : get started with Python for data analysis and numerical computing in the Jupyter notebook / |
title_auth | Learning IPython for interactive computing and data visualization : get started with Python for data analysis and numerical computing in the Jupyter notebook / |
title_exact_search | Learning IPython for interactive computing and data visualization : get started with Python for data analysis and numerical computing in the Jupyter notebook / |
title_full | Learning IPython for interactive computing and data visualization : get started with Python for data analysis and numerical computing in the Jupyter notebook / Cyrille Rossant. |
title_fullStr | Learning IPython for interactive computing and data visualization : get started with Python for data analysis and numerical computing in the Jupyter notebook / Cyrille Rossant. |
title_full_unstemmed | Learning IPython for interactive computing and data visualization : get started with Python for data analysis and numerical computing in the Jupyter notebook / Cyrille Rossant. |
title_short | Learning IPython for interactive computing and data visualization : |
title_sort | learning ipython for interactive computing and data visualization get started with python for data analysis and numerical computing in the jupyter notebook |
title_sub | get started with Python for data analysis and numerical computing in the Jupyter notebook / |
topic | Python (Computer program language) http://id.loc.gov/authorities/subjects/sh96008834 Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Information visualization. http://id.loc.gov/authorities/subjects/sh2002000243 Computer graphics. Data Mining https://id.nlm.nih.gov/mesh/D057225 Computer Graphics https://id.nlm.nih.gov/mesh/D003196 Python (Langage de programmation) Exploration de données (Informatique) Visualisation de l'information. Infographie. computer graphics. aat COMPUTERS Programming Languages Python. bisacsh Computer graphics fast Data mining fast Information visualization fast Python (Computer program language) fast |
topic_facet | Python (Computer program language) Data mining. Information visualization. Computer graphics. Data Mining Computer Graphics Python (Langage de programmation) Exploration de données (Informatique) Visualisation de l'information. Infographie. computer graphics. COMPUTERS Programming Languages Python. Computer graphics Data mining Information visualization |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1084592 |
work_keys_str_mv | AT rossantcyrille learningipythonforinteractivecomputinganddatavisualizationgetstartedwithpythonfordataanalysisandnumericalcomputinginthejupyternotebook |