Introduction to modern dynamics :: chaos, networks, space and time /
The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford :
Oxford University Press,
[2015]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or the synchronization of global economies are governed by universal principles just as profound as Newton's laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for advanced graduate study. Two justifications. |
Beschreibung: | 1 online resource (432 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780191631450 0191631450 1322608547 9781322608549 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn896872806 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 141125s2015 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d YDXCP |d OCLCF |d IDEBK |d COO |d EBLCP |d DEBSZ |d ZCU |d OCLCQ |d BUF |d OCLCQ |d G3B |d IGB |d STF |d VT2 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
015 | |a GBB499299 |2 bnb | ||
016 | 7 | |a 016867766 |2 Uk | |
019 | |a 897070353 |a 901286291 |a 1067223213 |a 1103274600 | ||
020 | |a 9780191631450 |q (electronic bk.) | ||
020 | |a 0191631450 |q (electronic bk.) | ||
020 | |a 1322608547 |q (ebk) | ||
020 | |a 9781322608549 |q (ebk) | ||
020 | |z 0199657041 | ||
020 | |z 9780199657049 | ||
020 | |z 0199657033 | ||
020 | |z 9780199657032 | ||
035 | |a (OCoLC)896872806 |z (OCoLC)897070353 |z (OCoLC)901286291 |z (OCoLC)1067223213 |z (OCoLC)1103274600 | ||
037 | |a 692136 |b MIL | ||
050 | 4 | |a QA845 | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 096000 |2 bisacsh | |
072 | 7 | |a SCI |2 ukslc | |
082 | 7 | |a 531.1 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Nolte, D. D., |e author. | |
245 | 1 | 0 | |a Introduction to modern dynamics : |b chaos, networks, space and time / |c David D. Nolte, Purdue University. |
264 | 1 | |a Oxford : |b Oxford University Press, |c [2015] | |
264 | 4 | |c ©2015 | |
300 | |a 1 online resource (432 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Preface; Acknowledgments; Contents; Part 1 Geometric Mechanics; 1 Physics and Geometry; 1.1 Newton and geometry; 1.2 State space and flows; 1.3 Coordinate transformations; 1.4 Non-inertial transformations; 1.5 Uniformly rotating frames; 1.6 Rigid-body motion; 1.7 Summary; 1.8 Bibliography; 1.9 Homework exercises; 2 Hamiltonian Dynamics and Phase Space; 2.1 Hamilton's principle; 2.2 Conservation laws; 2.3 The Hamiltonian function; 2.4 Central force motion; 2.5 Phase space; 2.6 Integrable systems and action-angle variables; 2.7 Summary; 2.8 Bibliography; 2.9 Homework exercises. | |
505 | 8 | |a Part 2 Nonlinear Dynamics3 Nonlinear Dynamics and Chaos; 3.1 One-variable dynamical systems; 3.2 Two-variable dynamical systems; 3.3 Discrete iterative maps; 3.4 Three-dimensional state space and chaos; 3.5 Fractals and strange attractors; 3.6 Hamiltonian chaos; 3.7 Summary and glossary; 3.8 Bibliography; 3.9 Homework exercises; 4 Coupled Oscillators and Synchronization; 4.1 Coupled linear oscillators; 4.2 Simple models of synchronization; 4.3 External synchronization of an autonomous phase oscillator; 4.4 External synchronization of a van der Pol oscillator. | |
505 | 8 | |a 4.5 Mutual synchronization of two autonomous oscillators4.6 Summary; 4.7 Bibliography; 4.8 Homework exercises; 5 Network Dynamics; 5.1 Network structures; 5.2 Random network topologies; 5.3 Diffusion and epidemics on networks; 5.4 Linear synchronization of identical oscillators; 5.5 Nonlinear synchronization of coupled phase oscillators on regular graphs; 5.6 Summary; 5.7 Bibliography; 5.8 Homework exercises; Part 3 Complex Systems; 6 Neurodynamics and Neural Networks; 6.1 Neuron structure and function; 6.2 Neuron dynamics; 6.3 Network nodes: artificial neurons. | |
505 | 8 | |a 6.4 Neural network architectures6.5 Hopfield neural network; 6.6 Content-addressable (associative) memory; 6.7 Summary; 6.8 Bibliography; 6.9 Homework exercises; 7 Evolutionary Dynamics; 7.1 Population dynamics; 7.2 Virus infection and immune deficiency; 7.3 The replicator equation; 7.4 The quasi-species equation; 7.5 The replicator-mutator equation; 7.6 Dynamics of finite numbers (optional); 7.7 Summary; 7.8 Bibliography; 7.9 Homework exercises; 8 Economic Dynamics; 8.1 Micro- and macroeconomics; 8.2 Supply and demand; 8.3 Business cycles; 8.4 Consumer market competition; 8.5 Macroeconomics. | |
