Frontiers of intelligent control and information processing /:
The current research and development in intelligent control and information processing have been driven increasingly by advancements made from fields outside the traditional control areas, into new frontiers of intelligent control and information processing so as to deal with ever more complex syste...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack?] New Jersey :
World Scientific,
[2014]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The current research and development in intelligent control and information processing have been driven increasingly by advancements made from fields outside the traditional control areas, into new frontiers of intelligent control and information processing so as to deal with ever more complex systems with ever growing size of data and complexity. As researches in intelligent control and information processing are taking on ever more complex problems, the control system as a nuclear to coordinate the activity within a system increasingly need to be equipped with the capability to analyze, and. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9789814616881 9814616885 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn892911209 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 141014s2014 nju ob 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d IDEBK |d YDXCP |d CDX |d OCLCQ |d MYG |d EBLCP |d OCLCQ |d AGLDB |d VGM |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCQ |d OCLCO |d OCL |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 893332824 | ||
020 | |a 9789814616881 |q (electronic bk.) | ||
020 | |a 9814616885 |q (electronic bk.) | ||
020 | |z 9789814616874 | ||
020 | |z 9814616877 | ||
024 | 8 | |a 99961564142 | |
035 | |a (OCoLC)892911209 |z (OCoLC)893332824 | ||
050 | 4 | |a TJ216 |b .F76 2014eb | |
072 | 7 | |a TEC |x 009000 |2 bisacsh | |
082 | 7 | |a 629.8 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Frontiers of intelligent control and information processing / |c edited by Derong Liu, University of Illinois at Chicago USA, Cesare Alippi, Politecnico di Milano, Italy, Dongbin Zhao, the Institute of Automation, Chinese Academy of Sciences, China, Huaguang Zhang, Institute of Electric Automation, Northeastern University, Shenyang, China. |
264 | 1 | |a [Hackensack?] New Jersey : |b World Scientific, |c [2014] | |
264 | 4 | |c ©2015 | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; Contents; 1. Dynamic Graphical Games: Online Adaptive Learning Solutions Using Approximate Dynamic Programming; 1.1 Introduction; 1.2 Graphs and Synchronization of Multi-Agent Dynamical Systems; 1.2.1 Graphs; 1.2.2 Synchronization and tracking error dynamics; 1.3 Multiple Player CooperativeGames on Graphs; 1.3.1 Graphical games; 1.3.2 Comparison of graphical games with standard dynamic games; 1.3.3 Nash equilibrium for graphical games; 1.3.4 Hamiltonian equation for dynamic graphical games; 1.3.5 Bellman equation for dynamic graphical games. | |
505 | 8 | |a 1.3.6 Discrete Hamilton-Jacobi theory: Equivalence of Bellman and discrete-time Hamilton Jacobi equations1.3.7 Stability and Nash solution of the graphical games; 1.4 Approximate Dynamic Programming for Graphical Games; 1.4.1 Heuristic dynamic programming for graphical games; 1.4.2 Dual heuristic programming for graphical games; 1.5 Coupled Riccati Recursions; 1.6 Graphical Game Solutions by Actor-Critic Learning; 1.6.1 Actor-critic networks and tuning; 1.6.2 Actor-critic offline tuning with exploration; 1.6.3 Actor-critic online tuning in real-time. | |
505 | 8 | |a 1.7 Graphical Game Example and Simulation Results1.7.1 Riccati recursion offline solution; 1.7.2 Simulation results using offline actor-critic tuning; 1.7.3 Simulation results using online actor-critic tuning; 1.8 Conclusions; Acknowledgement; References; 2. Reinforcement-Learning-Based Online Learning Control for Discrete-Time Unknown Nonaffine Nonlinear Systems; 2.1 Introduction; 2.2 Problem Statement and Preliminaries; 2.2.1 Dynamics of nonaffine nonlinear discrete-time systems; 2.2.2 A single-hidden layer neural network; 2.3 Controller Design via Reinforcement Learning. | |
505 | 8 | |a 2.3.1 A basic controller design approach2.3.2 Critic neural network and weight update law; 2.3.3 Action neural network and weight update law; 2.4 Stability Analysis and Performance of the Closed-Loop System; 2.5 Numerical Examples; 2.5.1 Example 1; 2.5.2 Example 2; 2.6 Conclusions; Acknowledgement; References; 3. Experimental Studies on Data-Driven Heuristic Dynamic Programming for POMDP; 3.1 Introduction; 3.2 Markov Decision Process and Partially Observable Markov Decision Process; 3.2.1 Markov decision process; 3.2.2 Partially observable Markov decision process. | |
