Renormalization and 3-manifolds which fiber over the circle /:
Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the ci...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, New Jersey :
Princeton University Press,
1996.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 142. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quan. |
Beschreibung: | 1 online resource (264 pages) : illustrations, tables |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781400865178 1400865174 0691011540 9780691011547 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn891400016 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 140822t19961996njua ob 001 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d OCLCO |d YDXCP |d EBLCP |d IDEBK |d N$T |d DEBSZ |d JSTOR |d OCLCF |d DEBBG |d OCLCQ |d TFW |d COO |d OCLCQ |d OCLCO |d UIU |d COCUF |d MOR |d CCO |d PIFAG |d ZCU |d MERUC |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d VTS |d ICG |d INT |d OCLCQ |d LVT |d TKN |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d AJS |d QGK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d UEJ |d OCLCQ | ||
019 | |a 887499131 |a 961568223 |a 962662504 |a 992818986 |a 1241932276 |a 1259245050 | ||
020 | |a 9781400865178 |q (e-book) | ||
020 | |a 1400865174 |q (e-book) | ||
020 | |a 0691011540 | ||
020 | |a 9780691011547 | ||
020 | |z 9780691011530 | ||
024 | 7 | |a 10.1515/9781400865178 |2 doi | |
035 | |a (OCoLC)891400016 |z (OCoLC)887499131 |z (OCoLC)961568223 |z (OCoLC)962662504 |z (OCoLC)992818986 |z (OCoLC)1241932276 |z (OCoLC)1259245050 | ||
037 | |a 22573/ctt767zwm |b JSTOR | ||
050 | 4 | |a QA613 |b .M42 1996eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
072 | 7 | |a MAT012020 |2 bisacsh | |
082 | 7 | |a 514/.3 |2 20 | |
049 | |a MAIN | ||
100 | 1 | |a McMullen, Curtis T., |e author. | |
245 | 1 | 0 | |a Renormalization and 3-manifolds which fiber over the circle / |c by Curtis T. McMullen. |
264 | 1 | |a Princeton, New Jersey : |b Princeton University Press, |c 1996. | |
264 | 4 | |c ©1996 | |
300 | |a 1 online resource (264 pages) : |b illustrations, tables | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies ; |v Number 142 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains. | |
505 | 8 | |a 4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization. | |
505 | 8 | |a 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows. | |
505 | 8 | |a A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index. | |
520 | |a Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quan. | ||
546 | |a In English. | ||
650 | 0 | |a Three-manifolds (Topology) |0 http://id.loc.gov/authorities/subjects/sh85135028 | |
650 | 0 | |a Differentiable dynamical systems. |0 http://id.loc.gov/authorities/subjects/sh85037882 | |
650 | 6 | |a Variétés topologiques à 3 dimensions. | |
650 | 6 | |a Dynamique différentiable. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Geometry |x Analytic. |2 bisacsh | |
650 | 7 | |a Differentiable dynamical systems |2 fast | |
650 | 7 | |a Three-manifolds (Topology) |2 fast | |
653 | |a Algebraic topology. | ||
653 | |a Analytic continuation. | ||
653 | |a Automorphism. | ||
653 | |a Beltrami equation. | ||
653 | |a Bifurcation theory. | ||
653 | |a Boundary (topology) | ||
653 | |a Cantor set. | ||
653 | |a Circular symmetry. | ||
653 | |a Combinatorics. | ||
653 | |a Compact space. | ||
653 | |a Complex conjugate. | ||
653 | |a Complex manifold. | ||
653 | |a Complex number. | ||
653 | |a Complex plane. | ||
653 | |a Conformal geometry. | ||
653 | |a Conformal map. | ||
653 | |a Conjugacy class. | ||
653 | |a Convex hull. | ||
653 | |a Covering space. | ||
653 | |a Deformation theory. | ||
653 | |a Degeneracy (mathematics) | ||
653 | |a Dimension (vector space) | ||
653 | |a Disk (mathematics) | ||
653 | |a Dynamical system. | ||
653 | |a Eigenvalues and eigenvectors. | ||
653 | |a Factorization. | ||
653 | |a Fiber bundle. | ||
653 | |a Fuchsian group. | ||
653 | |a Fundamental domain. | ||
653 | |a Fundamental group. | ||
653 | |a Fundamental solution. | ||
653 | |a G-module. | ||
653 | |a Geodesic. | ||
653 | |a Geometry. | ||
653 | |a Harmonic analysis. | ||
653 | |a Hausdorff dimension. | ||
653 | |a Homeomorphism. | ||
653 | |a Homotopy. | ||
653 | |a Hyperbolic 3-manifold. | ||
653 | |a Hyperbolic geometry. | ||
653 | |a Hyperbolic manifold. | ||
653 | |a Hyperbolic space. | ||
653 | |a Hypersurface. | ||
653 | |a Infimum and supremum. | ||
653 | |a Injective function. | ||
653 | |a Intersection (set theory) | ||
653 | |a Invariant subspace. | ||
653 | |a Isometry. | ||
653 | |a Julia set. | ||
653 | |a Kleinian group. | ||
653 | |a Laplace's equation. | ||
653 | |a Lebesgue measure. | ||
653 | |a Lie algebra. | ||
653 | |a Limit point. | ||
653 | |a Limit set. | ||
653 | |a Linear map. | ||
653 | |a Mandelbrot set. | ||
653 | |a Manifold. | ||
653 | |a Mapping class group. | ||
653 | |a Measure (mathematics) | ||
653 | |a Moduli (physics) | ||
653 | |a Moduli space. | ||
653 | |a Modulus of continuity. | ||
653 | |a Möbius transformation. | ||
653 | |a N-sphere. | ||
653 | |a Newton's method. | ||
653 | |a Permutation. | ||
653 | |a Point at infinity. | ||
653 | |a Polynomial. | ||
653 | |a Quadratic function. | ||
653 | |a Quasi-isometry. | ||
653 | |a Quasiconformal mapping. | ||
653 | |a Quasisymmetric function. | ||
653 | |a Quotient space (topology) | ||
653 | |a Radon-Nikodym theorem. | ||
653 | |a Renormalization. | ||
653 | |a Representation of a Lie group. | ||
653 | |a Representation theory. | ||
653 | |a Riemann sphere. | ||
653 | |a Riemann surface. | ||
653 | |a Riemannian manifold. | ||
653 | |a Schwarz lemma. | ||
653 | |a Simply connected space. | ||
653 | |a Special case. | ||
653 | |a Submanifold. | ||
653 | |a Subsequence. | ||
653 | |a Support (mathematics) | ||
653 | |a Tangent space. | ||
653 | |a Teichmüller space. | ||
653 | |a Theorem. | ||
653 | |a Topology of uniform convergence. | ||
653 | |a Topology. | ||
653 | |a Trace (linear algebra) | ||
653 | |a Transversal (geometry) | ||