505 | 8 | |a 8.6 Stochastic dynamics and stock prices (optional)8.7 Summary; 8.8 Bibliography; 8.9 Homework exercises; Part 4 Relativity and Space-Time; 9 Metric Spaces and Geodesic Motion; 9.1 Manifolds and metric tensors; 9.2 Reciprocal spaces in physics; 9.3 Derivative of a tensor; 9.4 Geodesic curves in configuration space; 9.5 Geodesic motion; 9.6 Summary; 9.7 Bibliography; 9.8 Homework exercises; 10 Relativistic Dynamics; 10.1 The special theory; 10.2 Lorentz transformations; 10.3 Metric structure of Minkowski space; 10.4 Relativistic dynamics; 10.5 Linearly accelerating frames (relativistic). | |
520 | |a The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or the synchronization of global economies are governed by universal principles just as profound as Newton's laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for advanced graduate study. Two justifications. | ||
650 | 0 | |a Dynamics. |0 http://id.loc.gov/authorities/subjects/sh85040316 | |
650 | 6 | |a Dynamique. | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x Solids. |2 bisacsh | |
650 | 7 | |a Dynamics |2 fast | |
655 | 4 | |a Electronic book. | |
776 | 0 | 8 | |i Print version: |a Nolte, D.D. |t Introduction to modern dynamics. Nolte, networks, space and time |z 0199657041 |w (OCoLC)896831759 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=910367 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL1868534 | ||
938 | |a EBSCOhost |b EBSC |n 910367 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis30545226 | ||
938 | |a YBP Library Services |b YANK |n 12179865 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn896872806 |
---|---|
_version_ | 1816882295285481472 |
adam_text | |
any_adam_object | |
author | Nolte, D. D. |
author_facet | Nolte, D. D. |
author_role | aut |
author_sort | Nolte, D. D. |
author_variant | d d n dd ddn |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA845 |
callnumber-raw | QA845 |
callnumber-search | QA845 |
callnumber-sort | QA 3845 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Preface; Acknowledgments; Contents; Part 1 Geometric Mechanics; 1 Physics and Geometry; 1.1 Newton and geometry; 1.2 State space and flows; 1.3 Coordinate transformations; 1.4 Non-inertial transformations; 1.5 Uniformly rotating frames; 1.6 Rigid-body motion; 1.7 Summary; 1.8 Bibliography; 1.9 Homework exercises; 2 Hamiltonian Dynamics and Phase Space; 2.1 Hamilton's principle; 2.2 Conservation laws; 2.3 The Hamiltonian function; 2.4 Central force motion; 2.5 Phase space; 2.6 Integrable systems and action-angle variables; 2.7 Summary; 2.8 Bibliography; 2.9 Homework exercises. Part 2 Nonlinear Dynamics3 Nonlinear Dynamics and Chaos; 3.1 One-variable dynamical systems; 3.2 Two-variable dynamical systems; 3.3 Discrete iterative maps; 3.4 Three-dimensional state space and chaos; 3.5 Fractals and strange attractors; 3.6 Hamiltonian chaos; 3.7 Summary and glossary; 3.8 Bibliography; 3.9 Homework exercises; 4 Coupled Oscillators and Synchronization; 4.1 Coupled linear oscillators; 4.2 Simple models of synchronization; 4.3 External synchronization of an autonomous phase oscillator; 4.4 External synchronization of a van der Pol oscillator. 4.5 Mutual synchronization of two autonomous oscillators4.6 Summary; 4.7 Bibliography; 4.8 Homework exercises; 5 Network Dynamics; 5.1 Network structures; 5.2 Random network topologies; 5.3 Diffusion and epidemics on networks; 5.4 Linear synchronization of identical oscillators; 5.5 Nonlinear synchronization of coupled phase oscillators on regular graphs; 5.6 Summary; 5.7 Bibliography; 5.8 Homework exercises; Part 3 Complex Systems; 6 Neurodynamics and Neural Networks; 6.1 Neuron structure and function; 6.2 Neuron dynamics; 6.3 Network nodes: artificial neurons. 