Mastering social media mining with R :: extract valuable data from social media sites and make better business decisions using R /
Chapter 3: Find Friends on Facebook ; Creating an app on the Facebook platform; Rfacebook package installation and authentication; Installation; A closer look at how the package works; A basic analysis of your network; Network analysis and visualization; Social network analysis; Degree; Betweenness;...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2015.
|
Schriftenreihe: | Community experience distilled.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Chapter 3: Find Friends on Facebook ; Creating an app on the Facebook platform; Rfacebook package installation and authentication; Installation; A closer look at how the package works; A basic analysis of your network; Network analysis and visualization; Social network analysis; Degree; Betweenness; Closeness; Cluster; Communities; Getting Facebook page data; Trending topics; Trend analysis; Influencers; Based on a single post; Based on multiple posts; Measuring CTR performance for a page; Spam detection; Implementing a spam detection algorithm |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource (1 volume) : illustrations |
ISBN: | 9781784399672 1784399671 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn924210506 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 151014s2015 enka o 001 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d OCLCF |d DEBBG |d DEBSZ |d N$T |d IDEBK |d YDXCP |d EBLCP |d COO |d IDB |d OCLCQ |d MERUC |d OCLCQ |d VT2 |d CEF |d OCLCQ |d WYU |d UAB |d RDF |d OCLCQ |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 922456518 |a 922702559 |a 1259197818 | ||
020 | |a 9781784399672 |q (electronic bk.) | ||
020 | |a 1784399671 |q (electronic bk.) | ||
020 | |z 1784399671 | ||
020 | |z 1784396311 | ||
020 | |z 9781784396312 | ||
035 | |a (OCoLC)924210506 |z (OCoLC)922456518 |z (OCoLC)922702559 |z (OCoLC)1259197818 | ||
037 | |a CL0500000659 |b Safari Books Online | ||
050 | 4 | |a QA76.9.D343 | |
072 | 7 | |a COM |x 000000 |2 bisacsh | |
082 | 7 | |a 006.3/12 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Ravindran, Sharan Kumar, |e author. |0 http://id.loc.gov/authorities/names/no2016023694 | |
245 | 1 | 0 | |a Mastering social media mining with R : |b extract valuable data from social media sites and make better business decisions using R / |c Sharan Kumar Ravindran, Vikram Garg. |
246 | 3 | 0 | |a Extract valuable data from social media sites and make better business decisions using R |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2015. | |
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Community experience distilled | |
588 | 0 | |a Online resource; title from cover page (Safari, viewed October 12, 2015). | |
500 | |a Includes index. | ||
505 | 0 | |a Cover ; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Fundamentals of Mining; Social media and its importance; Various social media platforms; Social media mining; Challenges for social media mining; Social media mining techniques; Graph mining; Text mining; The generic process of social media mining; Getting authentication from the social website -- OAuth 2.0; Differences between OAuth and OAuth 2.0; Data visualization R packages; The simple word cloud; Sentiment analysis Wordcloud; Preprocessing and cleaning in R | |
505 | 8 | |a Data modeling -- the application of mining algorithmsOpinion mining (sentiment analysis); Steps for sentiment analysis; Community detection via clustering ; Result visualization; An example of social media mining; Summary; Chapter 2: Mining Opinions, Exploring Trends, and More with Twitter ; Twitter and its importance; Understanding Twitter's APIs; Twitter vocabulary; Creating a Twitter API connection; Creating a new app; Finding trending topics; Searching tweets; Twitter sentiment analysis; Collecting tweets as a corpus; Cleaning the corpus; Estimating sentiment (A); Estimating sentiment (B) | |
505 | 8 | |a The order of stories on a user's home pageRecommendations to friends; Reading the output; Other business cases; Summary; Chapter 4: Finding Popular Photos on Instagram ; Creating an app on the Instagram platform; Installation and authentication of the instaR package; Accessing data from R; Searching public media for a specific hashtag; Searching public media from a specific location; Extracting public media of a user; Extracting user profile; Getting followers; Who does the user follow?; Getting comments; Number of times hashtag is used; Building a dataset; User profile; User media | |
505 | 8 | |a Travel-related mediaWho do they follow?; Popular personalities; Who has the most followers?; Who follows more people?; Who shared most media?; Overall top users; Most viral media; Finding the most popular destination; Locations; Locations with most likes; Locations most talked about; What are people saying about these locations?; Most repeating locations; Clustering the pictures; Recommendations to the users; How to do it; Top three recommendations; Improvements to the recommendation system; Business case; Reference; Summary; Chapter 5: Let's Build Software with GitHub | |