505 | 8 | |a 3.3 Problem Formulation with the State Estimator3.4 Data-Driven HDP Algorithm for POMDP; 3.4.1 Learning in the state estimator network; 3.4.2 Learning in the critic and the action network; 3.5 Simulation Study; 3.5.1 Case study one; 3.5.2 Case study two; 3.5.3 Case study three; 3.6 Conclusions and Discussion; Acknowledgement; References; 4. Online Reinforcement Learning for Continuous-State Systems; 4.1 Introduction; 4.2 Background of Reinforcement Learning; 4.3 RLSPI Algorithm; 4.3.1 Policy iteration; 4.3.2 RLSPI; 4.4 Examples of RLSPI; 4.4.1 Linear discrete-time system. | |
520 | |a The current research and development in intelligent control and information processing have been driven increasingly by advancements made from fields outside the traditional control areas, into new frontiers of intelligent control and information processing so as to deal with ever more complex systems with ever growing size of data and complexity. As researches in intelligent control and information processing are taking on ever more complex problems, the control system as a nuclear to coordinate the activity within a system increasingly need to be equipped with the capability to analyze, and. | ||
650 | 0 | |a Automatic control. |0 http://id.loc.gov/authorities/subjects/sh85010089 | |
650 | 0 | |a Information technology. |0 http://id.loc.gov/authorities/subjects/sh87002293 | |
650 | 0 | |a Electronic data processing. |0 http://id.loc.gov/authorities/subjects/sh85042288 | |
650 | 6 | |a Commande automatique. | |
650 | 6 | |a Technologie de l'information. | |
650 | 7 | |a information technology. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Engineering (General) |2 bisacsh | |
650 | 7 | |a Electronic data processing |2 fast | |
650 | 7 | |a Automatic control |2 fast | |
650 | 7 | |a Information technology |2 fast | |
700 | 1 | |a Liu, Derong, |d 1963- |1 https://id.oclc.org/worldcat/entity/E39PCjHMRJ8bj7Yqgp83h6kbV3 |0 http://id.loc.gov/authorities/names/n94036861 | |
776 | 0 | 8 | |i Print version: |t Frontiers of intelligent control and information processing |z 9789814616874 |w (DLC) 2014015264 |w (OCoLC)881318125 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862358 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 30005468 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1812636 | ||
938 | |a EBSCOhost |b EBSC |n 862358 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis30005468 | ||
938 | |a YBP Library Services |b YANK |n 12102396 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn892911209 |
---|---|
_version_ | 1816882290074058752 |
adam_text | |
any_adam_object | |
author2 | Liu, Derong, 1963- |
author2_role | |
author2_variant | d l dl |
author_GND | http://id.loc.gov/authorities/names/n94036861 |
author_facet | Liu, Derong, 1963- |
author_sort | Liu, Derong, 1963- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TJ216 |
callnumber-raw | TJ216 .F76 2014eb |
callnumber-search | TJ216 .F76 2014eb |
callnumber-sort | TJ 3216 F76 42014EB |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
collection | ZDB-4-EBA |
contents | Preface; Contents; 1. Dynamic Graphical Games: Online Adaptive Learning Solutions Using Approximate Dynamic Programming; 1.1 Introduction; 1.2 Graphs and Synchronization of Multi-Agent Dynamical Systems; 1.2.1 Graphs; 1.2.2 Synchronization and tracking error dynamics; 1.3 Multiple Player CooperativeGames on Graphs; 1.3.1 Graphical games; 1.3.2 Comparison of graphical games with standard dynamic games; 1.3.3 Nash equilibrium for graphical games; 1.3.4 Hamiltonian equation for dynamic graphical games; 1.3.5 Bellman equation for dynamic graphical games. 1.3.6 Discrete Hamilton-Jacobi theory: Equivalence of Bellman and discrete-time Hamilton Jacobi equations1.3.7 Stability and Nash solution of the graphical games; 1.4 Approximate Dynamic Programming for Graphical Games; 1.4.1 Heuristic dynamic programming for graphical games; 1.4.2 Dual heuristic programming for graphical games; 1.5 Coupled Riccati Recursions; 1.6 Graphical Game Solutions by Actor-Critic Learning; 1.6.1 Actor-critic networks and tuning; 1.6.2 Actor-critic offline tuning with exploration; 1.6.3 Actor-critic online tuning in real-time. 1.7 Graphical Game Example and Simulation Results1.7.1 Riccati recursion offline solution; 1.7.2 Simulation results using offline actor-critic tuning; 1.7.3 Simulation results using online actor-critic tuning; 1.8 Conclusions; Acknowledgement; References; 2. Reinforcement-Learning-Based Online Learning Control for Discrete-Time Unknown Nonaffine Nonlinear Systems; 2.1 Introduction; 2.2 Problem Statement and Preliminaries; 2.2.1 Dynamics of nonaffine nonlinear discrete-time systems; 2.2.2 A single-hidden layer neural network; 2.3 Controller Design via Reinforcement Learning. 