6.4 Neural network architectures6.5 Hopfield neural network; 6.6 Content-addressable (associative) memory; 6.7 Summary; 6.8 Bibliography; 6.9 Homework exercises; 7 Evolutionary Dynamics; 7.1 Population dynamics; 7.2 Virus infection and immune deficiency; 7.3 The replicator equation; 7.4 The quasi-species equation; 7.5 The replicator-mutator equation; 7.6 Dynamics of finite numbers (optional); 7.7 Summary; 7.8 Bibliography; 7.9 Homework exercises; 8 Economic Dynamics; 8.1 Micro- and macroeconomics; 8.2 Supply and demand; 8.3 Business cycles; 8.4 Consumer market competition; 8.5 Macroeconomics. 8.6 Stochastic dynamics and stock prices (optional)8.7 Summary; 8.8 Bibliography; 8.9 Homework exercises; Part 4 Relativity and Space-Time; 9 Metric Spaces and Geodesic Motion; 9.1 Manifolds and metric tensors; 9.2 Reciprocal spaces in physics; 9.3 Derivative of a tensor; 9.4 Geodesic curves in configuration space; 9.5 Geodesic motion; 9.6 Summary; 9.7 Bibliography; 9.8 Homework exercises; 10 Relativistic Dynamics; 10.1 The special theory; 10.2 Lorentz transformations; 10.3 Metric structure of Minkowski space; 10.4 Relativistic dynamics; 10.5 Linearly accelerating frames (relativistic). |
ctrlnum | (OCoLC)896872806 |
dewey-full | 531.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531.1 |
dewey-search | 531.1 |
dewey-sort | 3531.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06002cam a2200685 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn896872806</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">141125s2015 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">COO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">BUF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">IGB</subfield><subfield code="d">STF</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB499299</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016867766</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">897070353</subfield><subfield code="a">901286291</subfield><subfield code="a">1067223213</subfield><subfield code="a">1103274600</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191631450</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191631450</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1322608547</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781322608549</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199657041</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199657049</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199657033</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199657032</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)896872806</subfield><subfield code="z">(OCoLC)897070353</subfield><subfield code="z">(OCoLC)901286291</subfield><subfield code="z">(OCoLC)1067223213</subfield><subfield code="z">(OCoLC)1103274600</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">692136</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA845</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">096000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="2">ukslc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">531.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nolte, D. D.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to modern dynamics :</subfield><subfield code="b">chaos, networks, space and time /</subfield><subfield code="c">David D. Nolte, Purdue University.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (432 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Preface; Acknowledgments; Contents; Part 1 Geometric Mechanics; 1 Physics and Geometry; 1.1 Newton and geometry; 1.2 State space and flows; 1.3 Coordinate transformations; 1.4 Non-inertial transformations; 1.5 Uniformly rotating frames; 1.6 Rigid-body motion; 1.7 Summary; 1.8 Bibliography; 1.9 Homework exercises; 2 Hamiltonian Dynamics and Phase Space; 2.1 Hamilton's principle; 2.2 Conservation laws; 2.3 The Hamiltonian function; 2.4 Central force motion; 2.5 Phase space; 2.6 Integrable systems and action-angle variables; 2.7 Summary; 2.8 Bibliography; 2.9 Homework exercises.