653 | |a Transversality (mathematics) | ||
653 | |a Triangle inequality. | ||
653 | |a Unit disk. | ||
653 | |a Unit sphere. | ||
653 | |a Upper and lower bounds. | ||
653 | |a Vector field. | ||
758 | |i has work: |a Renormalization and 3-manifolds which fiber over the circle (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGpFwWMpCtHmXgWqfGKfMP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a McMullen, Curtis T. |t Renormalization and 3-manifolds which fiber over the circle. |d Princeton, New Jersey : Princeton University Press, ©1996 |h 253 pages |k Annals of mathematics studies ; Number 142 |z 9780691011530 |
830 | 0 | |a Annals of mathematics studies ; |v no. 142. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431 |3 Volltext | |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH28074157 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1756195 | ||
938 | |a ebrary |b EBRY |n ebr10907689 | ||
938 | |a EBSCOhost |b EBSC |n 818431 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis28840349 | ||
938 | |a YBP Library Services |b YANK |n 12033123 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn891400016 |
---|---|
_version_ | 1813903662326480896 |
adam_text | |
any_adam_object | |
author | McMullen, Curtis T. |
author_facet | McMullen, Curtis T. |
author_role | aut |
author_sort | McMullen, Curtis T. |
author_variant | c t m ct ctm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613 .M42 1996eb |
callnumber-search | QA613 .M42 1996eb |
callnumber-sort | QA 3613 M42 41996EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains. 4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization. 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows. A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index. |
ctrlnum | (OCoLC)891400016 |
dewey-full | 514/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.3 |
dewey-search | 514/.3 |
dewey-sort | 3514 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09613cam a2201921 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn891400016</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">140822t19961996njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TFW</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UIU</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">AJS</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">887499131</subfield><subfield code="a">961568223</subfield><subfield code="a">962662504</subfield><subfield code="a">992818986</subfield><subfield code="a">1241932276</subfield><subfield code="a">1259245050</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400865178</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400865174</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691011540</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691011547</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691011530</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400865178</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)891400016</subfield><subfield code="z">(OCoLC)887499131</subfield><subfield code="z">(OCoLC)961568223</subfield><subfield code="z">(OCoLC)962662504</subfield><subfield code="z">(OCoLC)992818986</subfield><subfield code="z">(OCoLC)1241932276</subfield><subfield code="z">(OCoLC)1259245050</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt767zwm</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA613</subfield><subfield code="b">.M42 1996eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.3</subfield><subfield code="2">20</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McMullen, Curtis T.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renormalization and 3-manifolds which fiber over the circle /</subfield><subfield code="c">by Curtis T. McMullen.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, New Jersey :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">1996.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (264 pages) :</subfield><subfield code="b">illustrations, tables</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies ;</subfield><subfield code="v">Number 142</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quan.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85135028</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differentiable dynamical systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037882</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés topologiques à 3 dimensions.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique différentiable.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Analytic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytic continuation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Automorphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Beltrami equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bifurcation theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Boundary (topology)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cantor set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Circular symmetry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Combinatorics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Compact space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex conjugate.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex plane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conformal geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conformal map.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conjugacy class.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Convex hull.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Covering space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deformation theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Degeneracy (mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension (vector space)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Disk (mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dynamical system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Eigenvalues and eigenvectors.