2.3.1 A basic controller design approach2.3.2 Critic neural network and weight update law; 2.3.3 Action neural network and weight update law; 2.4 Stability Analysis and Performance of the Closed-Loop System; 2.5 Numerical Examples; 2.5.1 Example 1; 2.5.2 Example 2; 2.6 Conclusions; Acknowledgement; References; 3. Experimental Studies on Data-Driven Heuristic Dynamic Programming for POMDP; 3.1 Introduction; 3.2 Markov Decision Process and Partially Observable Markov Decision Process; 3.2.1 Markov decision process; 3.2.2 Partially observable Markov decision process. 3.3 Problem Formulation with the State Estimator3.4 Data-Driven HDP Algorithm for POMDP; 3.4.1 Learning in the state estimator network; 3.4.2 Learning in the critic and the action network; 3.5 Simulation Study; 3.5.1 Case study one; 3.5.2 Case study two; 3.5.3 Case study three; 3.6 Conclusions and Discussion; Acknowledgement; References; 4. Online Reinforcement Learning for Continuous-State Systems; 4.1 Introduction; 4.2 Background of Reinforcement Learning; 4.3 RLSPI Algorithm; 4.3.1 Policy iteration; 4.3.2 RLSPI; 4.4 Examples of RLSPI; 4.4.1 Linear discrete-time system. |
ctrlnum | (OCoLC)892911209 |
dewey-full | 629.8 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8 |
dewey-search | 629.8 |
dewey-sort | 3629.8 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06299cam a2200649 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn892911209</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">141014s2014 nju ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MYG</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">VGM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">893332824</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814616881</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814616885</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814616874</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814616877</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">99961564142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)892911209</subfield><subfield code="z">(OCoLC)893332824</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TJ216</subfield><subfield code="b">.F76 2014eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">629.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Frontiers of intelligent control and information processing /</subfield><subfield code="c">edited by Derong Liu, University of Illinois at Chicago USA, Cesare Alippi, Politecnico di Milano, Italy, Dongbin Zhao, the Institute of Automation, Chinese Academy of Sciences, China, Huaguang Zhang, Institute of Electric Automation, Northeastern University, Shenyang, China.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack?] New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Contents; 1. Dynamic Graphical Games: Online Adaptive Learning Solutions Using Approximate Dynamic Programming; 1.1 Introduction; 1.2 Graphs and Synchronization of Multi-Agent Dynamical Systems; 1.2.1 Graphs; 1.2.2 Synchronization and tracking error dynamics; 1.3 Multiple Player CooperativeGames on Graphs; 1.3.1 Graphical games; 1.3.2 Comparison of graphical games with standard dynamic games; 1.3.3 Nash equilibrium for graphical games; 1.3.4 Hamiltonian equation for dynamic graphical games; 1.3.5 Bellman equation for dynamic graphical games.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.3.6 Discrete Hamilton-Jacobi theory: Equivalence of Bellman and discrete-time Hamilton Jacobi equations1.3.7 Stability and Nash solution of the graphical games; 1.4 Approximate Dynamic Programming for Graphical Games; 1.4.1 Heuristic dynamic programming for graphical games; 1.4.2 Dual heuristic programming for graphical games; 1.5 Coupled Riccati Recursions; 1.6 Graphical Game Solutions by Actor-Critic Learning; 1.6.1 Actor-critic networks and tuning; 1.6.2 Actor-critic offline tuning with exploration; 1.6.3 Actor-critic online tuning in real-time.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.7 Graphical Game Example and Simulation Results1.7.1 Riccati recursion offline solution; 1.7.2 Simulation results using offline actor-critic tuning; 1.7.3 Simulation results using online actor-critic tuning; 1.8 Conclusions; Acknowledgement; References; 2. Reinforcement-Learning-Based Online Learning Control for Discrete-Time Unknown Nonaffine Nonlinear Systems; 2.1 Introduction; 2.2 Problem Statement and Preliminaries; 2.2.1 Dynamics of nonaffine nonlinear discrete-time systems; 2.2.2 A single-hidden layer neural network; 2.3 Controller Design via Reinforcement Learning.