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part 2 Nonlinear Dynamics3 Nonlinear Dynamics and Chaos; 3.1 One-variable dynamical systems; 3.2 Two-variable dynamical systems; 3.3 Discrete iterative maps; 3.4 Three-dimensional state space and chaos; 3.5 Fractals and strange attractors; 3.6 Hamiltonian chaos; 3.7 Summary and glossary; 3.8 Bibliography; 3.9 Homework exercises; 4 Coupled Oscillators and Synchronization; 4.1 Coupled linear oscillators; 4.2 Simple models of synchronization; 4.3 External synchronization of an autonomous phase oscillator; 4.4 External synchronization of a van der Pol oscillator.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5 Mutual synchronization of two autonomous oscillators4.6 Summary; 4.7 Bibliography; 4.8 Homework exercises; 5 Network Dynamics; 5.1 Network structures; 5.2 Random network topologies; 5.3 Diffusion and epidemics on networks; 5.4 Linear synchronization of identical oscillators; 5.5 Nonlinear synchronization of coupled phase oscillators on regular graphs; 5.6 Summary; 5.7 Bibliography; 5.8 Homework exercises; Part 3 Complex Systems; 6 Neurodynamics and Neural Networks; 6.1 Neuron structure and function; 6.2 Neuron dynamics; 6.3 Network nodes: artificial neurons.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.4 Neural network architectures6.5 Hopfield neural network; 6.6 Content-addressable (associative) memory; 6.7 Summary; 6.8 Bibliography; 6.9 Homework exercises; 7 Evolutionary Dynamics; 7.1 Population dynamics; 7.2 Virus infection and immune deficiency; 7.3 The replicator equation; 7.4 The quasi-species equation; 7.5 The replicator-mutator equation; 7.6 Dynamics of finite numbers (optional); 7.7 Summary; 7.8 Bibliography; 7.9 Homework exercises; 8 Economic Dynamics; 8.1 Micro- and macroeconomics; 8.2 Supply and demand; 8.3 Business cycles; 8.4 Consumer market competition; 8.5 Macroeconomics.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.6 Stochastic dynamics and stock prices (optional)8.7 Summary; 8.8 Bibliography; 8.9 Homework exercises; Part 4 Relativity and Space-Time; 9 Metric Spaces and Geodesic Motion; 9.1 Manifolds and metric tensors; 9.2 Reciprocal spaces in physics; 9.3 Derivative of a tensor; 9.4 Geodesic curves in configuration space; 9.5 Geodesic motion; 9.6 Summary; 9.7 Bibliography; 9.8 Homework exercises; 10 Relativistic Dynamics; 10.1 The special theory; 10.2 Lorentz transformations; 10.3 Metric structure of Minkowski space; 10.4 Relativistic dynamics; 10.5 Linearly accelerating frames (relativistic).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or the synchronization of global economies are governed by universal principles just as profound as Newton's laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for advanced graduate study. Two justifications.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Dynamics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85040316</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">Solids.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Nolte, D.D.</subfield><subfield code="t">Introduction to modern dynamics. Nolte, networks, space and time</subfield><subfield code="z">0199657041</subfield><subfield code="w">(OCoLC)896831759</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=910367</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1868534</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">910367</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis30545226</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12179865</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-ocn896872806 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:26:20Z |
institution | BVB |
isbn | 9780191631450 0191631450 1322608547 9781322608549 |
language | English |