520 | |a Chapter 3: Find Friends on Facebook ; Creating an app on the Facebook platform; Rfacebook package installation and authentication; Installation; A closer look at how the package works; A basic analysis of your network; Network analysis and visualization; Social network analysis; Degree; Betweenness; Closeness; Cluster; Communities; Getting Facebook page data; Trending topics; Trend analysis; Influencers; Based on a single post; Based on multiple posts; Measuring CTR performance for a page; Spam detection; Implementing a spam detection algorithm | ||
546 | |a English. | ||
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073 | |
650 | 0 | |a R (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh2002004407 | |
650 | 0 | |a Social media. |0 http://id.loc.gov/authorities/subjects/sh2006007023 | |
650 | 6 | |a Exploration de données (Informatique) | |
650 | 6 | |a R (Langage de programmation) | |
650 | 6 | |a Médias sociaux. | |
650 | 7 | |a social media. |2 aat | |
650 | 7 | |a COMPUTERS |x General. |2 bisacsh | |
650 | 7 | |a Data mining |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
650 | 7 | |a Social media |2 fast | |
700 | 1 | |a Garg, Vikram, |e author. |0 http://id.loc.gov/authorities/names/no2016023677 | |
758 | |i has work: |a Mastering social media mining with R (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFBcPVFrJ8hq7fXPjGGQ4m |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | |z 1-78439-631-1 | ||
830 | 0 | |a Community experience distilled. |0 http://id.loc.gov/authorities/names/no2011030603 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1071006 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL4191249 | ||
938 | |a EBSCOhost |b EBSC |n 1071006 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis32777838 | ||
938 | |a YBP Library Services |b YANK |n 12618689 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn924210506 |
---|---|
_version_ | 1816882326274048000 |
adam_text | |
any_adam_object | |
author | Ravindran, Sharan Kumar Garg, Vikram |
author_GND | http://id.loc.gov/authorities/names/no2016023694 http://id.loc.gov/authorities/names/no2016023677 |
author_facet | Ravindran, Sharan Kumar Garg, Vikram |
author_role | aut aut |
author_sort | Ravindran, Sharan Kumar |
author_variant | s k r sk skr v g vg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 |
callnumber-search | QA76.9.D343 |
callnumber-sort | QA 276.9 D343 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover ; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Fundamentals of Mining; Social media and its importance; Various social media platforms; Social media mining; Challenges for social media mining; Social media mining techniques; Graph mining; Text mining; The generic process of social media mining; Getting authentication from the social website -- OAuth 2.0; Differences between OAuth and OAuth 2.0; Data visualization R packages; The simple word cloud; Sentiment analysis Wordcloud; Preprocessing and cleaning in R Data modeling -- the application of mining algorithmsOpinion mining (sentiment analysis); Steps for sentiment analysis; Community detection via clustering ; Result visualization; An example of social media mining; Summary; Chapter 2: Mining Opinions, Exploring Trends, and More with Twitter ; Twitter and its importance; Understanding Twitter's APIs; Twitter vocabulary; Creating a Twitter API connection; Creating a new app; Finding trending topics; Searching tweets; Twitter sentiment analysis; Collecting tweets as a corpus; Cleaning the corpus; Estimating sentiment (A); Estimating sentiment (B) The order of stories on a user's home pageRecommendations to friends; Reading the output; Other business cases; Summary; Chapter 4: Finding Popular Photos on Instagram ; Creating an app on the Instagram platform; Installation and authentication of the instaR package; Accessing data from R; Searching public media for a specific hashtag; Searching public media from a specific location; Extracting public media of a user; Extracting user profile; Getting followers; Who does the user follow?; Getting comments; Number of times hashtag is used; Building a dataset; User profile; User media Travel-related mediaWho do they follow?; Popular personalities; Who has the most followers?; Who follows more people?; Who shared most media?; Overall top users; Most viral media; Finding the most popular destination; Locations; Locations with most likes; Locations most talked about; What are people saying about these locations?; Most repeating locations; Clustering the pictures; Recommendations to the users; How to do it; Top three recommendations; Improvements to the recommendation system; Business case; Reference; Summary; Chapter 5: Let's Build Software with GitHub |