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.1 A basic controller design approach2.3.2 Critic neural network and weight update law; 2.3.3 Action neural network and weight update law; 2.4 Stability Analysis and Performance of the Closed-Loop System; 2.5 Numerical Examples; 2.5.1 Example 1; 2.5.2 Example 2; 2.6 Conclusions; Acknowledgement; References; 3. Experimental Studies on Data-Driven Heuristic Dynamic Programming for POMDP; 3.1 Introduction; 3.2 Markov Decision Process and Partially Observable Markov Decision Process; 3.2.1 Markov decision process; 3.2.2 Partially observable Markov decision process.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 Problem Formulation with the State Estimator3.4 Data-Driven HDP Algorithm for POMDP; 3.4.1 Learning in the state estimator network; 3.4.2 Learning in the critic and the action network; 3.5 Simulation Study; 3.5.1 Case study one; 3.5.2 Case study two; 3.5.3 Case study three; 3.6 Conclusions and Discussion; Acknowledgement; References; 4. Online Reinforcement Learning for Continuous-State Systems; 4.1 Introduction; 4.2 Background of Reinforcement Learning; 4.3 RLSPI Algorithm; 4.3.1 Policy iteration; 4.3.2 RLSPI; 4.4 Examples of RLSPI; 4.4.1 Linear discrete-time system.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The current research and development in intelligent control and information processing have been driven increasingly by advancements made from fields outside the traditional control areas, into new frontiers of intelligent control and information processing so as to deal with ever more complex systems with ever growing size of data and complexity. As researches in intelligent control and information processing are taking on ever more complex problems, the control system as a nuclear to coordinate the activity within a system increasingly need to be equipped with the capability to analyze, and.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Automatic control.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85010089</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information technology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh87002293</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85042288</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Commande automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Technologie de l'information.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">information technology.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electronic data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automatic control</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information technology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Derong,</subfield><subfield code="d">1963-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjHMRJ8bj7Yqgp83h6kbV3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94036861</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Frontiers of intelligent control and information processing</subfield><subfield code="z">9789814616874</subfield><subfield code="w">(DLC) 2014015264</subfield><subfield code="w">(OCoLC)881318125</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862358</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">30005468</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1812636</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">862358</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis30005468</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12102396</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn892911209 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:26:15Z |
institution | BVB |
isbn | 9789814616881 9814616885 |
language | English |
oclc_num | 892911209 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific, |
record_format | marc |
spelling | Frontiers of intelligent control and information processing / edited by Derong Liu, University of Illinois at Chicago USA, Cesare Alippi, Politecnico di Milano, Italy, Dongbin Zhao, the Institute of Automation, Chinese Academy of Sciences, China, Huaguang Zhang, Institute of Electric Automation, Northeastern University, Shenyang, China. [Hackensack?] New Jersey : World Scientific, [2014] ©2015 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references. Print version record. Preface; Contents; 1. Dynamic Graphical Games: Online Adaptive Learning Solutions Using Approximate Dynamic Programming; 1.1 Introduction; 1.2 Graphs and Synchronization of Multi-Agent Dynamical Systems; 1.2.1 Graphs; 1.2.2 Synchronization and tracking error dynamics; 1.3 Multiple Player CooperativeGames on Graphs; 1.3.1 Graphical games; 1.3.2 Comparison of graphical games with standard dynamic games; 1.3.3 Nash equilibrium for graphical games; 1.3.4 Hamiltonian equation for dynamic graphical games; 1.3.5 Bellman equation for dynamic graphical games. 