Fixed point theorems and their applications /:
This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibil...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific Pub. Co.,
2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers. |
Beschreibung: | 1 online resource (xi, 234 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 219-227) and index. |
ISBN: | 9789814458924 9814458929 9789814458931 9814458937 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn874921206 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr buu|||uu||| | ||
008 | 091123s2013 si a ob 001 0 eng d | ||
040 | |a OTZ |b eng |e pn |c OTZ |d OCLCO |d OCLCF |d GGVRL |d YDXCP |d CDX |d IDEBK |d N$T |d RIC |d I9W |d ZCU |d E7B |d EBLCP |d DEBSZ |d OCLCQ |d CUS |d COCUF |d AGLDB |d MOR |d PIFAG |d MERUC |d OCLCQ |d U3W |d STF |d VTS |d INT |d OCLCQ |d TKN |d OCLCQ |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLKB |d OCLCQ |d OCLCO | ||
019 | |a 859584833 |a 861257354 |a 862048231 |a 1086448941 |a 1237219779 |a 1432346685 | ||
020 | |a 9789814458924 |q (electronic bk.) | ||
020 | |a 9814458929 |q (electronic bk.) | ||
020 | |z 9789814458917 | ||
020 | |z 9814458910 | ||
020 | |z 9781299955363 | ||
020 | |z 1299955363 | ||
020 | |a 9789814458931 | ||
020 | |a 9814458937 | ||
035 | |a (OCoLC)874921206 |z (OCoLC)859584833 |z (OCoLC)861257354 |z (OCoLC)862048231 |z (OCoLC)1086448941 |z (OCoLC)1237219779 |z (OCoLC)1432346685 | ||
037 | |a 526787 |b MIL | ||
050 | 4 | |a QA329.9 |b .F37 2013 | |
072 | 7 | |a MAT |2 ukslc | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.7248 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Farmakis, Ioannis, |e author. | |
245 | 1 | 0 | |a Fixed point theorems and their applications / |c Ioannis Farmakis, Martin Moskowitz. |
264 | 1 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific Pub. Co., |c 2013. | |
264 | 4 | |c ©2013 | |
300 | |a 1 online resource (xi, 234 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 219-227) and index. | ||
505 | 0 | |a Introduction -- 1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] -- 2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups -- 3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem -- 4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds -- 5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function -- 6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups -- 7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis -- 8. A fixed point theorem in set theory -- Afterword. | |
520 | |a This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers. | ||
650 | 0 | |a Fixed point theory. |0 http://id.loc.gov/authorities/subjects/sh85048934 | |
650 | 6 | |a Théorème du point fixe. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Fixed point theory |2 fast | |
700 | 1 | |a Moskowitz, Martin A., |e author. | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
758 | |i has work: |a Fixed point theorems and their applications (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFMxFWWR4mmkjdq8vmkPpK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 1 | |z 9789814458917 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=645968 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25703561 | ||
938 | |a Coutts Information Services |b COUT |n 26293403 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1441492 | ||
938 | |a ebrary |b EBRY |n ebr10775238 | ||
938 | |a EBSCOhost |b EBSC |n 645968 | ||
938 | |a Cengage Learning |b GVRL |n GVRL8QZU | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26293403 | ||
938 | |a YBP Library Services |b YANK |n 11202597 | ||
938 | |b OCKB |z perlego.catalogue,0bfaf6fc-e0cb-45b5-8775-5359b6f73a6a-emi | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn874921206 |
---|---|
_version_ | 1816882265719832576 |
adam_text | |
any_adam_object | |
author | Farmakis, Ioannis Moskowitz, Martin A. |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Farmakis, Ioannis Moskowitz, Martin A. World Scientific (Firm) |
author_role | aut aut |
author_sort | Farmakis, Ioannis |
author_variant | i f if m a m ma mam |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA329 |
callnumber-raw | QA329.9 .F37 2013 |
callnumber-search | QA329.9 .F37 2013 |
callnumber-sort | QA 3329.9 F37 42013 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introduction -- 1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] -- 2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups -- 3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem -- 4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds -- 5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function -- 6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups -- 7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis -- 8. A fixed point theorem in set theory -- Afterword. |
ctrlnum | (OCoLC)874921206 |
dewey-full | 515.7248 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7248 |
dewey-search | 515.7248 |
dewey-sort | 3515.7248 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05172cam a2200685 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn874921206</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr buu|||uu|||</controlfield><controlfield tag="008">091123s2013 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OTZ</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OTZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">GGVRL</subfield><subfield code="d">YDXCP</subfield><subfield code="d">CDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">RIC</subfield><subfield code="d">I9W</subfield><subfield code="d">ZCU</subfield><subfield code="d">E7B</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUS</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLKB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">859584833</subfield><subfield code="a">861257354</subfield><subfield code="a">862048231</subfield><subfield code="a">1086448941</subfield><subfield code="a">1237219779</subfield><subfield code="a">1432346685</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814458924</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814458929</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814458917</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814458910</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781299955363</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1299955363</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814458931</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814458937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)874921206</subfield><subfield code="z">(OCoLC)859584833</subfield><subfield code="z">(OCoLC)861257354</subfield><subfield code="z">(OCoLC)862048231</subfield><subfield code="z">(OCoLC)1086448941</subfield><subfield code="z">(OCoLC)1237219779</subfield><subfield code="z">(OCoLC)1432346685</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">526787</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA329.9</subfield><subfield code="b">.F37 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">ukslc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.7248</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farmakis, Ioannis,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fixed point theorems and their applications /</subfield><subfield code="c">Ioannis Farmakis, Martin Moskowitz.