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Factorization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fiber bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fuchsian group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fundamental domain.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fundamental group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fundamental solution.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">G-module.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geodesic.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Harmonic analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hausdorff dimension.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Homeomorphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Homotopy.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hyperbolic 3-manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hyperbolic geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hyperbolic manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hyperbolic space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hypersurface.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Infimum and supremum.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Injective function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Intersection (set theory)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Invariant subspace.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Isometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Julia set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kleinian group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Laplace's equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lebesgue measure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lie algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Limit point.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Limit set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear map.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mandelbrot set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mapping class group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Measure (mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Moduli (physics)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Moduli space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Modulus of continuity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Möbius transformation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">N-sphere.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Newton's method.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Permutation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Point at infinity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quadratic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quasi-isometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quasiconformal mapping.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quasisymmetric function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quotient space (topology)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Radon-Nikodym theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Renormalization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Representation of a Lie group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Representation theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemann sphere.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemann surface.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemannian manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Schwarz lemma.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Simply connected space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Special case.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Submanifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subsequence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Support (mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tangent space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Teichmüller space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topology of uniform convergence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Trace (linear algebra)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Transversal (geometry)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Transversality (mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Triangle inequality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit disk.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit sphere.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Upper and lower bounds.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector field.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Renormalization and 3-manifolds which fiber over the circle (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGpFwWMpCtHmXgWqfGKfMP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">McMullen, Curtis T.</subfield><subfield code="t">Renormalization and 3-manifolds which fiber over the circle.</subfield><subfield code="d">Princeton, New Jersey : Princeton University Press, ©1996</subfield><subfield code="h">253 pages</subfield><subfield code="k">Annals of mathematics studies ; Number 142</subfield><subfield code="z">9780691011530</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 142.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28074157</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1756195</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10907689</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">818431</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis28840349</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12033123</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn891400016 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:22:15Z |
institution | BVB |
isbn | 9781400865178 1400865174 0691011540 9780691011547 |
language | English |
oclc_num | 891400016 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (264 pages) : illustrations, tables |