ctrlnum | (OCoLC)924210506 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06051cam a2200709 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn924210506</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">151014s2015 enka o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">COO</subfield><subfield code="d">IDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">UAB</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">922456518</subfield><subfield code="a">922702559</subfield><subfield code="a">1259197818</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781784399672</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1784399671</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1784399671</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1784396311</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781784396312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)924210506</subfield><subfield code="z">(OCoLC)922456518</subfield><subfield code="z">(OCoLC)922702559</subfield><subfield code="z">(OCoLC)1259197818</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000659</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ravindran, Sharan Kumar,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2016023694</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mastering social media mining with R :</subfield><subfield code="b">extract valuable data from social media sites and make better business decisions using R /</subfield><subfield code="c">Sharan Kumar Ravindran, Vikram Garg.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Extract valuable data from social media sites and make better business decisions using R</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Community experience distilled</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from cover page (Safari, viewed October 12, 2015).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover ; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Fundamentals of Mining; Social media and its importance; Various social media platforms; Social media mining; Challenges for social media mining; Social media mining techniques; Graph mining; Text mining; The generic process of social media mining; Getting authentication from the social website -- OAuth 2.0; Differences between OAuth and OAuth 2.0; Data visualization R packages; The simple word cloud; Sentiment analysis Wordcloud; Preprocessing and cleaning in R</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Data modeling -- the application of mining algorithmsOpinion mining (sentiment analysis); Steps for sentiment analysis; Community detection via clustering ; Result visualization; An example of social media mining; Summary; Chapter 2: Mining Opinions, Exploring Trends, and More with Twitter ; Twitter and its importance; Understanding Twitter's APIs; Twitter vocabulary; Creating a Twitter API connection; Creating a new app; Finding trending topics; Searching tweets; Twitter sentiment analysis; Collecting tweets as a corpus; Cleaning the corpus; Estimating sentiment (A); Estimating sentiment (B)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The order of stories on a user's home pageRecommendations to friends; Reading the output; Other business cases; Summary; Chapter 4: Finding Popular Photos on Instagram ; Creating an app on the Instagram platform; Installation and authentication of the instaR package; Accessing data from R; Searching public media for a specific hashtag; Searching public media from a specific location; Extracting public media of a user; Extracting user profile; Getting followers; Who does the user follow?; Getting comments; Number of times hashtag is used; Building a dataset; User profile; User media</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Travel-related mediaWho do they follow?; Popular personalities; Who has the most followers?; Who follows more people?; Who shared most media?; Overall top users; Most viral media; Finding the most popular destination; Locations; Locations with most likes; Locations most talked about; What are people saying about these locations?; Most repeating locations; Clustering the pictures; Recommendations to the users; How to do it; Top three recommendations; Improvements to the recommendation system; Business case; Reference; Summary; Chapter 5: Let's Build Software with GitHub</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Chapter 3: Find Friends on Facebook ; Creating an app on the Facebook platform; Rfacebook package installation and authentication; Installation; A closer look at how the package works; A basic analysis of your network; Network analysis and visualization; Social network analysis; Degree; Betweenness; Closeness; Cluster; Communities; Getting Facebook page data; Trending topics; Trend analysis; Influencers; Based on a single post; Based on multiple posts; Measuring CTR performance for a page; Spam detection; Implementing a spam detection algorithm</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97002073</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004407</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Social media.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2006007023</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Médias sociaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">social media.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Social media</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garg, Vikram,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2016023677</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Mastering social media mining with R (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFBcPVFrJ8hq7fXPjGGQ4m</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">1-78439-631-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Community experience distilled.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011030603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1071006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4191249</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1071006</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis32777838</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12618689</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn924210506 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:26:50Z |