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific Pub. Co.,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 234 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 219-227) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- 1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] -- 2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups -- 3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem -- 4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds -- 5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function -- 6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups -- 7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis -- 8. A fixed point theorem in set theory -- Afterword.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fixed point theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048934</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorème du point fixe.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fixed point theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moskowitz, Martin A.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Fixed point theorems and their applications (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFMxFWWR4mmkjdq8vmkPpK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9789814458917</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=645968</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25703561</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">26293403</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1441492</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10775238</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">645968</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Cengage Learning</subfield><subfield code="b">GVRL</subfield><subfield code="n">GVRL8QZU</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26293403</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11202597</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="b">OCKB</subfield><subfield code="z">perlego.catalogue,0bfaf6fc-e0cb-45b5-8775-5359b6f73a6a-emi</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn874921206 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:52Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9789814458924 9814458929 9789814458931 9814458937 |
language | English |
oclc_num | 874921206 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 234 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. Co., |
record_format | marc |
spelling | Farmakis, Ioannis, author. Fixed point theorems and their applications / Ioannis Farmakis, Martin Moskowitz. Singapore ; Hackensack, N.J. : World Scientific Pub. Co., 2013. ©2013 1 online resource (xi, 234 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 219-227) and index. Introduction -- 1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] -- 2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups -- 3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem -- 4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds -- 5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function -- 6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups -- 7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis -- 8. A fixed point theorem in set theory -- Afterword. This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers. Fixed point theory. http://id.loc.gov/authorities/subjects/sh85048934 Théorème du point fixe. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fixed point theory fast Moskowitz, Martin A., author. World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 has work: Fixed point theorems and their applications (Text) https://id.oclc.org/worldcat/entity/E39PCFMxFWWR4mmkjdq8vmkPpK https://id.oclc.org/worldcat/ontology/hasWork 9789814458917 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=645968 Volltext |
spellingShingle | Farmakis, Ioannis Moskowitz, Martin A. Fixed point theorems and their applications / Introduction -- 1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] -- 2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups -- 3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem -- 4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds -- 5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function -- 6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups -- 7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis -- 8. A fixed point theorem in set theory -- Afterword. Fixed point theory. http://id.loc.gov/authorities/subjects/sh85048934 Théorème du point fixe. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fixed point theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85048934 |
title | Fixed point theorems and their applications / |
title_auth | Fixed point theorems and their applications / |
title_exact_search | Fixed point theorems and their applications / |
title_full | Fixed point theorems and their applications / Ioannis Farmakis, Martin Moskowitz. |
title_fullStr | Fixed point theorems and their applications / Ioannis Farmakis, Martin Moskowitz. |
title_full_unstemmed | Fixed point theorems and their applications / Ioannis Farmakis, Martin Moskowitz. |
title_short | Fixed point theorems and their applications / |
title_sort | fixed point theorems and their applications |
topic | Fixed point theory. http://id.loc.gov/authorities/subjects/sh85048934 Théorème du point fixe. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fixed point theory fast |
topic_facet | Fixed point theory. Théorème du point fixe. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Fixed point theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=645968 |
work_keys_str_mv | AT farmakisioannis fixedpointtheoremsandtheirapplications AT moskowitzmartina fixedpointtheoremsandtheirapplications AT worldscientificfirm fixedpointtheoremsandtheirapplications |