oclc_num | 896872806 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (432 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Nolte, D. D., author. Introduction to modern dynamics : chaos, networks, space and time / David D. Nolte, Purdue University. Oxford : Oxford University Press, [2015] ©2015 1 online resource (432 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. Cover; Preface; Acknowledgments; Contents; Part 1 Geometric Mechanics; 1 Physics and Geometry; 1.1 Newton and geometry; 1.2 State space and flows; 1.3 Coordinate transformations; 1.4 Non-inertial transformations; 1.5 Uniformly rotating frames; 1.6 Rigid-body motion; 1.7 Summary; 1.8 Bibliography; 1.9 Homework exercises; 2 Hamiltonian Dynamics and Phase Space; 2.1 Hamilton's principle; 2.2 Conservation laws; 2.3 The Hamiltonian function; 2.4 Central force motion; 2.5 Phase space; 2.6 Integrable systems and action-angle variables; 2.7 Summary; 2.8 Bibliography; 2.9 Homework exercises. Part 2 Nonlinear Dynamics3 Nonlinear Dynamics and Chaos; 3.1 One-variable dynamical systems; 3.2 Two-variable dynamical systems; 3.3 Discrete iterative maps; 3.4 Three-dimensional state space and chaos; 3.5 Fractals and strange attractors; 3.6 Hamiltonian chaos; 3.7 Summary and glossary; 3.8 Bibliography; 3.9 Homework exercises; 4 Coupled Oscillators and Synchronization; 4.1 Coupled linear oscillators; 4.2 Simple models of synchronization; 4.3 External synchronization of an autonomous phase oscillator; 4.4 External synchronization of a van der Pol oscillator. 4.5 Mutual synchronization of two autonomous oscillators4.6 Summary; 4.7 Bibliography; 4.8 Homework exercises; 5 Network Dynamics; 5.1 Network structures; 5.2 Random network topologies; 5.3 Diffusion and epidemics on networks; 5.4 Linear synchronization of identical oscillators; 5.5 Nonlinear synchronization of coupled phase oscillators on regular graphs; 5.6 Summary; 5.7 Bibliography; 5.8 Homework exercises; Part 3 Complex Systems; 6 Neurodynamics and Neural Networks; 6.1 Neuron structure and function; 6.2 Neuron dynamics; 6.3 Network nodes: artificial neurons. 6.4 Neural network architectures6.5 Hopfield neural network; 6.6 Content-addressable (associative) memory; 6.7 Summary; 6.8 Bibliography; 6.9 Homework exercises; 7 Evolutionary Dynamics; 7.1 Population dynamics; 7.2 Virus infection and immune deficiency; 7.3 The replicator equation; 7.4 The quasi-species equation; 7.5 The replicator-mutator equation; 7.6 Dynamics of finite numbers (optional); 7.7 Summary; 7.8 Bibliography; 7.9 Homework exercises; 8 Economic Dynamics; 8.1 Micro- and macroeconomics; 8.2 Supply and demand; 8.3 Business cycles; 8.4 Consumer market competition; 8.5 Macroeconomics. 8.6 Stochastic dynamics and stock prices (optional)8.7 Summary; 8.8 Bibliography; 8.9 Homework exercises; Part 4 Relativity and Space-Time; 9 Metric Spaces and Geodesic Motion; 9.1 Manifolds and metric tensors; 9.2 Reciprocal spaces in physics; 9.3 Derivative of a tensor; 9.4 Geodesic curves in configuration space; 9.5 Geodesic motion; 9.6 Summary; 9.7 Bibliography; 9.8 Homework exercises; 10 Relativistic Dynamics; 10.1 The special theory; 10.2 Lorentz transformations; 10.3 Metric structure of Minkowski space; 10.4 Relativistic dynamics; 10.5 Linearly accelerating frames (relativistic). The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or the synchronization of global economies are governed by universal principles just as profound as Newton's laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for advanced graduate study. Two justifications. Dynamics. http://id.loc.gov/authorities/subjects/sh85040316 Dynamique. SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Dynamics fast Electronic book. Print version: Nolte, D.D. Introduction to modern dynamics. Nolte, networks, space and time 0199657041 (OCoLC)896831759 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=910367 Volltext |