institution | BVB |
isbn | 9781784399672 1784399671 |
language | English |
oclc_num | 924210506 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Packt Publishing, |
record_format | marc |
series | Community experience distilled. |
series2 | Community experience distilled |
spelling | Ravindran, Sharan Kumar, author. http://id.loc.gov/authorities/names/no2016023694 Mastering social media mining with R : extract valuable data from social media sites and make better business decisions using R / Sharan Kumar Ravindran, Vikram Garg. Extract valuable data from social media sites and make better business decisions using R Birmingham, UK : Packt Publishing, 2015. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Community experience distilled Online resource; title from cover page (Safari, viewed October 12, 2015). Includes index. Cover ; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Fundamentals of Mining; Social media and its importance; Various social media platforms; Social media mining; Challenges for social media mining; Social media mining techniques; Graph mining; Text mining; The generic process of social media mining; Getting authentication from the social website -- OAuth 2.0; Differences between OAuth and OAuth 2.0; Data visualization R packages; The simple word cloud; Sentiment analysis Wordcloud; Preprocessing and cleaning in R Data modeling -- the application of mining algorithmsOpinion mining (sentiment analysis); Steps for sentiment analysis; Community detection via clustering ; Result visualization; An example of social media mining; Summary; Chapter 2: Mining Opinions, Exploring Trends, and More with Twitter ; Twitter and its importance; Understanding Twitter's APIs; Twitter vocabulary; Creating a Twitter API connection; Creating a new app; Finding trending topics; Searching tweets; Twitter sentiment analysis; Collecting tweets as a corpus; Cleaning the corpus; Estimating sentiment (A); Estimating sentiment (B) The order of stories on a user's home pageRecommendations to friends; Reading the output; Other business cases; Summary; Chapter 4: Finding Popular Photos on Instagram ; Creating an app on the Instagram platform; Installation and authentication of the instaR package; Accessing data from R; Searching public media for a specific hashtag; Searching public media from a specific location; Extracting public media of a user; Extracting user profile; Getting followers; Who does the user follow?; Getting comments; Number of times hashtag is used; Building a dataset; User profile; User media Travel-related mediaWho do they follow?; Popular personalities; Who has the most followers?; Who follows more people?; Who shared most media?; Overall top users; Most viral media; Finding the most popular destination; Locations; Locations with most likes; Locations most talked about; What are people saying about these locations?; Most repeating locations; Clustering the pictures; Recommendations to the users; How to do it; Top three recommendations; Improvements to the recommendation system; Business case; Reference; Summary; Chapter 5: Let's Build Software with GitHub Chapter 3: Find Friends on Facebook ; Creating an app on the Facebook platform; Rfacebook package installation and authentication; Installation; A closer look at how the package works; A basic analysis of your network; Network analysis and visualization; Social network analysis; Degree; Betweenness; Closeness; Cluster; Communities; Getting Facebook page data; Trending topics; Trend analysis; Influencers; Based on a single post; Based on multiple posts; Measuring CTR performance for a page; Spam detection; Implementing a spam detection algorithm English. Data mining. http://id.loc.gov/authorities/subjects/sh97002073 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Social media. http://id.loc.gov/authorities/subjects/sh2006007023 Exploration de données (Informatique) R (Langage de programmation) Médias sociaux. social media. aat COMPUTERS General. bisacsh Data mining fast R (Computer program language) fast Social media fast Garg, Vikram, author. http://id.loc.gov/authorities/names/no2016023677 has work: Mastering social media mining with R (Text) https://id.oclc.org/worldcat/entity/E39PCFBcPVFrJ8hq7fXPjGGQ4m https://id.oclc.org/worldcat/ontology/hasWork 1-78439-631-1 Community experience distilled. http://id.loc.gov/authorities/names/no2011030603 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1071006 Volltext |