psigel | ZDB-4-EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of Mathematics Studies ; |
spelling | McMullen, Curtis T., author. Renormalization and 3-manifolds which fiber over the circle / by Curtis T. McMullen. Princeton, New Jersey : Princeton University Press, 1996. ©1996 1 online resource (264 pages) : illustrations, tables text txt rdacontent computer c rdamedia online resource cr rdacarrier Annals of Mathematics Studies ; Number 142 Includes bibliographical references and index. Print version record. Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains. 4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization. 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows. A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index. Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quan. In English. Three-manifolds (Topology) http://id.loc.gov/authorities/subjects/sh85135028 Differentiable dynamical systems. http://id.loc.gov/authorities/subjects/sh85037882 Variétés topologiques à 3 dimensions. Dynamique différentiable. MATHEMATICS Topology. bisacsh MATHEMATICS Geometry Analytic. bisacsh Differentiable dynamical systems fast Three-manifolds (Topology) fast Algebraic topology. Analytic continuation. Automorphism. Beltrami equation. Bifurcation theory. Boundary (topology) Cantor set. Circular symmetry. Combinatorics. Compact space. Complex conjugate. Complex manifold. Complex number. Complex plane. Conformal geometry. Conformal map. Conjugacy class. Convex hull. Covering space. Deformation theory. Degeneracy (mathematics) Dimension (vector space) Disk (mathematics) Dynamical system. Eigenvalues and eigenvectors. Factorization. Fiber bundle. Fuchsian group. Fundamental domain. Fundamental group. Fundamental solution. G-module. Geodesic. Geometry. Harmonic analysis. Hausdorff dimension. Homeomorphism. Homotopy. Hyperbolic 3-manifold. Hyperbolic geometry. Hyperbolic manifold. Hyperbolic space. Hypersurface. Infimum and supremum. Injective function. Intersection (set theory) Invariant subspace. Isometry. Julia set. Kleinian group. Laplace's equation. Lebesgue measure. Lie algebra. Limit point. Limit set. Linear map. Mandelbrot set. Manifold. Mapping class group. Measure (mathematics) Moduli (physics) Moduli space. Modulus of continuity. Möbius transformation. N-sphere. Newton's method. Permutation. Point at infinity. Polynomial. Quadratic function. Quasi-isometry. Quasiconformal mapping. Quasisymmetric function. Quotient space (topology) Radon-Nikodym theorem. Renormalization. Representation of a Lie group. Representation theory. Riemann sphere. Riemann surface. Riemannian manifold. Schwarz lemma. Simply connected space. Special case. Submanifold. Subsequence. Support (mathematics) Tangent space. Teichmüller space. Theorem. Topology of uniform convergence. Topology. Trace (linear algebra) Transversal (geometry) Transversality (mathematics) Triangle inequality. Unit disk. Unit sphere. Upper and lower bounds. Vector field. has work: Renormalization and 3-manifolds which fiber over the circle (Text) https://id.oclc.org/worldcat/entity/E39PCGpFwWMpCtHmXgWqfGKfMP https://id.oclc.org/worldcat/ontology/hasWork Print version: McMullen, Curtis T. Renormalization and 3-manifolds which fiber over the circle. Princeton, New Jersey : Princeton University Press, ©1996 253 pages Annals of mathematics studies ; Number 142 9780691011530 Annals of mathematics studies ; no. 142. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431 Volltext |
spellingShingle | McMullen, Curtis T. Renormalization and 3-manifolds which fiber over the circle / Annals of mathematics studies ; Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Three-manifolds which fiber over the circle; 3.1 Structures on surfaces and 3-manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains. 4.2 Polynomials and polynomial-like maps4.3 The inner class; 4.4 Improving polynomial-like maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization. 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows. A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index. Three-manifolds (Topology) http://id.loc.gov/authorities/subjects/sh85135028 Differentiable dynamical systems. http://id.loc.gov/authorities/subjects/sh85037882 Variétés topologiques à 3 dimensions. Dynamique différentiable. MATHEMATICS Topology. bisacsh MATHEMATICS Geometry Analytic. bisacsh Differentiable dynamical systems fast Three-manifolds (Topology) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85135028 http://id.loc.gov/authorities/subjects/sh85037882 |
title | Renormalization and 3-manifolds which fiber over the circle / |
title_auth | Renormalization and 3-manifolds which fiber over the circle / |
title_exact_search | Renormalization and 3-manifolds which fiber over the circle / |
title_full | Renormalization and 3-manifolds which fiber over the circle / by Curtis T. McMullen. |
title_fullStr | Renormalization and 3-manifolds which fiber over the circle / by Curtis T. McMullen. |
title_full_unstemmed | Renormalization and 3-manifolds which fiber over the circle / by Curtis T. McMullen. |
title_short | Renormalization and 3-manifolds which fiber over the circle / |
title_sort | renormalization and 3 manifolds which fiber over the circle |
topic | Three-manifolds (Topology) http://id.loc.gov/authorities/subjects/sh85135028 Differentiable dynamical systems. http://id.loc.gov/authorities/subjects/sh85037882 Variétés topologiques à 3 dimensions. Dynamique différentiable. MATHEMATICS Topology. bisacsh MATHEMATICS Geometry Analytic. bisacsh Differentiable dynamical systems fast Three-manifolds (Topology) fast |
topic_facet | Three-manifolds (Topology) Differentiable dynamical systems. Variétés topologiques à 3 dimensions. Dynamique différentiable. MATHEMATICS Topology. MATHEMATICS Geometry Analytic. Differentiable dynamical systems |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818431 |
work_keys_str_mv | AT mcmullencurtist renormalizationand3manifoldswhichfiberoverthecircle |