spellingShingle | Nolte, D. D. Introduction to modern dynamics : chaos, networks, space and time / Cover; Preface; Acknowledgments; Contents; Part 1 Geometric Mechanics; 1 Physics and Geometry; 1.1 Newton and geometry; 1.2 State space and flows; 1.3 Coordinate transformations; 1.4 Non-inertial transformations; 1.5 Uniformly rotating frames; 1.6 Rigid-body motion; 1.7 Summary; 1.8 Bibliography; 1.9 Homework exercises; 2 Hamiltonian Dynamics and Phase Space; 2.1 Hamilton's principle; 2.2 Conservation laws; 2.3 The Hamiltonian function; 2.4 Central force motion; 2.5 Phase space; 2.6 Integrable systems and action-angle variables; 2.7 Summary; 2.8 Bibliography; 2.9 Homework exercises. Part 2 Nonlinear Dynamics3 Nonlinear Dynamics and Chaos; 3.1 One-variable dynamical systems; 3.2 Two-variable dynamical systems; 3.3 Discrete iterative maps; 3.4 Three-dimensional state space and chaos; 3.5 Fractals and strange attractors; 3.6 Hamiltonian chaos; 3.7 Summary and glossary; 3.8 Bibliography; 3.9 Homework exercises; 4 Coupled Oscillators and Synchronization; 4.1 Coupled linear oscillators; 4.2 Simple models of synchronization; 4.3 External synchronization of an autonomous phase oscillator; 4.4 External synchronization of a van der Pol oscillator. 4.5 Mutual synchronization of two autonomous oscillators4.6 Summary; 4.7 Bibliography; 4.8 Homework exercises; 5 Network Dynamics; 5.1 Network structures; 5.2 Random network topologies; 5.3 Diffusion and epidemics on networks; 5.4 Linear synchronization of identical oscillators; 5.5 Nonlinear synchronization of coupled phase oscillators on regular graphs; 5.6 Summary; 5.7 Bibliography; 5.8 Homework exercises; Part 3 Complex Systems; 6 Neurodynamics and Neural Networks; 6.1 Neuron structure and function; 6.2 Neuron dynamics; 6.3 Network nodes: artificial neurons. 6.4 Neural network architectures6.5 Hopfield neural network; 6.6 Content-addressable (associative) memory; 6.7 Summary; 6.8 Bibliography; 6.9 Homework exercises; 7 Evolutionary Dynamics; 7.1 Population dynamics; 7.2 Virus infection and immune deficiency; 7.3 The replicator equation; 7.4 The quasi-species equation; 7.5 The replicator-mutator equation; 7.6 Dynamics of finite numbers (optional); 7.7 Summary; 7.8 Bibliography; 7.9 Homework exercises; 8 Economic Dynamics; 8.1 Micro- and macroeconomics; 8.2 Supply and demand; 8.3 Business cycles; 8.4 Consumer market competition; 8.5 Macroeconomics. 8.6 Stochastic dynamics and stock prices (optional)8.7 Summary; 8.8 Bibliography; 8.9 Homework exercises; Part 4 Relativity and Space-Time; 9 Metric Spaces and Geodesic Motion; 9.1 Manifolds and metric tensors; 9.2 Reciprocal spaces in physics; 9.3 Derivative of a tensor; 9.4 Geodesic curves in configuration space; 9.5 Geodesic motion; 9.6 Summary; 9.7 Bibliography; 9.8 Homework exercises; 10 Relativistic Dynamics; 10.1 The special theory; 10.2 Lorentz transformations; 10.3 Metric structure of Minkowski space; 10.4 Relativistic dynamics; 10.5 Linearly accelerating frames (relativistic). Dynamics. http://id.loc.gov/authorities/subjects/sh85040316 Dynamique. SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Dynamics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85040316 |
title | Introduction to modern dynamics : chaos, networks, space and time / |
title_auth | Introduction to modern dynamics : chaos, networks, space and time / |
title_exact_search | Introduction to modern dynamics : chaos, networks, space and time / |
title_full | Introduction to modern dynamics : chaos, networks, space and time / David D. Nolte, Purdue University. |
title_fullStr | Introduction to modern dynamics : chaos, networks, space and time / David D. Nolte, Purdue University. |
title_full_unstemmed | Introduction to modern dynamics : chaos, networks, space and time / David D. Nolte, Purdue University. |
title_short | Introduction to modern dynamics : |
title_sort | introduction to modern dynamics chaos networks space and time |
title_sub | chaos, networks, space and time / |
topic | Dynamics. http://id.loc.gov/authorities/subjects/sh85040316 Dynamique. SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Dynamics fast |
topic_facet | Dynamics. Dynamique. SCIENCE Mechanics General. SCIENCE Mechanics Solids. Dynamics Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=910367 |
work_keys_str_mv | AT noltedd introductiontomoderndynamicschaosnetworksspaceandtime |