1.3.6 Discrete Hamilton-Jacobi theory: Equivalence of Bellman and discrete-time Hamilton Jacobi equations1.3.7 Stability and Nash solution of the graphical games; 1.4 Approximate Dynamic Programming for Graphical Games; 1.4.1 Heuristic dynamic programming for graphical games; 1.4.2 Dual heuristic programming for graphical games; 1.5 Coupled Riccati Recursions; 1.6 Graphical Game Solutions by Actor-Critic Learning; 1.6.1 Actor-critic networks and tuning; 1.6.2 Actor-critic offline tuning with exploration; 1.6.3 Actor-critic online tuning in real-time. 1.7 Graphical Game Example and Simulation Results1.7.1 Riccati recursion offline solution; 1.7.2 Simulation results using offline actor-critic tuning; 1.7.3 Simulation results using online actor-critic tuning; 1.8 Conclusions; Acknowledgement; References; 2. Reinforcement-Learning-Based Online Learning Control for Discrete-Time Unknown Nonaffine Nonlinear Systems; 2.1 Introduction; 2.2 Problem Statement and Preliminaries; 2.2.1 Dynamics of nonaffine nonlinear discrete-time systems; 2.2.2 A single-hidden layer neural network; 2.3 Controller Design via Reinforcement Learning. 2.3.1 A basic controller design approach2.3.2 Critic neural network and weight update law; 2.3.3 Action neural network and weight update law; 2.4 Stability Analysis and Performance of the Closed-Loop System; 2.5 Numerical Examples; 2.5.1 Example 1; 2.5.2 Example 2; 2.6 Conclusions; Acknowledgement; References; 3. Experimental Studies on Data-Driven Heuristic Dynamic Programming for POMDP; 3.1 Introduction; 3.2 Markov Decision Process and Partially Observable Markov Decision Process; 3.2.1 Markov decision process; 3.2.2 Partially observable Markov decision process. 3.3 Problem Formulation with the State Estimator3.4 Data-Driven HDP Algorithm for POMDP; 3.4.1 Learning in the state estimator network; 3.4.2 Learning in the critic and the action network; 3.5 Simulation Study; 3.5.1 Case study one; 3.5.2 Case study two; 3.5.3 Case study three; 3.6 Conclusions and Discussion; Acknowledgement; References; 4. Online Reinforcement Learning for Continuous-State Systems; 4.1 Introduction; 4.2 Background of Reinforcement Learning; 4.3 RLSPI Algorithm; 4.3.1 Policy iteration; 4.3.2 RLSPI; 4.4 Examples of RLSPI; 4.4.1 Linear discrete-time system. The current research and development in intelligent control and information processing have been driven increasingly by advancements made from fields outside the traditional control areas, into new frontiers of intelligent control and information processing so as to deal with ever more complex systems with ever growing size of data and complexity. As researches in intelligent control and information processing are taking on ever more complex problems, the control system as a nuclear to coordinate the activity within a system increasingly need to be equipped with the capability to analyze, and. Automatic control. http://id.loc.gov/authorities/subjects/sh85010089 Information technology. http://id.loc.gov/authorities/subjects/sh87002293 Electronic data processing. http://id.loc.gov/authorities/subjects/sh85042288 Commande automatique. Technologie de l'information. information technology. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh Electronic data processing fast Automatic control fast Information technology fast Liu, Derong, 1963- https://id.oclc.org/worldcat/entity/E39PCjHMRJ8bj7Yqgp83h6kbV3 http://id.loc.gov/authorities/names/n94036861 Print version: Frontiers of intelligent control and information processing 9789814616874 (DLC) 2014015264 (OCoLC)881318125 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862358 Volltext |
spellingShingle | Frontiers of intelligent control and information processing / Preface; Contents; 1. Dynamic Graphical Games: Online Adaptive Learning Solutions Using Approximate Dynamic Programming; 1.1 Introduction; 1.2 Graphs and Synchronization of Multi-Agent Dynamical Systems; 1.2.1 Graphs; 1.2.2 Synchronization and tracking error dynamics; 1.3 Multiple Player CooperativeGames on Graphs; 1.3.1 Graphical games; 1.3.2 Comparison of graphical games with standard dynamic games; 1.3.3 Nash equilibrium for graphical games; 1.3.4 Hamiltonian equation for dynamic graphical games; 1.3.5 Bellman equation for dynamic graphical games. 