spellingShingle | Ravindran, Sharan Kumar Garg, Vikram Mastering social media mining with R : extract valuable data from social media sites and make better business decisions using R / Community experience distilled. Cover ; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Fundamentals of Mining; Social media and its importance; Various social media platforms; Social media mining; Challenges for social media mining; Social media mining techniques; Graph mining; Text mining; The generic process of social media mining; Getting authentication from the social website -- OAuth 2.0; Differences between OAuth and OAuth 2.0; Data visualization R packages; The simple word cloud; Sentiment analysis Wordcloud; Preprocessing and cleaning in R Data modeling -- the application of mining algorithmsOpinion mining (sentiment analysis); Steps for sentiment analysis; Community detection via clustering ; Result visualization; An example of social media mining; Summary; Chapter 2: Mining Opinions, Exploring Trends, and More with Twitter ; Twitter and its importance; Understanding Twitter's APIs; Twitter vocabulary; Creating a Twitter API connection; Creating a new app; Finding trending topics; Searching tweets; Twitter sentiment analysis; Collecting tweets as a corpus; Cleaning the corpus; Estimating sentiment (A); Estimating sentiment (B) The order of stories on a user's home pageRecommendations to friends; Reading the output; Other business cases; Summary; Chapter 4: Finding Popular Photos on Instagram ; Creating an app on the Instagram platform; Installation and authentication of the instaR package; Accessing data from R; Searching public media for a specific hashtag; Searching public media from a specific location; Extracting public media of a user; Extracting user profile; Getting followers; Who does the user follow?; Getting comments; Number of times hashtag is used; Building a dataset; User profile; User media Travel-related mediaWho do they follow?; Popular personalities; Who has the most followers?; Who follows more people?; Who shared most media?; Overall top users; Most viral media; Finding the most popular destination; Locations; Locations with most likes; Locations most talked about; What are people saying about these locations?; Most repeating locations; Clustering the pictures; Recommendations to the users; How to do it; Top three recommendations; Improvements to the recommendation system; Business case; Reference; Summary; Chapter 5: Let's Build Software with GitHub Data mining. http://id.loc.gov/authorities/subjects/sh97002073 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Social media. http://id.loc.gov/authorities/subjects/sh2006007023 Exploration de données (Informatique) R (Langage de programmation) Médias sociaux. social media. aat COMPUTERS General. bisacsh Data mining fast R (Computer program language) fast Social media fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh97002073 http://id.loc.gov/authorities/subjects/sh2002004407 http://id.loc.gov/authorities/subjects/sh2006007023 |
title | Mastering social media mining with R : extract valuable data from social media sites and make better business decisions using R / |
title_alt | Extract valuable data from social media sites and make better business decisions using R |
title_auth | Mastering social media mining with R : extract valuable data from social media sites and make better business decisions using R / |
title_exact_search | Mastering social media mining with R : extract valuable data from social media sites and make better business decisions using R / |
title_full | Mastering social media mining with R : extract valuable data from social media sites and make better business decisions using R / Sharan Kumar Ravindran, Vikram Garg. |
title_fullStr | Mastering social media mining with R : extract valuable data from social media sites and make better business decisions using R / Sharan Kumar Ravindran, Vikram Garg. |
title_full_unstemmed | Mastering social media mining with R : extract valuable data from social media sites and make better business decisions using R / Sharan Kumar Ravindran, Vikram Garg. |
title_short | Mastering social media mining with R : |
title_sort | mastering social media mining with r extract valuable data from social media sites and make better business decisions using r |
title_sub | extract valuable data from social media sites and make better business decisions using R / |
topic | Data mining. http://id.loc.gov/authorities/subjects/sh97002073 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Social media. http://id.loc.gov/authorities/subjects/sh2006007023 Exploration de données (Informatique) R (Langage de programmation) Médias sociaux. social media. aat COMPUTERS General. bisacsh Data mining fast R (Computer program language) fast Social media fast |
topic_facet | Data mining. R (Computer program language) Social media. Exploration de données (Informatique) R (Langage de programmation) Médias sociaux. social media. COMPUTERS General. Data mining Social media |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1071006 |
work_keys_str_mv | AT ravindransharankumar masteringsocialmediaminingwithrextractvaluabledatafromsocialmediasitesandmakebetterbusinessdecisionsusingr AT gargvikram masteringsocialmediaminingwithrextractvaluabledatafromsocialmediasitesandmakebetterbusinessdecisionsusingr AT ravindransharankumar extractvaluabledatafromsocialmediasitesandmakebetterbusinessdecisionsusingr AT gargvikram extractvaluabledatafromsocialmediasitesandmakebetterbusinessdecisionsusingr |