1.3.6 Discrete Hamilton-Jacobi theory: Equivalence of Bellman and discrete-time Hamilton Jacobi equations1.3.7 Stability and Nash solution of the graphical games; 1.4 Approximate Dynamic Programming for Graphical Games; 1.4.1 Heuristic dynamic programming for graphical games; 1.4.2 Dual heuristic programming for graphical games; 1.5 Coupled Riccati Recursions; 1.6 Graphical Game Solutions by Actor-Critic Learning; 1.6.1 Actor-critic networks and tuning; 1.6.2 Actor-critic offline tuning with exploration; 1.6.3 Actor-critic online tuning in real-time. 1.7 Graphical Game Example and Simulation Results1.7.1 Riccati recursion offline solution; 1.7.2 Simulation results using offline actor-critic tuning; 1.7.3 Simulation results using online actor-critic tuning; 1.8 Conclusions; Acknowledgement; References; 2. Reinforcement-Learning-Based Online Learning Control for Discrete-Time Unknown Nonaffine Nonlinear Systems; 2.1 Introduction; 2.2 Problem Statement and Preliminaries; 2.2.1 Dynamics of nonaffine nonlinear discrete-time systems; 2.2.2 A single-hidden layer neural network; 2.3 Controller Design via Reinforcement Learning. 2.3.1 A basic controller design approach2.3.2 Critic neural network and weight update law; 2.3.3 Action neural network and weight update law; 2.4 Stability Analysis and Performance of the Closed-Loop System; 2.5 Numerical Examples; 2.5.1 Example 1; 2.5.2 Example 2; 2.6 Conclusions; Acknowledgement; References; 3. Experimental Studies on Data-Driven Heuristic Dynamic Programming for POMDP; 3.1 Introduction; 3.2 Markov Decision Process and Partially Observable Markov Decision Process; 3.2.1 Markov decision process; 3.2.2 Partially observable Markov decision process. 3.3 Problem Formulation with the State Estimator3.4 Data-Driven HDP Algorithm for POMDP; 3.4.1 Learning in the state estimator network; 3.4.2 Learning in the critic and the action network; 3.5 Simulation Study; 3.5.1 Case study one; 3.5.2 Case study two; 3.5.3 Case study three; 3.6 Conclusions and Discussion; Acknowledgement; References; 4. Online Reinforcement Learning for Continuous-State Systems; 4.1 Introduction; 4.2 Background of Reinforcement Learning; 4.3 RLSPI Algorithm; 4.3.1 Policy iteration; 4.3.2 RLSPI; 4.4 Examples of RLSPI; 4.4.1 Linear discrete-time system. Automatic control. http://id.loc.gov/authorities/subjects/sh85010089 Information technology. http://id.loc.gov/authorities/subjects/sh87002293 Electronic data processing. http://id.loc.gov/authorities/subjects/sh85042288 Commande automatique. Technologie de l'information. information technology. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh Electronic data processing fast Automatic control fast Information technology fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85010089 http://id.loc.gov/authorities/subjects/sh87002293 http://id.loc.gov/authorities/subjects/sh85042288 |
title | Frontiers of intelligent control and information processing / |
title_auth | Frontiers of intelligent control and information processing / |
title_exact_search | Frontiers of intelligent control and information processing / |
title_full | Frontiers of intelligent control and information processing / edited by Derong Liu, University of Illinois at Chicago USA, Cesare Alippi, Politecnico di Milano, Italy, Dongbin Zhao, the Institute of Automation, Chinese Academy of Sciences, China, Huaguang Zhang, Institute of Electric Automation, Northeastern University, Shenyang, China. |
title_fullStr | Frontiers of intelligent control and information processing / edited by Derong Liu, University of Illinois at Chicago USA, Cesare Alippi, Politecnico di Milano, Italy, Dongbin Zhao, the Institute of Automation, Chinese Academy of Sciences, China, Huaguang Zhang, Institute of Electric Automation, Northeastern University, Shenyang, China. |
title_full_unstemmed | Frontiers of intelligent control and information processing / edited by Derong Liu, University of Illinois at Chicago USA, Cesare Alippi, Politecnico di Milano, Italy, Dongbin Zhao, the Institute of Automation, Chinese Academy of Sciences, China, Huaguang Zhang, Institute of Electric Automation, Northeastern University, Shenyang, China. |
title_short | Frontiers of intelligent control and information processing / |
title_sort | frontiers of intelligent control and information processing |
topic | Automatic control. http://id.loc.gov/authorities/subjects/sh85010089 Information technology. http://id.loc.gov/authorities/subjects/sh87002293 Electronic data processing. http://id.loc.gov/authorities/subjects/sh85042288 Commande automatique. Technologie de l'information. information technology. aat TECHNOLOGY & ENGINEERING Engineering (General) bisacsh Electronic data processing fast Automatic control fast Information technology fast |
topic_facet | Automatic control. Information technology. Electronic data processing. Commande automatique. Technologie de l'information. information technology. TECHNOLOGY & ENGINEERING Engineering (General) Electronic data processing Automatic control Information technology |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862358 |
work_keys_str_mv | AT liuderong frontiersofintelligentcontrolandinformationprocessing |